Supporting Information for

Rational Design of Porous N-Ti₃C₂ MXene@CNT Microspheres for

High Cycling Stability Li-S Battery

Jianli Wang¹, Zhao Zhang¹, Xufeng Yan¹, Shunlong Zhang¹, Zihao Wu¹, Zhihong Zhuang¹, Wei-Qiang Han^{1, *}

¹School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China

*Corresponding author. E-mail: <u>hanwq@zju.edu.cn</u> (Wei-Qiang Han)

Supplementary Figures

Fig. S1 Digital photographs of MXene nanosheets solution, HTM or (Ni²⁺+HTM) dissolved in deionized water and self-assembly MXene nanosheets solution via electrostatic force

Fig. S3 a-d SEM and e-g TEM images of nitrogen-doped Ti_3C_2 MXene nanosheets (N-Ti₃C₂)

Fig. S4 TEM images of nitrogen-doped Ti_3C_2 nanosheets@CNT composites (N- $Ti_3C_2@CNT_s$)

Fig. S5 SEM images of MXene nanosheets/Ni $^{2+}$ /HTM microspheres precursor after the spray drying

Fig. S6 SEM image and EDS elements mapping of nitrogen-doped Ti₃C₂ nanosheets@CNT microspheres (N-Ti₃C₂@CNT microspheres)

Fig. S7 SEM images of **a**, **b** N-Ti₃C₂/S, **c**, **d** N-Ti₃C₂@CNTs/S, and **e**, **f** N-Ti₃C₂@CNT microspheres/S composites after sulfur infiltration

Fig. S8 SEM image and EDS elements mapping of N-Ti₃C₂/S

Fig. S9 SEM image and EDS elements mapping of N-Ti₃C₂@CNTs/S

Fig. S10 XRD patterns of multi-layered Ti₃C₂ MXene and Ti₃C₂ nanosheets

Fig. S11 N_2 adsorption/desorption isotherm curves of multi-layered Ti_3C_2 MXene and Ti_3C_2 nanosheets (inset table: specific surface area)

Fig. S12 N_2 adsorption/desorption isotherm curves and pore size distribution of $N\mathchar`-Ti_3C_2$

Fig. S13 N₂ adsorption/desorption isotherm curves and pore size distribution of N-Ti₃C₂@CNTs

Fig. S14 XRD patterns of N-Ti₃C₂/S, N-Ti₃C₂@CNTs/S and N-Ti₃C₂@CNT microspheres/S composites

Fig. S15 TGA curves of (**a**) N-Ti₃C₂/S, (**b**) N-Ti₃C₂@CNTs/S and (**c**) N-Ti₃C₂@CNT microspheres/S composites under N₂ atmosphere with heating rate of 10 °C/min

Fig. S16 CV curves of (a) N-Ti₃C₂/S and (b) N-Ti₃C₂@CNTs/S cathodes at scanning rate of 0.1 mV s⁻¹

Fig. S17 Charge/discharge profiles of (a) $N-Ti_3C_2/S$ and (b) $N-Ti_3C_2@CNTs/S$ cathodes at different C-rate

Fig. S18 Charge/discharge profiles of N-Ti₃C₂@CNT microspheres/S cathode for 1^{st} , 500th, and 1000th cycles at 1 C

Fig. S19 SEM images of N-Ti₃C₂/S cathode (a, b) before and (c, d) after 100 cycles at 0.2 C

Fig. S20 SEM images of N-Ti₃C₂@CNTs/S cathode (**a**, **b**) before and (**c**, **d**) after 100 cycles at 0.2 C

Fig. S21 SEM images of N-Ti₃C₂@CNT microspheres/S cathode (**a**, **b**) before and (**c**, **d**) after 100 cycles at 0.2 C

Fig. S22 The adsorption measurements of lithium polysulfides (LiPSs) of commercial CNTs, N-Ti₃C₂@CNT microspheres, N-Ti₃C₂@CNTs and N-Ti₃C₂

Table S1 Specific surface area and pore volume of N-Ti $_3C_2$, N-Ti $_3C_2$ @CNTs and N-Ti $_3C_2$ @CNT microspheres

