Supporting Information for

A MXene-Based Bionic Cascaded-Enzyme Nanoreactor for Tumor

Phototherapy/Enzyme Dynamic Therapy and Hypoxia Activated

Chemotherapy

Xiaoge Zhang¹, Lili Cheng¹, Yao Lu¹, Junjie Tang¹, Qijun Lv², Xiaomei Chen¹, You Chen¹, Jie Liu^{1, *}

¹ School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P. R. China

²Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China

*Corresponding author. E-mail: <u>liujie56@mail.sysu.edu.cn</u> (Jie Liu)

S1 Western Blot Analysis of CD47 Expression

Fig. S1 Western blot analysis of CD47 expression on surface of gene-transfected 4T1 cells ($4T1^{CD47}$) and wild-type 4T1 cells

S2 Characterization of the Exfoliated Ti₃C₂ Nanosheets

Fig. S2 a SEM image of exfoliated Ti_3C_2 nanosheets. **b** FITR spectra characterization of the exfoliated Ti_3C_2 nanosheets. **c** Raman spectra characterization of the exfoliated Ti_3C_2 nanosheets

S3 Enzyme Loading Efficiency of TGC

Fig. S3 Protein loading efficiency of TG, TC and TGC

S4 UV Characterization and Drug Loading and Encapsulation Efficiency Detection

Fig. S4 a UV spectra characterization of different samples. **b** The drug loading and entrapment efficiency of TGC/TPZ with different ratio.

S5 Characterization of the meTGCT Nanoreactor

Fig. S5 a TEM image of meTGCT. b SEM image of meTGCT

S6 SDS-PAGE Protein Analysis of meTGCT

Fig. S6 SDS-PAGE protein analysis of m_eTGCT . a) maker, b) $4T1^{CD47}$ cell membrane, c) GOX, d) CPO, e) m_eTG , f) m_eTG , g) m_eTGC , h) m_eTGCT

S7 Stability of meTGCT

Fig. S7 a The size stability of m_eTGCT in PBS during one week. **b** The photographs of TGCT and m_eTGCT on day 0 and day 7

S8 Photothermal Effects of meTGCT in vitro

Fig. S8 a Temperature change of m_eTGCT with different concentrations under 808 nm laser (1.5 W cm⁻²) irradiation for 10 min. **b** Four cycles of temperature variation of m_eTGCT buffer solution (50 µg mL⁻¹) with continuous 808 nm laser irradiation (1.5 W cm⁻², 10 min) and natural cooling. **c** The photothermal conversion efficiency of the m_eTGCT solution under 808 nm laser. Inset is plot of linear time data versus $-ln\theta$, which was from the cooling stage

S9 Influence of Different Concentrations of GOX on pH Values of PBS

Fig. S9 Time-dependent changes in pH values of PBS containing GOX with different concentrations in the presence of 4 mg mL⁻¹ glucose

S10 Detection of the HClO Content

Fig. S10 a HClO production content of PBS containing m_eTGCT and different concentrations of H_2O_2 in the presence of 4 mg mL⁻¹ glucose and 25 mM Cl⁻. **b** HClO production content of PBS containing m_eTGCT and different concentrations of glucose in the presence of 25 mM Cl⁻. **c** HClO production content of PBS containing m_eTGCT and different concentrations methods of Cl⁻ in the presence of 4 mg mL⁻¹ glucose

S11 Detection of the Relative Enzymatic Activity

Fig. S11 a The relative GOX enzymatic activity of various samples with or without 808 nm (1.5 W cm⁻², 3 min) and 635 nm (0.5 W cm⁻², 5 min) lasers irradiation. **b** The relative CPO enzymatic activity of various samples with or without 808 nm (1.5 W cm⁻², 3 min) and 635 nm (0.5 W cm⁻², 5 min) lasers irradiation

S12 Detection of the ¹O₂ Quantum Yields

Fig. S12 The time dependent $\triangle OD$ of the ${}^{1}O_{2}$ indicator DPBF incubated with Ti₃C₂, m_eT, m_eTGCT and MB with or without 635 nm laser (0.5 W cm⁻²) for 5 min in O₂-saturated PBS solution

S13 TPZ Release Performances from meTGCT

Fig. S13 TPZ release performances from m_eTGCT under different conditions

S14 4T1 Cells Internalization of meTGC by Flow Cytometry

Fig. S14 Flow cytometric results of the uptake amount of C6, TGC/C6, and m_e TGC/C6 by 4T1 cells

