Supporting Information

Identification of the Intrinsic Dielectric Properties of Metal Single

Atoms for Electromagnetic Wave Absorption

Xinci Zhang¹, Yanan Shi¹, Jia Xu¹, Qiuyun Ouyang¹, Xiao Zhang^{1,*}, Chunling Zhu^{2,*}, Xiaoli Zhang³ and Yujin Chen^{1, 2, 3*}

¹ Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China

² College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

³ School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

* Corresponding authors.

E-mail: zhangxiaochn@hrbeu.edu.cn; zhuchunling@hrbeu.edu.cn; chenyujin@hrbeu.edu.cn

Material characterization:

The morphology and size of the synthesized samples were characterized via XRD using an X'Pert Pro diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å). The samples were scanned from 10° to 70° at a scanning rate of 5°/min. Raman spectroscopy was conducted to characterize the extent of disorder in the carbon materials using a Lab RAM Aramis micro Raman spectrometer with an excitation wavelength of 488 nm and a spot size of 2 µm. The morphology of all samples was observed using a Hitachi SU8000 scanning electron microscope at an accelerating voltage of 5-20 kV. The samples were pasted onto conductive tapes for SEM observations. TEM images were acquired using a JEM-2100 transmission electron microscope operating at a voltage of 200 kV. SEM-EDX analyses were performed to confirm the elemental contents of the samples. The ethanol solution containing the sample was treated using ultrasounds for 5 min, and the solution was then dripped onto a copper grid for TEM observations. XPS measurements were carried out using an X-ray photoelectron spectrometer (K-Alpha, Thermofisher Scientific Company) with Al K α radiation generated at 12 kV and 150 W. The binding energies of all samples were determined using the carbon C 1s peak (284.6 eV) as a reference. A Micromeritics ASAP 2010 micropore size analyzer was used to measure the specific surface area of the sample from the linear portion of the BET plots ($P/P_0 = 0.01-0.10$) at 77 K. Approximately 0.2 g of catalyst was placed in a quartz tube. ICP-OES measurements were performed to determine the metal contents in the catalysts. The conductivity of the samples was determined using an X3 Hall Effect Test System (Semishare International Limited).

XAFS measurements:

The obtained XAFS data was processed using the Athena software (version 0.9.26) for background, pre-edge line, and post-edge line calibrations. Then, FT fitting was carried out with the Artemis software (version 0.9.26). A k^3 weighting, a *k*-range of 2– 5 Å⁻¹, and an *R*-range of 1–4 Å were used for the fitting of the Mn sample. The coordination number, bond length, Debye–Waller factor, and E_0 shift ($CN, R, \sigma^2, \Delta E_0$) were fitted without being fixed, constrained, or correlated. For the WT analysis, the $\chi(k)$ value exported from Athena was imported into the Hama Fortran code. The parameters were as follows: *R*-range, 1–4 Å; *k*-range, ~0–13 Å⁻¹ for standers (0–6Å⁻¹ for the Mn sample); *k*-weight, 2. The Morlet function with $\kappa = 10$ and $\sigma = 1$ was used as the mother wavelet to provide the overall distribution.

Figures and Tables

Fig. S1 SEM image and EDX mapping of the 3D Mn–NC precursor after freeze-drying process.

Fig. S2 Photos of 3D Mn–NC production in each batch. **a** The precursor after freeze-drying process. **b** The sample after carbonized at 800°C. **c** The finally product of 3D Mn–NC.

Fig. S3 SEM images of the 3D Mn–NC.

Fig. S4 a N₂ adsorption–desorption isotherms and **b** pore-size distribution of different samples.

Fig. S5 SEM images of the Mn–N_xC-w.

Fig. S6 HRTEM images of a 3D NC, b 3D Fe–NC, c 3D Cu–NC, d 3D Ni–NC and e 3D Co–NC, and f 3D Mn–NC.

Fig. S7 X-ray photoelectron spectroscopy (XPS) patterns of 3D NC, 3D Ni–NC, 3D Cu–NC, 3D Co–NC, 3D Fe–NC, and 3D Mn–NC.