Materials	N-Ti ₃ C ₂	N-Ti ₃ C ₂ @CNTs	N-Ti ₃ C ₂ @CNTs microspheres
Specific surface area (m ² g ⁻¹)	263.3	358.4	388.6
Pore volume (cm³ g⁻¹)	0.43	0.66	0.72

Materials	C (at%)	Ti (at%)	N (at%)	O (at%)	Ni (at%)
N-Ti ₃ C ₂	48.99	15.44	16.48	19.09	—
N-Ti₃C₂@CNTs	68.11	8.55	10.98	11.56	0.80
N-Ti ₃ C ₂ @CNTs microspheres	67.40	8.69	11.86	11.22	0.83

 Table S2 Elements content analysis of N-Ti₃C₂, N-Ti₃C₂@CNTs and N-Ti₃C₂@CNT microspheres

 Table S3 Comparison of the cathode performances in this work with other MXenecontained materials reported recently

				-	-	
Sulfur host materials	Sulfur loading (mg cm ⁻²)	C-rate (C)	Cycle number	Capacity retention (mA h g ⁻¹)	Fading rate per cycle (%)	Reference
Mxene nanosheets	1	0.5	650	723	0.05	1
3D metal carbide/ mesoporous carbon	2	0.5	300	704	0.14	2
Mxene nanosheets	1.2	0.5	500	550	0.062	3
Mxene nanosheet/ CNTs composite	1.5	0.5	1200	450	0.043	4
Ti_3C_2 nanoribbon	0.7-1	0.5	300	<600	0.24	5
Mxene nanosheets/ TiO ₂ quantum dots	1.5	2	500	680	0.04	6
Mxene nanosheets/ 1T-2H MoS ₂ -C	1	0.5	300	799	0.07	7
Titanium oxide/ Ti ₃ C ₂ hybrids	1	1	1000	662	0.053	8
3D porous Mxene/ rGO hybrid aerogels	1.57	1	500	596	0.07	9
3D MnO ₂ nanosheets, delaminated-Ti ₃ C ₂	1.2	1	500	501	0.06	10
N-Ti ₃ C ₂ @CNTs	1.5	1	1000	775	0.016	This
microspheres	1.5	4	650	647	0.027	work

Supplementary References

 X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907-3911 (2015). https://doi.org/10.1002/anie.201410174

- [2] W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26, 8746-8756 (2016). https://doi.org/10.1002/adfm.201603704
- [3] J. Song, D. Su, X. Xie, X. Guo, W. Bao, G. Shao, G. Wang, Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427-29433(2016). https://doi.org/10.1021/acsami.6b09027
- [4] X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 29, 1603040 (2017). https://doi.org/10.1002/adma.201603040
- [5] Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi, X. Wang, J. Chen, Z.-S. Wu, All-MXene-based integrated electrode constructed by Ti₃C₂ nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 12, 2381-2388 (2018). https://doi.org/10.1021/acsnano.7b07672
- [6] X.-T. Gao, Y. Xie, X.-D. Zhu, K.-N. Sun, X.-M. Xie et al., Ultrathin MXene nanosheets decorated with TiO₂ quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443(2018). https://doi.org/10.1002/smll.201802443
- Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS₂-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018). https://doi.org/10.1002/adfm.201707578
- [8] H. Pan, X. Huang, R. Zhang, D. Wang, Y. Chen, X. Duan, G. Wen, Titanium oxide-Ti₃C₂ hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 358, 1253-1261 (2019). https://doi.org/10.1016/j.cej.2018.10.026
- [9] J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang, L. Luo, F. Wang, G. Wang, Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7, 6507-6513(2019). https://doi.org/10.1039/C9TA00212J
- [10] H. Zhang, Q. Qi, P. Zhang, W. Zheng, J. Chen et al., Self-assembled 3D MnO₂ nanosheets@delaminated-Ti₃C₂ aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater. 2, 705-714(2019). https://doi.org/10.1021/acsaem.8b01765