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HIGHLIGHTS

• A comprehensive review of the recent development of two‑dimensional (2D)  PtSe2 synthesis strategies has been extensively surveyed.

• The applications of 2D  PtSe2 materials in areas, including opto/electric devices, photocatalysis, hydrogen evolution reaction, and sen‑
sors, have been reviewed.

• Current challenges in the development of 2D  PtSe2 materials are identified, and outlooks toward unexplored research areas are sug‑
gested.

ABSTRACT In recent years, emerging two‑dimensional (2D) platinum dis‑
elenide  (PtSe2) has quickly attracted the attention of the research community 
due to its novel physical and chemical properties. For the past few years, 
increasing research achievements on 2D  PtSe2 have been reported toward the 
fundamental science and various potential applications of  PtSe2. In this review, 
the properties and structure characteristics of 2D  PtSe2 are discussed at first. 
Then, the recent advances in synthesis of  PtSe2 as well as their applications 
are reviewed. At last, potential perspectives in exploring the application of 2D 
 PtSe2 are reviewed.
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1 Introduction

Since graphene was discovered in 2004 [1], two‑dimensional 
(2D) materials have attracted extensive attention due to their 
unique structure and outstanding properties [2–7]. Recently, 
layered 2D transition metal dichalcogenides (TMDCs) 
materials have become one of the hottest research topics 
due to a large potential in future nanoelectronics [8–15]. 
Unique physical phenomenon confining the transport of 
charge and heat in unique layered structure, which are not 
easily observed or measured in the related bulk crystal, has 
endowed them an attractive and promising 2D material 
for electronic, optoelectronic, and spintronic applications 
[16–19]. Different from the zero‑band gap of graphene, 
TMDCs with tunable finite band gap and significant transi‑
tional behavior are more suitable for fabricating high‑per‑
formance electronic and optoelectronic devices. In the last 
decades, group‑6 TMDCs (such as  MoS2,  MoSe2,  MoTe2, 
 WS2, and  WSe2) which occur naturally in the 2H phase have 
attracted the most attention [18–22]. However, group‑10 
TMDCs (such as  PtSe2,  PtS2,  PdSe2, and  PdS2) which occur 
naturally in the 1T phase have been theoretically predicted as 
an outstanding material [23–30]. In addition, experimentally 
demonstrated distinct properties of group‑10 TMDCs have 
made it prominent than other state‑of‑the‑art 2D materials.

Among 2D group‑10 noble TMDCs materials, platinum 
diselenide  (PtSe2) has emerged as promising materials for 
investigating quasiparticle interactions and for developing 
photoelectric devices [31–33]. Single‑layer and few‑layer 
 PtSe2 are p‑type semiconductors, and thicker  PtSe2 exhibit 
typical semimetallic characteristics [27, 34]. Recently, due 
to their outstanding properties including widely tunable 
band gap, high carrier mobility, and excellent air stability, 
 PtSe2 has become increasingly fascinating in the 2D mate‑
rials research [34–37]. 2D  PtSe2 has exhibited potential 
in many areas such as photocatalytic, hydrogen evolution 
reaction, electronic, and optoelectronic devices [38–40].

As an emerging 2D material,  PtSe2 possesses not only 
the merits of previously discussed 2D materials, but also 
many unique advantages. For examples,  PtSe2 exhibits a 
strong layer‑dependent band structure. Bulk  PtSe2 exhib‑
its semimetallic character, while monolayer and few‑
layer  PtSe2 are semiconductors [25, 41–43]. Moreover, 
 PtSe2 exhibits anisotropic carrier mobility along different 
directions. The theoretically calculated carrier mobility 

of  PtSe2 is larger than 3250 cm2  V−1S−1 (x direction) 
and 16,300 cm2  V−1S−1 (y direction) at room tempera‑
ture, respectively [28]. The theoretically predicted car‑
rier mobility is at least 8 times larger than that of  MoS2 
(about 410 cm2  V−1S−1 for x direction and 430 cm2  V−1S−1 
for y direction) [28]. The outstanding inherent properties 
(including tunable band gap and carrier mobility) of  PtSe2 
are comparable to black phosphorus (BP), but the stability 
of  PtSe2 is much better than BP [44–46]. Besides, experi‑
mental and theoretical studies have proven the intriguing 
transport properties and interesting spin physics of  PtSe2. 
Overall, these outstanding properties motivating further 
studies of the electrical transport properties, optoelec‑
tronic properties, and piezo‑resistivity of 2D  PtSe2.

Herein, we divulge a comprehensive review based on 
experimental and theoretical research evolution on 2D lay‑
ered  PtSe2, covering the progress, challenges, and pros‑
pects in future 2D material. The crystal structure, elec‑
tronic band structure, and properties of few‑layer  PtSe2 are 
introduced to give an overview of this material. Next, some 
recent progress on the various methods to synthesis mon‑
olayer and few‑layer  PtSe2, including mechanical exfolia‑
tion, chemical vapor deposition (CVD), thermally assisted 
conversion (TAC), molecular beam epitaxy (MBE), and 
chemical vapor transport (CVT), are discussed in detail. 
Furthermore, the applications of 2D  PtSe2 in many areas, 
including photodetector, field effect transistors (FETs), 
mode‑locked laser, photocatalytic, hydrogen evolution 
reaction (HER), and sensors, are highlighted. At last, the 
perspectives and outlooks for the 2D  PtSe2 materials are 
concluded.

2  Structure of 2D  PtSe2

2.1  Crystal Structure

Generally, there are two common structural phases for mon‑
olayer TMDCs, which are characterized by either octahedral 
trigonal prismatic (2H or  D3h) or (1T or  D3d). Unlike group‑6 
TMDCs, group‑10 TMDCs tend to form d2sp3 hybridization 
due to group‑10 metal atoms hold rich d‑electrons and less d 
orbitals are involved. As a result, group‑10 TMDCs lead to 
the generation of the thermodynamically favored 1T‑phase. 
The 2D layered structure of TMDCs (such as  PtS2/PtSe2/
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PtTe2 and  PdS2/PdSe2/PdTe2) has been proposed in 1950s 
since the pioneering work of Kjekus et al. and Grønvold 
et al. [47–49]. As a rising star of group‑10 TMDCs,  PtSe2 
has a thermodynamically favored 1T‑phase structure and the 
atoms stack in the AA arrangement [28, 50].

PtSe2 crystal belongs to the D3d
3 (P3m1) space group 

of the trigonal system [34, 51, 52]. The crystal structure 
of  PtSe2 from different view is shown in Fig. 1a. Many 
techniques have been employed to characterize the atomic 
structure of monolayer  PtSe2, such as high‑resolution 
scanning transmission electron microscope (HR‑STEM), 
scanning tunneling microscope (STM), low energy elec‑
tron diffraction (LEED), and density functional theory 
(DFT) calculation. As shown in Fig. 1b–f, the HR‑STEM 
image, LEED patterns, STM images, and simulated STM 
images are presented, respectively. Figure 1b shows the 
representative HR‑STEM image of  PtSe2. The fast Fourier 
transform of the image (inset of Fig. 1b) shows hexagonal 
structure and confirms the single‑crystalline feature of the 
few‑layer  PtSe2 samples. The HR‑STEM image of  PtSe2 
clearly shows that each Pt atom is in a tilted octahedral site 

and surrounded by six Se atoms, which is consistent with 
the octahedral structure of 1T phase TMDCs [28, 53, 54].

As shown in Fig. 1c, hexagonal diffraction spots from 
monolayer  PtSe2 film are observed in a LEED pattern. 
The STM image and enlarged atomic resolution image of 
monolayer  PtSe2 are shown in Fig. 1d, e. By employing 
LEED, STEM, and STM methods, the atomic structure of 
 PtSe2 and lattice constant (a1 = 3.7 Å, shown in Fig. 1e) 
are experimentally defined. Moreover, Wang et al. [25] 
conducted the DFT simulation based on the structure 
parameters obtained from the experimental characteriza‑
tions. The simulated STM image is shown in Fig. 1f, and 
the results are well consistent with the STM observation 
results, which strongly demonstrated the highly crystalline 
structure of the 2D layered  PtSe2.