S15 Macrophages Internalization of meTGC by Flow Cytometry

Fig. S15 Flow cytometric results of the uptake amount of C6, TGC/C6 and m_e TGC/C6 by macrophages

S16 Intracellular ROS Detection by Flow Cytometry

Fig. S16 a Quantitative internalization ROS detection of 4T1 cells with different treatments for 4 h with/without 635 nm laser (0.5 W cm⁻², 5 min) by flow cytometry. **b** Intracellular ROS detection in 4T1 cells treated with different samples at 4 h by flow cytometry under 635 nm laser irradiation (0.5 W cm⁻², 5 min) (***p < 0.001, **p < 0.01, *p < 0.05, n = 3)

S17 Cellular Hypoxia Detection of 4T1 Cells

Fig. S17 Cellular hypoxia detection of 4T1 cells incubated with different samples in DMEM by flow cytometry using a hypoxia probe under 635 nm laser irradiation (0.5 W/cm²) for 5 min. (***p < 0.001, **p < 0.01, *p < 0.05, n = 3)

S18 In vitro Photothermal Effects of TGC and meTGC

Fig. S18 The temperature changes of 4T1 cells in 96-well plates treated with TGC or m_e TGC for 4 h, before and after 808 nm (1.5 W cm⁻²) laser irradiation for different time.

S19 In vitro Anti-tumor Effects of Ti₃C₂ and meT

Fig. S19 a 4T1 cell viability of treatment with Ti_3C_2 with or without 808 nm (1.5 W cm⁻², 3 min) and 635 nm (0.5 W cm⁻², 5 min) laser irradiation. **b** 4T1 cell viability of treatment with m_eT with or without 808 nm (1.5 W cm⁻², 3 min) and 635 nm (0.5 W cm⁻², 5 min) laser irradiation. **c** 4T1 cell viability of treatment with TPZ of different concentrations in normoxic or hypoxia environment. **d** 4T1 cell viability of varying formulations with high glucose (4.5 mg mL⁻¹) or low glucose (1 mg mL⁻¹) under 808 nm (1.5 W cm⁻², 3 min) and 635 nm (0.5 W cm⁻², 5 min) laser irradiation. (***p < 0.001, **p < 0.05, n = 5)

S20 Photothermal Effect of TGC and meTGC in vivo

Fig. S20 The temperature images of 4T1 cancer-bearing mice exposed to 808 nm laser (1.5 W cm^{-2}) within 5 min

S21 Representative Immunofluorescence Staining Images of Tumors Stained with the Hypoxyprobe Kit with Different Treatments

Fig. S21 a Representative immunofluorescence images of tumor slices stained with the hypoxyprobe kit after i.v. injection of G1) Control, G2) m_eT, G3) m_eTG, G4) TGC, G5) m_eTGC, G6) TGCT, G7) m_eTGCT, G8) TGCT+laser, G9) m_eTGCT+laser. **b** The semiquantitative analysis of **a**

S22 Survive Curve of the Mice with Different Treatments

Fig. S22 Kaplan-Meier survival analysis of 4T1 tumor-bearing mice after various treatments

S23 Blood Biochemical Analysis of the Mice with Different Treatments

Fig. S23 Blood biochemical results of the mice with different treatments at 21-day postinjection. The results show the mean and SD of **a** alanine aminotransferase (ALT), **b** aspartate aminotransferase (AST), **c** albumin (ALB), **d** alkaline phosphatase (ALP), **e** gamma glutamyl transferase (γ -GT), **f** total protein (TP), **g** blood urea nitrogen (BUN), **h** creatinine (CR) and **i** glucose (GLU). G1) Control, G2) m_eT, G3) m_eTG, G4) TGC, G5) m_eTGC, G6) TGCT, G7) m_eTGCT, G8) TGCT+laser, G9) m_eTGCT+laser

S24 HE Staining of Major Organs

Fig. S24 H&E staining of tissues were harvested from the health mice of different groups

S25 H&E Staining Images of Tumors with Different Treatments

Fig. S25 H&E staining of tumor tissues dissected from the mice in various groups (G1) Control, G2) m_eT, G3) m_eTG, G4) TGC, G5) m_eTGC, G6) TGCT, G7) m_eTGCT, G8) TGCT+laser, G9) m_eTGCT+laser)

Fig. S26 a Representative immunofluorescence images of proliferating cells (Ki67positive) of the tumors with different treatments. G1) Control, G2) m_eT, G3) m_eTG, G4) TGC, G5) m_eTGC, G6) TGCT, G7) m_eTGCT, G8) TGCT+laser, G9) m_eTGCT+laser. **b** The semiquantitative analysis of **a**