Supporting Information for

Directional Electromagnetic Interference Shielding Based on

Step-Wise Asymmetric Conductive Networks

Bai Xue^{1, 2}, Yi Li¹, Ziling Cheng¹, Shengdu Yang¹, Lan Xie^{1, 2, *}, Shuhao Qin², Qiang Zheng^{1, 3, 4, *}

¹Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, P. R. China

²National Engineering Research Center for Compounding and Modification of Polymer Materials; National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang 550014, P. R. China

³College of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

⁴College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China

*Correspondence authors. E-mail: mm.lanxie@gzu.edu.cn (L. X.) or zhengqiang@zju.edu.cn (Q. Z.)

Supplementary Figures and Table

Fig. S1 Schematic diagram for the syntheses of Ni@MF

Fig. S2 SEM images of (a) pure MF and (b) Ni@MF-5

Fig. S3 SEM image of Ni@MF-5 at high magnification

Fig. S4 SEM images of Ni@MF with different plating time. SEM images of (**a** and **b**) Ni@MF-1, (**c** and **d**) Ni@MF-2, and (**e** and **f**) Ni@MF-3

Nano-Micro Letters

Fig. S5 Ni percentage in Ni@MF as a function of plating time

Fig. S6 SEM images of Ni@MF/CNT-75/PBAT composites with different Niplating time. SEM images of (a-c) MF/CNT-75/PBAT composites, (d-f) Ni@MF-1/CNT-75/PBAT composites, (g-i) Ni@MF-2/CNT-75/PBAT composites, and (j-l) Ni@MF-3/CNT-75/PBAT composites

Fig. S7 SEM images of Ni@MF-3/CNT/PBAT composites with different CNT thickness. SEM images of (**a-c**) Ni@MF-3/PBAT composites, (**d-f**) Ni@MF-3/CNT-25/PBAT composites, (**g-i**) Ni@MF-3/CNT-50/PBAT composites, (**j-l**) Ni@MF-3/CNT-75/PBAT composites, and (m-o) Ni@MF-3/CNT-100/PBAT composites

Fig. S8 The thickness of CNT/PBAT layer in Ni@MF-3/CNT/PBAT composites with different CNT paper thickness

Fig. S9 The magnified XRD pattern of PBAT in 10-30°

Fig. S10 Resistance and conductivity of (**a**) Ni@MF with different plating time and (**b**) CNT papers with various thickness

Fig. S11 Bottom surface resistance and conductivity of Ni@MF/CNT/PBAT composites

Fig. S12 The average (a) SE_R and (b) R coefficients of Ni@MF/CNT-75/PBAT composites at different incident directions

Fig. S13 Δ SE_R and SE_R enhancement of Ni@MF/CNT-75/PBAT composites at different incident directions

Fig. S14 EMI SE_A in X-band for Ni@MF/CNT-75/PBAT composites, when the EM wave is incident form (a) Ni@MF layer and (b) CNT layer

Fig. S15 A coefficients in X-band for Ni@MF/CNT-75/PBAT composites, when the EM wave is incident form (**a**) Ni@MF layer and (**b**) CNT layer

Fig. S16 Δ SE_A and SE_A enhancement of Ni@MF/CNT-75/PBAT composites at different incident directions

Fig. S17 (a) EMI SE_T, (b) SE_A, and (c) SE_R in X-band for Ni@MF-3/CNT/PBAT composites, when the EM wave is incident from Ni@MF layer

Fig. S18 (a) A coefficients and (b) R coefficients in X-band for Ni@MF-3/CNT/PBAT composites, when the EM wave is incident from Ni@MF layer

Fig. S19 (a) The average SE_T, SE_A, and SE_R, and (b) average A-R coefficient of Ni@MF-3/CNT/PBAT composites with the incident EM wave from Ni@MF layer

Fig. S20 The Young's modulus of pure PBAT and step-wise asymmetric Ni@MF/CNT-75/PBAT composites with different Ni plating time

Fig. S21 The fracture strain of pure PBAT and step-wise asymmetric Ni@MF/CNT-75/PBAT composites with different Ni plating time

Sample	Elemental content (at%)			
	C 1s	O 1s	N 1s	Ni 2p
Pure MF	66.3	14.6	19.1	-
Ni@MF-5	53.3	13.3	17.4	15.6

Table S1 Atomic percentages of pure MF and Ni@MF-5

Movie S1 Practical application for directional EMI shielding