2.2  Electronic Band Structure

The electronic structure of 2D layered TMDCs materi‑
als strongly depends on the coordination environment of 
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Fig. 1  Simulated and characterized crystal structure of  PtSe2. a Crystal structure of  PtSe2 from different view. The gold balls represent Se atoms 
and blue balls represent Pt atoms. Reproduced with permission [33]. Copyright 2019, Springer Nature. b HR‑STEM image of a few‑layer  PtSe2, 
inset: fast Fourier transform of the image. Reproduced with permission [28]. Copyright 2018, John Wiley and Sons. c LEED pattern of a mon‑
olayer  PtSe2 film on Pt substrate. d Large scale and e atomic resolution STM image of monolayer  PtSe2 film. f Simulated STM image of  PtSe2 by 
DFT calculation. Reproduced with permission [25]. Copyright 2015, American Chemical Society
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transition metal and its d electron count [23].  PtSe2 presents 
a layer‑dependent band structure with dimensional reduc‑
tion from bulk to monolayer. Zhao et al. [28] found that 
the monolayer  PtSe2 is an indirect semiconductor and the 
band gap of monolayer  PtSe2 is about 1.17 eV. Figure 2a 
shows the band structure of monolayer  PtSe2. The valence 
band maximum (VBM) of monolayer  PtSe2 situated at the Г 
point, which comprised of the px and py orbitals of Se atoms 
(pSe x and y). The conduction band minimum (CBM) of mon‑
olayer  PtSe2 is situated between the Г and M points, which 

is dominated by d states of Pt and p states of Se. The band 
gap of  PtSe2 abruptly decreased with the increased number 
of layers (NL), due to the exceptionally strong interlayer 
electronic hybridization of pz orbital of Se atom (pSe z).

Figure 2b presents the band gap evolution of  PtSe2 as 
function of NL. The band gap of  PtSe2 shows a sharp 
decrease as the NL increased. As the NL larger than four 
the  PtSe2 shows a semiconductor‑to‑metallic transition. With 
increase in stacked layers, the energy level of VBM exceeds 
that of CBM between Г and M because of the increase in 
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Fig. 2  Electronic structure of  PtSe2. a Band structure of monolayer  PtSe2. Reproduced with permission [28]. Copyright 2018, John Wiley and 
Sons. b Energy gap evolution as a function of number of layers (NL) for  PtSe2. Inset: layer dependence of lattice constant versus NL. Repro‑
duced with permission [27]. Copyright 2019, Elsevier. c Band structure of bulk  PtSe2. Reproduced with permission [28]. Copyright 2018, John 
Wiley and Sons. d ARPES spectra and e corresponding second derivative spectra of monolayer  PtSe2. Reproduced with permission [25]. Copy‑
right 2015, American Chemical Society. f ARPES spectra of bilayer and 22‑L  PtSe2. Reproduced with permission [43]. Copyright 2015, Ameri‑
can Chemical Society
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interlayer electronic hybridization [23, 28]. As a result, a 
semiconductor‑to‑semimetal evolution occurred. It has been 
proved that thicker  PtSe2 (layer numbers large than four or 
five) becomes semimetallic without a band gap [25, 28, 55]. 
As shown in Fig. 2c, the band gap structure of bulk  PtSe2 
explicitly shows the semimetallic characteristics, and the 
CBM moves from a point between the Г and M to the K 
point due to the strong interlayer interaction of  PtSe2 [28].

In 2015, Wang et  al. [25] experimentally measured 
the band structure of monolayer  PtSe2 for the first time 
by using angle‑resolved photoemission spectroscopy 
(ARPES). Figure 2d shows the ARPES spectra data meas‑
ured along the high symmetry direction K–Γ–M–K in the 
hexagonal Brillouin zone at photon energy of 21.2 eV. As 
shown in Fig. 2e, the location of VBM and CBM in the 
derivative spectra indicates that monolayer  PtSe2 is a semi‑
conductor. The ARPES results show excellent quantitative 
agreement with the DFT simulation results. With this pio‑
neer work, ARPES has become one of the most important 
techniques to investigate the electronic structure of  PtSe2 
[43, 56, 57]. In order to study the layer‑dependent elec‑
tronic structure, Yan et al. measured ARPES data along the 
Γ–K direction [43]. As indicated by gray arrow in Fig. 2f, 
an M shape band was observed in thicker  PtSe2 (NL ≥ 2). 
Moreover, the M‑shaped band moves toward the Fermi 
energy as the atomic layers increased, indicating a reduc‑
tion of the band gap. Therefore, the ARPES results provide 
direct evidences for the layer‑dependent band gap of  PtSe2 
as theoretically predicated [27, 58, 59].

3  Properties of 2D  PtSe2

This section highlights the unique properties of 2D  PtSe2 
such as band gap tenability, phase transition, and vibration 
spectroscopic and optical properties. The band gap tuned by 
various kinds of external parameters has been introduced at 
first. Then, the phase transition of 1T phase, 1H phase, and 
non‑layered  PtSe2 are reviewed. At last, the vibration spec‑
troscopic and optical properties are introduced in details.

3.1  Band Gap Tunability

It has been widely proved that the band structure of 2D 
TMDCs can be tuned by doping, defect engineering, 

strain, and external electric field [60–64]. Besides the 
inherent thickness‑dependent band gap, band gap of 
 PtSe2 also can be tuned by applying external parameters. 
For example, band gap of few‑layer  PtSe2 can be tuned 
over a wide range by applying strain. The band structure 
of monolayer  PtSe2 with symmetrical biaxial compres‑
sive strains and symmetrical tensile strains reveals the 
band structure evolution, as shown in Fig. 3a, b [65]. 
Du et al. [66] have also demonstrated that the band gap 
decreases approximately linearly with the increased ten‑
sile strain, but it is different for the band gaps evolution 
under compressive strain. As shown in Fig.  3a, mon‑
olayer  PtSe2 exhibits a direct gap semiconductor char‑
acteristic as the compressive strain reaches − 8%. The 
same transformation has also been reported by other pub‑
lished papers [52, 66–68]. Moreover, due to the chemical 
interaction (p orbital coupling) between Se atoms of the 
two layers, a reversible semiconducting metallic transi‑
tion bilayer  PtSe2 under critical vertical strain, as shown 
in Fig. 3c [52]. Besides strain engineering, doping also 
has significant effect on the band structure of 2D  PtSe2 
[36, 39, 69]. As shown in Fig. 3d, the band structures of 
the halogen elements (including F, Cl, Br, and I)‑doped 
monolayer  PtSe2 have been calculated by DFT [36]. As 
compared with pristine monolayer  PtSe2, the localized 
impurity states located close to the CBM are identified. 
The band structure of transition metal‑doped  PtSe2 has 
been simulated by Kar et al. by using DFT [69]. And they 
found that group IIIB, VB, VIII8, VIII9, and IB transition 
metal‑doped monolayer  PtSe2 exhibits half‑metallic prop‑
erties together with spin gap. Besides, the other transition 
metal‑doped  PtSe2 exhibits tunable semiconducting or 
tunable magnetic semiconducting properties.

3.2  Phase Transition

Due to the strong covalent bond strength and weak inter‑
layer interaction, the structure of 2D materials strongly 
depends on varying external effects (pressure, strain, irra‑
diation, annealing, or lithiation) [23]. Phase transition can be 
induced by ionic intercalation, high pressure, strain, thermal 
treatment, and external electrical and magnetic field. Since 
1T‑PtSe2 is a very stable structure, it is difficult to expect a 
continuous phase transition unless inducing additional elec‑
tron beam irradiation and annealing treatment.
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As show in Fig. 4a, b, Lin et al. studied the reversible 
phase transition of 1T phase and 1T/1H patterned  PtSe2 by 
using in situ STM [70]. The homogeneous 1T‑PtSe2 shown 
in Fig. 4a was directly synthesized on a Pt (111) substrate 
via a TAC process at 270 °C. As the 1T‑PtSe2 film annealed 
at 400 °C, periodic triangular pattern structure of alternating 

1H/1T patterned phases formed. The STM images of the 
1H/1T patterned phases are shown in Fig. 4b. Moreover, the 
triangular 1H/1T pattern reverts to a homogeneous 1T phase 
 PtSe2 by annealing the periodic triangular 1H/1T patterned 
 PtSe2 at 270 °C in Se steam atmosphere. However, Lin 
et al. found that the 1H/1T triangular pattern can be directly 
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prepared by controlling the initial density of Se atoms during 
the TAC process. The DFT and experiment measurement 
show that the Se vacancies mediate the formation of 1H 
domains. This transformation process has been reported in 
other 2D materials, such as monolayer  MoS2 [71, 72] and 
 PdSe2 [73, 74].

In addition, Ryu et al. [75] demonstrated that 1T phase 
 PtSe2 can transform into non‑layered 2D  PtSe2 ultrathin 
film. The phase transformation from 1T  PtSe2 into non‑
layered  PtSe2 crystals induced due to the Se loss during the 
additional heating process at high temperature (550 °C). As 
shown in Fig. 4c, d, the rearrangement and restacking of the 

atoms have been in situ observed by taken successive annu‑
lar dark field scanning transmission electron microscope 
(ADF‑STEM) images. It can be found that the phase transi‑
tion occurred only in the bilayer region. Further characteri‑
zation of the phase transition process has been observed by 
constructed AA stacking and AB stacking bilayer  PtSe2. As 
shown in Fig. 4e–g, the phase transition occurs only in the 
AA stacking  PtSe2 region. As the  PtSe2 film was heated, the 
non‑layered  PtSe2 structure continued to expand and blocked 
at the grain boundary.

Besides the annealing and heating process, plasma treat‑
ment process has also been proved as an efficient method 
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to induced phase transition in 2D  PtSe2. Yang et al. [76] 
reported an inductively coupled plasma treatment method 
to selectively controlling the thickness of  PtSe2 flakes. With 
the decrease in thickness,  PtSe2 flake transforms from a 
semimetal to semiconductor. This is well consistence with 
the prediction concerning their intrinsic thickness‑depend‑
ent band structure. However, Shawkat et al. discovered a 
reversed transition of semiconducting to metallic as the 
 PtSe2 film irradiated by plasma. Shawkat et al. [77] realized 
a semiconductor‑to‑metallic transition in wafer‑scale  PtSe2 
film by controlled plasma irradiation. Extensive structural 
and chemical characterization has proven that large concen‑
tration of near atomic defects and selenium vacancies intro‑
duced by the plasma irradiations induced the transition of 
semiconductor to metallic.

The phase transition driven by thermal heating makes it 
possible for fabricating lateral heterojunctions composed of 
1T‑PtSe2, 1H‑PtSe2, and PtSe. The electronic properties of 
2D  PtSe2 materials can be modulated by the induced phase 

transition, which offers new opportunities in both funda‑
mental research and (opto‑) electronic devices applications.

3.3  Vibration Spectroscopic Modes

Raman spectroscopy is a powerful and nondestructive opti‑
cal characterization technique to study the lattice vibrations 
as well as electron–phonon coupling of 2D materials. Due to 
the strong interlayer coupling and hybridization, the Raman 
spectra of  PtSe2 exhibit interesting anomalous changes.

The schematic diagram of four Raman active vibrational 
modes in  PtSe2 is shown in Fig. 5a [43]. The A1g mode and 
Eg mode are originated from the out‑of‑plane vibration and 
the in‑plane vibration of Se atoms, respectively. Figure 5b 
exhibits the Raman spectra of  PtSe2 with different thickness. 
As shown in Fig. 5b, the Raman spectra of 2D  PtSe2 with 
different thickness, laser wavelength, and laser polarization 
were systematically studied. Three primary Raman peaks 
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which allocated to Eg (~ 180 cm−1), A1g (208.5 cm−1), and 
LO (~ 240 cm−1) modes are observed. As the Raman spectra 
are normalized to the Eg peak, the relative intensity of the 
A1g peak exhibits an obvious decreasing as the thickness 
decreased. As shown in Fig. 5c, the peak positions of the Eg 
and A1g mode are extracted and plotted as a function of num‑
ber of layers. The position of Eg mode exhibits a clear red 
shift with increase in thickness. However, the position of A1g 
mode is almost unchanged for few‑layer  PtSe2 and exhibits 
an obvious red shift as the number of layers larger than 22 
layers. The layer dependence of Raman spectra properties 
may be attributed to the strong long‑range interlayer inter‑
actions [78, 79]. To further study the relationship between 
the thickness and Raman spectra, the intensity ratio of the 
A1g peak to Eg peak is extracted and plotted in Fig. 5d. The 
extracted thickness\intensity ratio is well consistent with the 
enhanced van der Waals interactions between the layers in 
thicker 2D materials [68, 78, 80]. Besides the distinct Eg 
and A1g modes, Raman peaks ascribed to less prominent LO 

mode, which attributed to a combination of the in‑plane Eu 
and out‑of‑plane A2u vibrations, are also observed [43, 55]. 
The enlarge spectra in Fig. 5e show the thickness‑dependent 
position of the LO peaks. With increase in number of layers, 
the LO peaks change into a broader hump and the intensity 
decreased.

Moreover, the vibration modes of  PtSe2 were further 
characterized by polarization‑dependent Raman spectra [28, 
78]. As shown in Fig. 5f, the variation of the polarization of 
the incident light has no effects on the intensity of Eg peak 
(around 180 cm−1), which confirming the in‑plane nature 
of this mode. However, an obvious intensity decrease in the 
A1g peak (around 208 cm−1) and LO peak (around 240 cm−1) 
depending on light polarization is observed. The decrease 
in the intensity of A1g peak and LO peak confirms the out‑
of‑plane vibration nature of these two modes. It has been 
proved that these Raman peaks have been observed in the 
mechanic exfoliated  PtSe2 single crystal as well as the  PtSe2 
film grown via TAC process [28, 78].
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3.4  Optical Properties

3.4.1  Layer‑Dependent Optical Absorption Spectra

The refractive index and extinction coefficient are funda‑
mental properties of a material that not only determines its 
optical responses, but also directly connects to its complex 
permittivity and dielectric constant. Wang et al. measured 
the refractive index and extinction coefficient of the  PtSe2 
(~ 3 nm) in the wavelength range from 200 to 900 nm by 
using spectroscopic ellipsometry [31]. The refractive index 
of the ultrathin  PtSe2 film increased from 1.5 to 4.5 as the 
wavelength increased from 200 to 900 nm. However, the 
extinction coefficient of the ultrathin  PtSe2 film is almost 
unchanged and maintained around 2.4. Xie et al. [81] also 
measured the refractive index and extinction coefficient of 
the  PtSe2 film in the wavelength range from 360 to 1700 nm. 
The refractive index and extinction coefficient values are 
strongly dependent on the thickness of  PtSe2 film. By ana‑
lyzing the spectroscopic ellipsometry results, the values of 
refractive index and extinction coefficient increased as the 
film thickness increasing.

As shown in Fig.  6, the thickness‑dependent opti‑
cal absorption spectra of  PtSe2 films were measured in 
the wavelength range of 200–3300 nm [82]. As shown in 
Fig. 6a,  PtSe2 exhibits a broadband absorption response 
with a smooth absorption band in the wavelength range 
of 400–800  nm. However, in the wavelength range of 
800–2200 nm, the absorption intensity decreased as the 
wavelength increased. In the range of 2200–3300  nm, 
 PtSe2 still exhibits a broadband absorption and the inten‑
sity almost unchanged in this wavelength range. Besides, 
the absorption spectra of thicker  PtSe2 film exhibit an obvi‑
ous red shift. Usually, semiconductors cannot absorb light 
with energy much smaller than the band gap, but  PtSe2 film 
exhibits strong light absorption in a broadband wavelength 
range from deep ultraviolet to mid‑infrared (mid‑IR) [28, 
66, 81–83]. The strong IR light absorption of  PtSe2 mainly 
attributes to the semimetallic components of the films [81, 
82].

The band gap of semiconductors can be easily experi‑
mentally measured by using optical absorption spectra. The 
layer‑dependent Tauc plots of  PtSe2 are presented in Fig. 6b. 
With increase in thickness, the absorption edge of Tauc plot 
shows an obvious red shift. The band gaps of monolayer 

 PtSe2 are well consistence with the DFT calculation results. 
Meanwhile, the transition from semiconductor to semimetal 
of  PtSe2 has been verified by the layer‑dependent Tauc plots, 
which is also well agreement with DFT calculation.

3.4.2  Isotropic Optical Properties

Xie et al. [81] studied the optical isotropy properties by 
using polarized optical imaging method and polarization‑
dependent optical absorption measurement, and they ascer‑
tained the optical isotropy in the 2D  PtSe2. As shown in 
Fig. 6c, the intensity of the red, green, blue (RGB) chan‑
nels and the total intensity at different rotation angles were 
extracted from the polarized optical images of a  PtSe2 film 
(~ 5.3 nm). As the rotation angle changed, the intensity of 
RGB channels and total intensity are almost unchanged, 
which indicate the optical isotropy of  PtSe2. The absorp‑
tion spectra in the range of 400–800 nm under polarization 
directions of 0° (horizontally), 90° (vertically), and non‑
polarized light for  PtSe2 film (~ 5.3 nm) were measured. 
These absorption spectra are well consistent with each 
other, indicating the in‑plane isotropic optical absorption 
in  PtSe2 film.

3.4.3  Nonlinear Optical Properties

Nonlinear optical (NLO) properties of 2D materials have been 
taken as the forefront of the research, which are crucial for 
developing high‑performance ultrafast laser and optoelec‑
tronic devices [85–93].  PtSe2 has nonlinear effects in a wide 
wavelength range due to its narrow band gap. Tao et al. [94] 
investigated the NLO properties of TAC‑synthesized  PtSe2 
films. A modulation depth of 12.6% and saturation fluence 
of 17.1 μJ cm−2 were obtained based on the NLO transmit‑
tance curve. The saturable absorption (SA) characteristics of 
the transverse‑electric and transverse‑magnetic modes of  PtSe2 
are studied by Zhang et al. [95] Modulation depth of 4.90% 
(transverse‑electric modes) and 1.11% (transverse‑magnetic 
modes) are obtained based on the NLO transmittance curves.

The NLO properties of few‑layer  PtSe2 have been systematic 
studied by using the Z‑scan method and pump–probe–tech‑
nique [84]. As shown in Fig. 6d, two small peaks near the 
symmetrical valley are observed in the open aperture (OA) 
signals of 4L and 7L  PtSe2 films, which suggest the OA signals 



Nano‑Micro Lett.          (2020) 12:174  Page 11 of 34   174 

1 3

consist of both SA and two‑photon absorption (2PA) response 
at 1030 nm. However, there are no peaks observed near the 
symmetrical valley in the OA signals of 17L and 55L  PtSe2 
(Fig. 6e), which indicate the pure SA response. The evolu‑
tion of the saturation  (ISat) and irradiance nonlinear refractive 
index (n2) are extracted and plotted in Fig. 6f, g. The large 
 ISat at 515 nm indicates that  PtSe2‑based saturable absorber 
possesses higher saturation intensity in visible range than that 
in near‑IR range. Besides, the large value n2 of  PtSe2 suggests 
the huge potential to developing self‑defocusing materials in 
NLO devices.

4  Synthesis Methods

Generally, the crystal structure, crystallinity, and properties 
of 2D  PtSe2 are strongly related to the synthesis process. It is 
still challenging to prepare 2D  PtSe2 with the desirable thick‑
ness, lateral size, and microstructure for specific applications. 
Indeed, various strategies have been proposed to prepare 2D 
 PtSe2, specially aiming to materials with high quality and large 
lateral size. Up to now, great achievements have been made to 
prepare 2D  PtSe2 with controllable thickness, morphology, 
and lateral size. In this section, different synthesis methods 
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for preparing 2D  PtSe2 are systematically discussed. CVD 
and TAC are the most widely studied methods to synthesis 
2D  PtSe2. Moreover, the other methods such as mechanical 
exfoliation and CVT have also been studied.

4.1  Mechanical Exfoliation

Mechanical exfoliation (ME) is one of the most com‑
monly used methods to prepare high quality 2D materials 
[96–99]. Monolayer or few‑layer 2D materials obtained 
by this method can maintain their intrinsic structure and 
are suitable for fundamental research. Mechanical exfolia‑
tion has been extensively exploited to prepare monolayer 
or few‑layer 2D materials, such as graphene, BP, nitride, 
TMDCs, and MXene. The mechanical exfoliation process 
is a relatively simple and fast process by repeating adhe‑
sion and splitting. As the monolayer or few‑layer 2D mate‑
rials attached on the surface of scotch tape, the as‑prepared 
2D materials can be easily transferred to selected substrate 
[1, 99]. In 2017, Zhao et al. [28] prepared monolayer  PtSe2 
by using mechanical exfoliation. The high quality  PtSe2 
bulk crystal was grown by CVT method. Ultrathin  PtSe2 
was peeled from bulk  PtSe2 using a scotch tape, as shown 
in Fig. 7a. Huang et al. [100] prepared  PtSe2 nanoflakes 
with the thickness of ~ 70 nm by mechanical exfoliation its 
single crystal. However, mechanical exfoliated 2D materi‑
als can only fulfill the using demands of fundamental stud‑
ies due to the limited yield and relatively small lateral size.

4.2  Chemical Vapor Deposition

CVD is an important synthesis method to prepare high qual‑
ity 2D materials with scalable size, controllable thickness, 
and perfect crystal structure for both fundamental research 
and practical applications [101–104]. To date, various mate‑
rials with controllable layer number, lateral size, and micro‑
structure have been successfully prepared via CVD methods, 
such as graphene, TMDC, Xene, boron nitride, and MXene. 
Recently, the CVD growth of monolayer or few‑layer 2D 
 PtSe2 has also attracted extensively attention and has been 
taken as a promising method to realize the large‑scale growth 
of 2D  PtSe2.

PtSe2 with controlled morphology can be synthesized 
by CVD process via precise tuning of the growth tempera‑
ture, pressure, and precursors [83, 105–108]. Figure 7b 

shows the typical schematic illustration of a 3‑zone CVD 
growth setup, wherein the precursors are placed in different 
zone of the quartz tube. Typically, Se powder and  PtCl4 or 
 H2PtCl6 powder are chosen as the precursors; the obtained 
 PtSe2 is found to be nearly hexagonal with the thickness 
ranging from 3.5 to 10 nm [106]. However, by tuning the 
growth temperature of zone 3 from 900 to 500 °C, Xu 
et al. successfully prepared polycrystalline  PtSe2 film with 
controlled thickness by tuning the growth time [107]. The 
morphology of the single‑crystalline and polycrystalline 
 PtSe2 is shown in Fig. 7c–g, respectively. As shown in 
Fig. 7e–g, large area continuous  PtSe2 films with controlled 
thickness have been successfully synthesized via a one‑step 
CVD process. Furthermore, the cooling down rate also has 
great effect to the surface morphology. The rapid cooling 
rate may suppress the diffusion of reactive atoms, leading 
to the formation of the multilayer island on the surface 
[107]. The multilayer islands on the surface of  PtSe2 thin 
film are shown in Fig. 7g.

The morphology, thickness, microstructure, and lateral size 
of 2D materials can be well controlled by precise controlling 
CVD growth parameters. The quality of the as‑grown  PtSe2 
can be determined by many factors including but not limited 
to the precursors, pressure, temperature, heating rate, and 
substrate. Thus, in‑depth understanding of the CVD growth 
mechanism is beneficial to the improvement of scalability and 
controllability for  PtSe2 synthesis.

4.3  Thermally Assisted Conversion

TAC of pre‑deposited metal on substrate is also an effective 
strategy to grow wafer‑scale 2D materials [109–111].  PtSe2 
prepared by this method is a just simple chemical reaction, 
Pt + 2Se = PtSe2. Direct selenization of the Pt film provides 
a simple and fast approach to obtain wafer‑scale 2D  PtSe2 
film.

The TAC process is a straightforward and simple route 
for synthesizing large‑scale  PtSe2 with controlled thick‑
ness. Pt film with different thickness is initially deposited 
on a given substrate via a magnetron sputtering process or 
electron beam evaporate process. Then, the  PtSe2 film is 
prepared via the directly selenization process. As shown in 
Fig. 8a, the Se powder is placed at the upstream side in the 
tube furnace, and the Pt coated substrates are placed in the 
heating zone. During the selenization process, the growth 
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temperature is usually set to about 270‑500 °C, while the 
pressure remains at about 80 mTorr with argon gas protec‑
tion [25, 112, 113]. In 2015, Wang et al. [25] firstly fabri‑
cated a single crystal monolayer  PtSe2 by direct selenization 
of Pt (111). Han et al. [114] prepared large‑scale 2D  PtSe2 
with different thickness on  SiO2/Si substrate. Figure 8b 
shows the photograph of the  PtSe2 film with different thick‑
ness on  SiO2/Si substrate. The lateral size and thickness of 
 PtSe2 film can be controlled by modulating thickness of the 
pre‑deposited Pt film [84, 115].

Since the pre‑deposition process and post‑selenization 
process are carried out in relatively mild condition, the 
 PtSe2 film can be prepared on arbitrary substrates. Besides 
the conventional Si [33, 115, 116], Si/SiO2 [32, 33, 55, 
94, 112, 114, 117–124], and Sapphire substrate [81, 125, 
126], 2D  PtSe2 film has been successfully grown on fused 
quartz [31, 84, 125], fluorine‑doped tin oxide (FTO) [127, 
128], gallium nitride (GaN) [129], and polyimide [114]. 
Figure 8c shows the  PtSe2 on the surface of flexible poly‑
imide [41, 114]. As shown in Fig. 8d, Yuan et al. [117] 
fabricated a wafer‑scale  PtSe2/PtS2 heterojunction film via 
two step TAC process on a  SiO2/Si wafer with 300‑nm‑
thick Si dioxide. TAC process enables the growth of  PtSe2 
on wafer‑scale substrate, offering the throughput that can 
meet the demand for practical application.

4.4  Other Methods (Molecular Beam Epitaxial, CVT)

In addition to the aforementioned methods, some other 
approaches also have been reported to synthesize 2D  PtSe2. 
For example, some pioneer works have been reported 
that  PtSe2 can be prepared via a Sol–Gel solution process 
[130–134]. Umar et al. [135] reported the successful syn‑
thesis of scalable 2D  PtSe2 nanosheets via an aqueous‑phase 
synthetic strategy for the first time. PtSe complexes precur‑
sors are initially prepared via surfactant‑template self‑assem‑
bly process. Then, the mesoporous 2D  PtSe2 nanosheets are 
prepared by thermal annealing the PtSe complexes precur‑
sors. As shown in Fig. 9a, the 2D  PtSe2 nanosheets with a 
thickness about 11–25 nm are synthesized, indicating that 
scalable  PtSe2 can be produced by a straightforward process 
to scalable produce  PtSe2. Pawar et al. [136] also prepared 
2D  PtSe2 nanosheets by using the almost same method that 
Umar reported.

As a widely studied traditional crystal growth method, 
CVT has also been employed to direct synthesize 2D semi‑
conductor materials, such as  TiSe2,  MoS2,  WS2, and  ReS2 
[137–141]. Benefitting from the good controllability of the 
growth parameters, the properties, structure, and compo‑
sition of 2D materials can be well regulated. In 2016, Yu 
et al. [33] successfully synthesized single crystal of  PtSe2 
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by using CVT method. This achievement makes it possible 
for us to grown 2D  PtSe2 by precise controlling the growth 
condition. Hu et al. [142] successfully synthesizes 2D  PtSe2 
nanosheets with controlled thickness by using CVT. As 
shown in Fig. 9b, the schematic diagram of the CVT pro‑
cess is presented. The raw materials are put in a sealed the 
quart tube, while the substrate is placed in the other side of 

the quart tube. By carefully adjusting the amount of precur‑
sors and transport agent, triangular‑shaped single‑crystalline 
 PtSe2 flakes were obtained on the mica substrate. The optical 
morphology of the triangular‑shaped single‑crystalline  PtSe2 
flakes is shown in Fig. 9c, and the relationship of the thick‑
ness with temperature and reactants is exhibited in Fig. 9d. 
However, only few papers have reported the synthesis of 2D 

(a)

(c) (d) (e)

(b)

50 µm

20 µm

Chemical Vapor Transport

Pt
Se
KCl

1

0

0

8

7

6

5

4

3

2

A
m

ou
nt

 o
f r

ea
ct

an
ts

 (m
g)

550 600 700 750
Growth temperature (°C)

650

≥3 L

≥3 L

>10 L

≥5 L

2 L

1 L

Fig. 9  2D  PtSe2 prepared by solution process/CVT/MBE. a Optical image of the  PtSe2 nanosheets prepared via an aqueous‑phase reaction 
process. Reproduced with permission [135]. Copyright 2017, American Chemical Society. b Schematic diagram of the controlled synthesis of 
 PtSe2 by CVT. c Optical image of  PtSe2 triangle nanoflakes prepared by CVT. d Relationship of the layer numbers of the as‑grown  PtSe2 trian‑
gle nanoflakes as a function of growth temperature and amount of reactants. Reproduced with permission [142]. Copyright 2019, John Wiley 
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Table 1  Comparison of different synthesis methods to prepare 2D  PtSe2

Methods Lateral size Number of layers Achievements Challenges

ME ~ Micrometers Any number of layer High quality Uncontrollable
CVD ~ Micrometers 1L ~ few layer Single crystal high quality Limited area
TAC Wafer scale Few layer to tens of nanometers Continuous film of wafer‑scale size Polycrystalline film

Surface roughness
CVT ~ Centimeter Nanoflakes to bulk Large crystal Long growth time

High quality Difficult to growth 
few‑layer samples

MBE ~ Centimeter Few layer Large scale Complex
High quality Expensive
Controlled thickness Limited substrate
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 PtSe2 by using CVT due to the complex growth condition. 
Since growth of bulk semiconductor crystal by CVT is much 
easier than direct growth 2D semiconductor materials, CVT 
is generally employed to grow high quality single‑crystalline 
bulk materials, ultrathin 2D flakes are then peeled from bulk 
crystal by mechanical exfoliation [142–144]. For example, 
Zhao et al. [28] grow  PtSe2 single crystal by using CVT 
method and the air stable 2D  PtSe2 are peeled from the bulk 
 PtSe2 crystal.

Molecular beam epitaxy (MBE) has been playing an 
important role in the growth of high quality 2D materials 
film with controlled thickness [145, 146]. Yan et al. [43] 
successfully prepared high quality  PtSe2 films on bilayer 
graphene/6H(0001) substrate by using MBE method for the 
first time. The surface morphology of the as‑prepared  PtSe2 
on the surface of bilayer graphene is shown in Fig. 9e. The 
obtained  PtSe2 film is single crystalline and the thickness 
ranges from 1 to 22 layers.

The reliable production of 2D  PtSe2 with controlled 
structure is a prerequisite in exploring their properties and 
possible applications. As mentioned above, 2D  PtSe2 has 
been prepared by various approaches including mechanical 
exfoliation, CVD, CVT, TAC, and other methods. A com‑
prehensive summary and comparison with these methods 
is presented in Table 1. The aforementioned methods have 
inherent disadvantages which make it difficult to achieve 
the large area and highly crystalline structure. And the 
synthesis of large lateral size and uniform monolayer or 
few‑layer 2D  PtSe2 is still challenge. Moreover, the growth 
mechanism has yet to be clarified. Therefore, extended 
works need to be done to achieve the controllable synthe‑
sis of 2D  PtSe2.

5  Applications

5.1  Photodetectors

Photodetectors can directly convert optical signals to electri‑
cal signals. It has been widely applied in many fields such 
as optical communication, industrial automatic control, and 
military [147–149]. 2D materials, including graphene, BP, 
and TMDCs, are considered to be promising candidates 
for high‑performance photodetectors due to their excellent 
properties and complementary metal oxide semiconductor 
compatible [147, 150–155]. However, it is still challenge 
to fabricate high responsivity 2D material‑based photo‑
detectors along with ultrafast response. Although group‑6 
TMDCs (such as  MoS2 and  WS2) have exhibited impressive 
optoelectronic properties [156–158], their photodetection 
performance is severely limited due to their relatively large 
band gap and low carrier mobility, especially in the IR range.

As newly emerged 2D materials, group‑10 TMDCs have 
been widely studied as high‑performance photodetectors 
[29, 117, 121, 159]. Among these group‑10 TMDCs mate‑
rials,  PtSe2 has been demonstrated to have excellent photo‑
electric and electrical properties. As introduced above, the 
band gap of monolayer and bilayer  PtSe2 is 1.2 and 0.21 eV, 
respectively [25]. Simulation results have revealed that only 
monolayer  PtSe2 has a sizeable band gap and  PtSe2 become 
semimetallic as the number of layers larger than three or 
four. Thus, 2D  PtSe2 is proposed as an excellent candidate 
for broadband photodetectors in the visible to mid‑IR range 
[32, 33, 116–118, 120, 121, 123, 129, 160]. As shown in 
Table 2, the performance of  PtSe2‑based photodetectors is 
summarized for comparison.

Table 2  Summary of  PtSe2‑based photodetectors

Materials Wavelength (nm) Photoresponsivity (mA W−1) Rise/fall times (μs) References

PtSe2/CdTe 200–2000 506.5@780 nm 8.1/43.6 [121]
PtSe2/Silicon 200–1550 12,650@780 nm 10.1/19.5 [160]
PtSe2/GaAs 200–1200 262@808 nm 5.5/6.5 [120]
PtSe2/Ge 1300–2200 602@1550 nm 7.4/16.7 [118]
PtSe2/Perovskite 300–1200 117.7@808 nm 78/60 [123]
PtSe2 360–2000 490@970 nm – [32]
PtSe2/GaN 200–800 193@265 nm 45/402 [129]
PtSe2/Si 200–1550 520@808 nm 55.3/170.5 [116]
PtSe2 632‑104 6250@632 nm 1.1/1.2 × 103 [33]
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Yu et al. investigated the photoresponse of FETs based 
on bilayer  PtSe2 in the wavelength range from 632 nm to 
10 μm, as shown in Fig. 10a [33]. The photoresponsivity 
of 6.25 A  W−1 and a rise time of about 1.2 ± 0.1 ms were 
achieved for 640 nm laser illumination. Moreover, the pho‑
toresponsivity in the near‑IR (~ 1.47 μm) wavelength range 
and mid‑IR (~ 10 μm) wavelength range is about 5.5 and 
4.5 A  W−1, respectively. The fitted rise and fall time for 
the bilayer  PtSe2‑based photodetector are much better than 
those 2D materials (such as BP,  MoS2, and  MoSe2)‑based 
photodetectors [15, 147, 149, 150, 161–166]. These results 
indicate that 2D  PtSe2 is highly promising platforms for high 
sensitive and broadband optoelectronic application in the 
range of visible light to mid‑IR wavelengths.

Su et al. investigated the performance of  PtSe2 film‑based 
photodetector on  SiO2/Si [55]. The schematic structure of 
the photodetector device and the corresponding optical 
image are shown in Fig. 10b. As shown in Fig. 10c, the 
broadband photoresponse is demonstrated in the wave‑
lengths range from 408 to 640 nm. When the photodetec‑
tor was irradiated by 408 nm laser, the device exhibited the 
highest photoresponse with the photocurrent reaches 9 μA, 

while the photocurrent was about ~ 6 and ~ 1 μA as irradiated 
by 640 and 510 nm laser, respectively. The corresponding 
photoresponsivity with incident power density of 12.73 mW 
 cm−2 is 0.1A  W−1 (at 640 nm), 0.25 A  W−1 (at 515 nm), 
and 0.4 A  W−1 (at 408 nm). Moreover, the  PtSe2 can be 
directly grown on a flexible polyimide substrate owing to the 
advantage of the low‑temperature growth process. Su et al. 
[55] also fabricated a flexible photodetector based on  PtSe2 
film on the polyimide substrate by using the same conditions 
of photodetectors fabricated on the  SiO2/Si substrate. The 
photodetector exhibits great stability under different bending 
radius with almost no degradation in the photocurrent even 
after 1000 bending cycles.

Yim et  al. studied the photoresponse of the layered 
 PtSe2‑based Schottky barrier diodes on n‑type Si [32, 112]. 
The diode was fabricated by transferring  PtSe2 thin films 
onto the pre‑patterned n‑type Si substrate. The  PtSe2 film 
exhibits strong photoresponse over a broadband wavelength 
range of 360–2000 nm. The maximum photoresponsivity 
of 0.49 A  W−1 and minimum photoresponsivity of 0.0001 
A  W−1 were measured at photon energies above and below 
the band gap of Si. In the visible region, the large part of 
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Fig. 10  Performance of  PtSe2‑based photodetectors. a Time resolved photoresponse of the bilayer  PtSe2‑based photodetectors; the inset is 
the microscopic image the device. Reproduced with permission [33]. Copyright 2018, Springer Nature. b Schematic structure and an optical 
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responsivity and specific detectivity of the  PtSe2 film‑based photodetector as functions of the wave length of the incident light. Reproduced with 
permission [116]. Copyright 2018, Royal Society of Chemistry. e Responsivity and detectivity of the  PtSe2/GaAs heterojunction as a function of 
wavelength. f A single normalized cycle measured at 50 kHz for estimating both response time (τr) and recovery time (τf). e–f Reproduced with 
permission [121]. Copyright 2018, John Wiley and Sons
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the photocurrent in the  PtSe2/Si device is generated in the 
Si layer, whereas the photocurrent in IR region is generated 
in the  PtSe2 layer [32]. Xie et al. and Zeng et al. in situ fab‑
ricated vertical  PtSe2/Si hybrid heterojunctions [33, 116]. 
The  PtSe2 films were grown directly on Si substrates, which 
can effectively avoid the interface contamination, structural 
continuity deterioration, and materials surface tear. This 
heterojunction‑based photodetector is highly sensitive in 
a broad wavelength region from deep ultraviolet (200 nm) 
to near‑IR (1550 nm). As shown in Fig. 10d, the highest 
photoresponsivity of the  PtSe2/Si can reach 0.52 A  W−1 at 
808 nm, and the specific detectivity and rise/fall response 
times are 3.26 × 1013 Jones and 55.3/170.5 μs [116]. When 
Si nanowires were chosen to fabricate  PtSe2/Si heterojunc‑
tion, a high photoresponsivity of 12.65 A  W−1 and very fast 
rise/fall time of 10.1/19.5 μs are obtained in the  PtSe2/Si 
nanowires‑related photodetector [33].

The broad band gap range and high carrier mobility of 
 PtSe2 make it be an excellent candidate for developing 

high‑performance photodetectors. However, the ultrathin 
thickness of 2D  PtSe2 materials result in a low absorp‑
tion to incident light, leading to a small photocurrent, 
large dark current and low specific detectivity. In order to 
develop broadband, high sensitive, low power, and high 
photoresponsivity photodetector,  PtSe2‑based heterostruc‑
ture for optoelectronic applications has been studied [117, 
118, 120, 121, 129]. Wu et al. [121] designed a vertical 
 PtSe2/CdTe heterojunction‑based photodetector and this 
photodetector exhibited a broad detection wavelength 
range of 200–2000 nm. This heterojunction structure can 
enhance the absorption to near‑IR light, as well as the 
improvement of response speed due to the formation of a 
built‑in electric field. Zeng et al. [121] fabricated a  PtSe2/
GaAs heterojunction on  SiO2/Si substrate via a deposition 
process and wet transfer process. The  PtSe2/GaAs hetero‑
junction‑based photodetector exhibited high sensitivity to 
broad wavelength range from 200 to 1200 nm. As shown 
in Fig. 10e, the photodetector exhibits peak sensitivity in 
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the range from 650 to 810 nm, which exclusively origi‑
nates from the  PtSe2 layer. The rise/fall time for the pho‑
todetector is 5.5/6.5 μs (shown in Fig. 10f), which are 
faster than other state‑of the art 2D materials (such as 
BP,  MoS2,  WS2, and graphene/Si heterojunction) photo‑
detectors [167–170]. Wang et al. [118] fabricated a  PtSe2/
Ge heterojunction‑based photodetector, which is highly 
sensitive to the near‑IR light. The photodetector device 
can operate without an external power supply due to the 
photovoltaic effect under the near‑IR light illumination 
[112, 118, 120].

5.2  Mode‑Locked Laser

The mode locking based on SA has been taken as the most 
important and efficient optical technique to generate ultra‑
fast pulse laser from a continuous wave laser [171–176]. 
The mode‑locked laser systems have been widely applied 
in areas including ultrafast pump sources, high‑accuracy 
measurement, ultrafine laser micromachining, and laser 
surgery [171]. This technique exhibits many advantages 
such as low cost, high power scalability, high reliability, 
good mechanical stability, and excellent beam quality. 2D 
materials with saturable absorber properties have been 
widely utilized as saturable absorber in the laser cavity 
for ultrafast pulse generation.

In 2018, Yuan et al. [177] reported the SA properties of 
2D  PtSe2 film for the first time. Figure 11a shows the sche‑
matic diagram of the experimental setup of the ytterbium‑
doped fiber (YDF) laser ring cavity. As shown in Fig. 11b, 
the NLO measurements results show that  PtSe2 film (about 
10 nm) exhibits a large modulation depth up to 26% at 
the wavelength of 1064 nm with a lower saturable inten‑
sity, while the saturable intensity is as low as 0.316 GW 
 cm−2. The modulation depth refers to the maximum change 
of transmission or total amount of light loss by saturable 
absorption of the absorber. The relatively large modulation 
depth at the wavelength of 1064 nm indicates the potential 
of  PtSe2 to be an excellent nonlinear absorption material. 
As shown in Fig. 11c, d, the mode‑locking performance of 
 PtSe2 film is investigated by transferring a  PtSe2 film onto 
the fiber tip. The mode‑locked pulse centered at 1064.47 nm 
has the pulse duration of 470 ps.

Tao et al. [94] also reported the properties of the passively 
mode‑locked solid state laser by using a 24‑nm‑thick  PtSe2 
film as the saturable absorber. A pulse duration of 15.8 ps 
is obtained in the mode‑locked fiber laser based on a  PtSe2 
film coated fiber. Zhang et al. [95] fabricated and studied 
1563 nm Er‑doped fiber laser based on  PtSe2 film, with pulse 
duration of 1.02 ps and maximum single pulse energy of 
0.53 nJ. Huang et al. [100] fabricated a femtosecond fiber 
mode locking by transferring thicker  PtSe2 (~ 73 nm) onto 
a D‑shaped fiber. Due to the nonlinear modulation from the 
 PtSe2, the pulse duration of 861 fs and single‑to‑noise ratio 
of 61.1 dB were achieved for the 1567 nm mode‑locking 
laser. The recent progresses on the  PtSe2‑based mode‑lock‑
ing laser make  PtSe2 a promising 2D material for on‑chip 
integration of GHz laser sources toward higher repetition 
rates and shorter pulse duration [31, 82, 84, 125].

5.3  Field Effect Transistors

One of the important applications of 2D  PtSe2 materials is 
the field effect transistors (FETs). The very first report on 2D 
layered  PtSe2 material for FETs was reported by Zhao et al. 
in 2017 [28]. The room temperature electron mobility of 
the few‑layer  PtSe2 FETs device is 210 cm2  V−1  s−1, which 
is much smaller than the theoretically predicted value [28, 
178]. Zhao et al. further studied the temperature‑depend‑
ent mobility of  PtSe2 FETs and the mobility of few‑layer 
 PtSe2 FETs (~ 11 nm). The field effect mobility and the 
gate‑dependent mobility of the 11 nm‑thick‑PtSe2 FETs are 
shown in Fig. 12a, b. The mobility of the  PtSe2 FETs in a 
back‑gated configuration on  SiO2/Si increased from 210 to 
414 cm2  V−1  s−1, as the temperature decreased from 300 to 
100 K. Moreover, as the temperature continues to decrease 
to 25 K, the mobility of the  PtSe2 FETs decreased from 
414 to 353 cm2  V−1  s−1. For comparison, the temperature‑
dependent mobility of a thinner few‑layer  PtSe2 (~ 8 nm) 
FETs is measured. When the temperature increased from 25 
to 300 K, the mobility increased from 149 cm2  V−1  s−1 (at 
25 K) to 233 cm2  V−1  s−1 (at 125 K) and then decreased to 
140 cm2  V−1  s−1 (at 300 K). The variation of carrier mobility 
mainly ascribed to the layer‑dependent band gap of  PtSe2. 
The reduced band gap of thicker  PtSe2 leads to the increased 
carrier density, which improves the screening of charge 
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impurities by the bottom layer. The conductivity and carrier 
mobility are thus significantly improved due to the carriers 
in the bottom layer can effectively suppress the Coulomb 
potential of the charge impurities at the interface [28, 179].

Previous theoretical and experimental results have dem‑
onstrated that the thinner  PtSe2 exhibits a semiconducting 
behavior, while the thicker  PtSe2 exhibits a metallic behavior 
[42, 55]. As shown in Fig. 12c, Su et al. [55] fabricated a 
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full  PtSe2 FETs wherein the thicker  PtSe2 (~ 50 nm) is used 
as the electrodes and the thinner  PtSe2 (~ 3 nm) is used as 
the channel materials. To further confirm the existence of 
the  PtSe2 in both the channel and electrode, Raman spectra 
and TEM images of the channel and electrode materials are 
presented in Fig. 12c, d. The measured electrical properties 
of the full  PtSe2 FETs are shown in Fig. 12e. The mobility 
of the full  PtSe2 FETs ranges from 0.007 to 0.021 cm2  V−1 
 s−1, which is lower than the device using pure Pt electrodes 
[55]. Yim et al. studied the effect of contact metals and edge 
contact at the metal/PtSe2 interface to the transport char‑
acteristics of the FETs devices [113]. They found that by 
increasing the edge contact length, the contact resistivity 
was improved by up to 70% compared to devices with con‑
ventional top contacts, which provide a quick insight into 
the realization of high‑performance opto/electronic devices. 
Ansari et al. fabricated a back‑gated FETs device with dif‑
ferent channel thickness [119]. The on/off ratio and carrier 
mobility are measured at room temperature. The Ion/Ioff ratio 
of thinner  PtSe2 film (2.5–3 nm) FETs exceeds 230, while 
the Ion/Ioff ratio of thicker  PtSe2 film (5–6.5 nm) FETs is 
sharply decreased to about 1.4. These variations are mainly 
due to the quantum confinement effect in the thin 2D  PtSe2 
film. Xu et al. systematically studied the electrical prop‑
erties of n‑doping and p‑doping  PtSe2 film by fabricating 
top‑gated FET [107]. The optical microscopic image of an 
as‑fabricated FETs array is shown in Fig. 12f. The Ion/Ioff 
ratio of the  PtSe2 FETs is about 25 (n‑type) and 40 (p‑type). 
The channel length‑dependent electrical properties of the 
 PtSe2 FETs have been studied, and the effective field effect 
mobility of different configurations is presented in Fig. 12g. 
The four‑terminal field effect mobility is nearly three times 
higher than two terminal field effect mobility for the p‑type 
 PtSe2, and two times higher than the n‑type  PtSe2, respec‑
tively. Han et al. [114] further identified the interrelation of 
structural morphology and electrical transport in 2D  PtSe2 
thin film by applying corroborating HR‑TEM and FETs char‑
acterization. The highest mobility measured in this FETs 
device reached 625 cm2  V−1  s−1, which is among the highest 
experimentally measured mobility value reported for  PtSe2 
FETs.

Besides the FETs devices on conventional rigid substrate, 
Okogbue et al. [180] fabricated a kirigami FETs on flexible 
polyimide substrate. By taking advantage of the low‑temper‑
ature synthesis process, they fabricated integrated 2D  PtSe2 
film on flexible. These 2D  PtSe2/polyimide kirigami patterns 

exhibit an extremely large stretchability of 2000% without 
compromising their intrinsic electrical conductance. The 
corresponding Ids–Vg transfer characteristics from the kiri‑
gami FETs of varying stretch level (0%, 100%, and 200%) 
are measured, and these plots clearly reveal that p‑type semi‑
conducting transports are well retained with slightly decreas‑
ing Ids during the increasing mechanical stretch.

Recently, impressive advances have been achieved for the 
fabrication of  PtSe2 FETs devices. The experimentally meas‑
ured carrier mobility of  PtSe2 is much higher than the car‑
rier mobility of group‑6 2D TMDC materials, yet it is still 
much lower than the theoretically predicated value. For 2D 
materials, there are several extrinsic factors mainly domi‑
nating the charge transport, including structurally defects, 
charge impurity, surface optical phonon scattering, and 
surface traps [181–184]. These critical issues also existed 
in 2D  PtSe2‑based device, the negative effects induced by 
the unexpected impurity (Se dopant), heterojunction inter‑
face (electrode/PtSe2), and contact resistance still need to 
be overcome. Besides, due to the low‑temperature synthesis 
process of large‑scale 2D  PtSe2 film, it is would be interest‑
ing to develop high‑performance flexible devices.

5.4  Photocatalysis

2D materials have been widely studied as high‑performance 
photocatalyst due to its large specific area and excellent 
electronic properties [185–188]. In 2013, Zhuang et al. 
[40] performed a systematic theoretical study on the photo‑
catalytic performance of monolayer TMDCs by using first 
principles calculation. As shown in Fig. 13a, the position of 
CBM and VBM of some monolayer 2D TMDCs at pH = 0 
and 7 is summarized. According to the calculation results, 
 PtSe2,  PtS2,  MoS2, and  WS2 show potential for photocataly‑
sis. Moreover, the solvation enthalpies (ΔHSolv) of mon‑
olayer  PtSe2,  PtS2,  MoS2, and  WS2 are calculated, as shown 
in Fig. 13b. For both case of isolated and associated ions, 
the ΔHSolv are significantly large than the value of HgS, 
which set as a reference. These calculation results indicate 
that these monolayer 2D TMDCs are insoluble and stable in 
aqueous solution, which make them ideal candidate for high‑
performance photocatalyst. The calculation results show that 
few‑layer  PtSe2 exhibit great potential for high‑performance 
photocatalysis due to the sizable band gap within the visible 
wavelength range.
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Wang et al. [25] carried out a methylene blue photocata‑
lytic degradation experiment to evaluate the photocatalytic 
property of  PtSe2 film. As shown in Fig. 13c, d, the sche‑
matic diagram of the photocatalytic degradation of meth‑
ylene blue process and the time dependent photocatalytic 
degradation of methylene blue were evaluated by test the 
concentration of the methylene blue aqueous solution. It can 
be seen that almost 38% of methylene blue molecules are 
degraded in 24 min. As the  PtSe2 catalyst absorbed a pho‑
ton, an active electron–hole pair generated and the absorbed 
methylene blue are degraded by the high energy photon 
excited electrons. For comparison, the monolayer  PtSe2 
exhibits high photocatalytic degradation rate comparable 
with the nitrogen doped  TiO2 nanoparticles [189].

Sun et al. [127] fabricated a  PtSe2 film onto FTO substrate 
via TAC process and studied the solar‑driven water splitting 
performance of the  PtSe2 film. The highest photocatalytic 
 H2 production rate can reach 506 mmol  hm−1. The photo‑
catalytic activity of the  PtSe2/FTO thin film has no obvious 

decrease in ambient and acidic/alkaline solution even after 
aging for 1 year. Moreover, the  PtSe2‑based composite also 
shows high photocatalytic performance, such as  PtSe2/gra‑
phene [130, 131] and  PtSe2/TiO2/graphene [131–133].

5.5  Hydrogen Evolution Reaction

Hydrogen has been recognized as the future energy carrier 
due to its ultrahigh energy density as a sustainable clean 
energy source [190, 191]. Experimental and theoretical 
efforts have indicated that 2D TMDCs materials can serve 
as ultrathin electrocatalysts for the hydrogen evolution reac‑
tion (HER) [38, 186, 192–195].

Chia et al. [196] studied the HER electro‑catalytic prop‑
erties of Pt dichalcogenides by performing DFT calcula‑
tions. As shown in Fig. 14a, b, the  PtSe2 has over‑potential 
of 0.63 eV and Tafel slop of 132 mV  dec−1. However, the 
HER performance of  PtSe2 can be further enhanced by both 
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reduction and oxidation process. For example, the oxidized 
 PtSe2 has over‑potential of 0.36 eV and Tafel slop of 93 mV 
 dec−1. The HER performance for  PtSe2 is activated by both 
oxidation and reduction, and the oxidized and reduced  PtSe2 
exhibited better HER efficiency by a 46% and 9% decline 
in over‑potential, respectively. Wang et  al. investigated 
the HER performance of CVD synthesized 2H‑PtSe2 and 
1T‑PtSe2 single crystal nanosheets. The 2H‑PtSe2 shows the 
Tafel slope of 78 mV  dec−1, which is much higher than that 
of 1T‑PtSe2 (48 mV  dec−1) [106]. Due to the semimetallic 
structure, the 1T‑PtSe2 exhibits relatively higher electro‑
chemical activity (lower Tafel slop and higher over‑poten‑
tial). Shi et al. also found that the monolayer or few‑layer 
1T‑PtSe2 can serve as high‑performance HER catalyst, and 
a record high HER efficiency [197]. As shown in Fig. 14c, d, 
the catalytic activity of monolayer 1T‑PtSe2 was calculated 
by DFT to identify the electrocatalytically active sites. The 
calculated Gibbs free energy (ΔGH*) values of H adsorp‑
tion at the 50‑edge, 100‑edge, and basal planes of the mon‑
olayer 1T‑PtSe2 are 0.07, 0.50, and 1.07 eV, respectively. 

The relatively low ΔGH* values for H adsorption at the edges 
indicate that the catalytically active sites mainly sit at the 
domain edges of 1T‑PtSe2. Besides, the lower Gibbs free 
energy values endow the monolayer 1T‑PtSe2 with excellent 
HER activity.

In 2017, Lin et al. proposed a facile strategy to synthesize 
edge rich  PtSe2 film with controlled edge density and make 
it possible to systematic study the relationship between the 
edge density and the HER performance [128]. A linear rela‑
tionship between the edge density and the current density 
on the top surface of  PtSe2 film is established, as shown in 
Fig. 14e. As shown in Fig. 14f, the Tafel slope of  PtSe2 with 
different thickness ranging from 32 to 63 mV  dec−1 can be 
found. The current density increases with the edge density 
increases, which suggested that the edge density plays a key 
role in enhancing the HER activity of  PtSe2.

The HER performance of  PtSe2 has been experimentally 
and theoretically studied in the past few years. It has been 
revealed that the number of layers, edge density, and defect 
engineering play a key role in enhancing the HER activity 
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of  PtSe2 [38, 142, 196–198]. However, the relationship 
between the structure, electronic structure, and HER activ‑
ity of 2D  PtSe2 still is not elucidated, and the batch produc‑
tion of 2D metallic  PtSe2 is still not controllable enough in 
experimental.

5.6  Sensors

Sensors are a kind of integrated circuit devices that detect 
a specific physical parameter (gas, pressure, motion, mois‑
ture, etc.) and convert it to an electrical signal. Theoretical 
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simulation is a very effective approach to analyze and predict 
gas sensing properties of 2D  PtSe2 materials. In 2017, Saj‑
jad et al. [199] conducted a systematically theoretical study 
on the absorption of various gases molecules on monolayer 
 PtSe2 by using first principles calculations. The adsorption 
energy, relaxed height, charge density differences, and elec‑
tronic structure of monolayer  PtSe2 with absorbed CO,  CO2, 
 H2O,  NH3, NO, and  NO2 molecules were calculated, and the 
results indicate that sensors based on 2D  PtSe2 posse supe‑
rior gas detection sensitivity. Chen et al. [200] investigated 
the response of a simulated monolayer  PtSe2‑based gas sen‑
sor to the five types of SF6 decompositions (HF,  H2S,  SO2, 
 So2F2, and  SOF2) by using the first principles study. The 
sensor shows rapid and intense response to the SF6 decom‑
position molecular, and it could be controlled by regulating 
the bias voltage. Moreover, theoretical simulation suggested 
that the gas sensitivity of  PtSe2 can be further enhanced by 
the p‑type dopants of Ge and As [201].

Besides the theoretical simulation, also some experi‑
mental achievements have been reported. Figure  15a 
shows the  PtSe2 film‑based gas sensors and its response 
to periodic  NO2 gas [112]. As the  PtSe2 film exposed to 
a 100 sccm flow of  NO2 mixture with  N2 carrier gas, an 
immediately response time upon to 10 s was measured. 
The resistance change, transient response/recovery time as 
a function of  NO2 concentration at a certain exposure time 
was further tested. The sensors exhibit ultrafast response/
recover speed at room temperature. Moreover, 100 ppb of 
 NO2 can be detected at room temperature and the theo‑
retical limit of detection is estimated to be a few parts per 
billion. The detection limit, sensitivity, responses/recovery 
time of 2D  PtSe2 gas sensors is much better than other 2D 
materials, such as graphene,  MoS2,  MoSe2, and  MoTe2 
[202–205].

The unique structural and electronic properties of 2D 
 PtSe2 also make it a promising material for pressure sen‑
sors. As shown in Fig. 15b, c, centimeter‑scale  PtSe2 films 
with thickness of 4.5 and 9 nm were synthesized and used 
to fabricate pressure sensors [122]. The sensitivity of the 
 PtSe2 film‑based sensors can reach 1.05 × 10−1  mbar−1, 
which is much better than other low‑dimensional materials‑
based pressure sensors [206–210]. As shown in Fig. 15d, 
the piezo‑resistive gauge factor of  PtSe2 film was measured 
by using a bending beam setup, and a negative gauge factor 
of − 84.8 was obtained for the  PtSe2 film. According to the 
DFT calculation in Fig. 15e, an increase in DOS at Fermi 

level is observed for the in‑plane stretching and out‑of‑plane 
compression, leading to a decrease in resistance under the 
applied stains and ascribe to the negative gauge factor. 
Moreover, Boland et al. [41] further demonstrated that the 
growth temperature and thickness of the  PtSe2 film have 
a great effect to the performance of the  PtSe2‑based strain 
gauges. They found that the  PtSe2‑based pressure sensors 
show strong response to high frequency mechanical vibra‑
tions. By attaching a film to a speaker, a strong resistance 
changes of  PtSe2/Polyimide film, with high signal‑to‑noise, 
is seen for to vibrations with frequencies of 95, 190, and 
380 Hz were observed. These achievements suggest  PtSe2 
as a very promising candidate for future micro‑ and nano‑
electromechanical systems applications.

6  Conclusions and Perspectives

During the last decades, the newly emerged 2D  PtSe2 has 
exhibited noticeable intrinsic nature and has experienced 
a remarkable development in theoretical and experimen‑
tal. The most recent advances of 2D  PtSe2 including 
structure (crystal structure and electronic structure), prop‑
erties (phase transition, vibration spectroscopic modes, 
and optical properties), synthesis methods (CVD, CVT, 
TAC, MBE, CVT, and sol–gel solution process), and 
potential applications (photodetectors, mode‑locked laser, 
field effect transistors, photocatalytic, hydrogen evolu‑
tion reaction, and sensors) are reviewed in this review. 
Although a tremendous progress has been achieved in the 
past few years, there are still some remaining especially 
for their practical application. Here, some major perspec‑
tives on the key challenges and the potential research 
directions are suggested to address these issues.

1. In order to fulfill the using demands for both fundamen‑
tal studies and practical applications, more efficient and 
controllable synthesis methods should be developed. 
Previous study of graphene and TMDCs has inspired us 
that CVD is one of the most promising methods to grow 
2D materials. However, the CVD growth of 2D  PtSe2 is 
still in its infancy. More compressive works about CVD 
should be developed to grow high quality single crys‑
tal 2D  PtSe2 with controlled thickness, lateral size, and 
defects, which is prerequisite for further understanding 
the optoelectronic properties of  PtSe2. Besides, in order 
to fulfill the demand of industrialization, highly efficient 
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synthetic approaches should be proposed to synthesize 
a mass of high quality 2D  PtSe2.

2. 2D  PtSe2 has been theoretically predicted to be a promis‑
ing candidate to fabricate high‑performance electronic 
and optoelectronic devices [211–224]. Although some 
pioneer works have been reported, the performance of 
2D  PtSe2‑based devices are stills much lower than theo‑
retical prediction. Due to the layer‑dependent band gap 
of 2D  PtSe2, photodetector based on 2D  PtSe2 may have 
excellent performance in a broadband from visible light 
to mid‑IR. Vertical or lateral heterostructure based on 
2D  PtSe2 may bring some novel properties, which have 
been proved in graphene and TMDCs.

3. Theoretical studies have demonstrated that the 2D  PtSe2 
possesses excellent thermoelectric properties [67, 225, 
226]. However, related experimental works are still lack‑
ing. The development of 2D  PtSe2‑based flexible film 
or nanostructured thermoelectric materials may provide 
great opportunities for fabricating highly efficient ther‑
moelectric devices.

4. 2D Janus materials have attracted extensive attentions 
due to their unique structure, electronic, and optoelec‑
tronic properties [227–229]. The formation of Janus 
crystal structure broke the inversion and mirror sym‑
metry, leading to an intrinsic built‑in electric field. Janus 
monolayer 2D materials with sandwiched structure may 
induce remarkable influence on their carrier mobility, 
band gap, and optical properties. Theoretical simula‑
tions reveal that Janus monolayer PtSSe may have great 
potential in optoelectronics and thermal management 
communities. However, related experimental studies are 
still lacking. It is still challenging to synthesize Janus 
monolayer PtSSe materials and study their fundamental 
properties.
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