Fig. S8 C 1s XPS spectra of a 3D NC, b 3D Mn–NC, c 3D Fe–NC, d 3D Co–NC, e 3D Cu–NC, and f 3D Ni–NC.

Fig. S9 The relative real parts, imaginary parts of the complex permeability of **a** 3D NC, **b** 3D Ni–NC, **c** 3D Cu–NC, **d** 3D Co–NC, **e** 3D Fe–NC, and **f** 3D Mn–NC. **g-h** Dielectric loss tangent and magnetic loss tangent of the samples.

Fig. S10 Cole–Cole plots of all the samples.

Fig. S11 Calculated charge density difference of the different type N-doped sites in a single graphitic plane.

Fig. S12 Reflection loss curves of 3D Mn–NC at the thickness < 2.0 mm.

Fig. S13 The degree of impedance matching of **a** 3D NC, **b** 3D Ni–NC, **c** 3D Cu–NC, **d** 3D Co–NC, **e** 3D Fe–NC, and **f** 3D Mn–NC.

Fig. S14 The α -*f* curves of all the samples.

Fig. S15 SEM images of the 3D Mn NPs–NC.

Fig. S16 Frequency dependence of μ_r of 3D Mn NPs–NC.

Fig. S17 a–d Frequency dependence of ε' , ε'' , ε_c'' and ε_p'' of 3D Mn NPs–NC and 3D NC.

Fig. S18 N₂ adsorption-desorption isotherms of the 3D Mn NPs-NC.

Fig. S19 Reflection loss curves of the 3D Mn NPs-NC.

Fig. S20 Reflection loss curves of the Mn–N_xC-w.

Fig. S21 Reflection loss curves of the 3D Mn–NC with a filler loading of **a** 5 wt.%, **b** 15 wt.%.

Fig. S22 XRD patterns of the 3D Mn–NC and the 3D Mn–NC sample stored for three months.

Fig. S23 SEM images of a 3D Mn–NC and b 3D Mn–NC sample stored for three months.

Fig. S24 TEM images of a 3D Mn–NC and b 3D Mn–NC sample stored for three months.

Fig. S25 Frequency dependence of ε_r of the 3D Mn–NC and the 3D Mn–NC sample stored for three months.

Table S1 BET	'specific	surface area	and por	e size	for a	ll the sam	ples.
--------------	-----------	--------------	---------	--------	-------	------------	-------

	CN	Mn–NC	Fe–NC	Co–NC	Cu–NC	Ni–NC
BET surface areas (m ² /g)	550	634	607	599	580	570
Pore size (nm)	2.35	2.32	2.37	2.35	2.33	2.35

 Table S2 Content of nitrogen species in the different samples.

	CN	Mn–NC	Fe–NC	Co–NC	Cu–NC	Ni–NC
N (at.%)	2.1	3.6	3.2	3.0	2.6	2.4

Table S3 ICP-AES results of all the samples	5.
---	----

	Mn–NC	Fe–NC	Co-NC	Cu–NC	Ni-NC
Metal (wt.%)	1.80	1.40	1.38	1.17	1.12

Table S4 EXAFS fitting parameters at the Mn K-edge various samples ($S_0^2=0.11$).

Sample	Path	C.N.	R (Å)	$\sigma^2 \times 10^3$ (Å ²)	ΔE (eV)	R factor
Mn foil	Mn-Mn	12*	2.66±0.01	7.2±1.6	4.0±2.4	0.011
MaQ	Mn-O	5.5±1.0	2.19±0.01	5.3±1.8	3.0±1.8	0.007
MnO	Mn-Mn	16.0±2.3	3.14±0.01	10.0±1.2	1.9±1.2	0.007
Mm.O.	Mn-O	5.1±0.9	1.91±0.01	5.8±1.8	-4.0±2.3	0.00
NIn ₂ O ₃	Mn-Mn	12.7±2.3	3.15±0.01	11.3±1.4	5.7±1.2	0.09
Mn–NC	Mn-N	3.8±1.9	2.16±0.04	7.6±8.8	8.9±2.7	0.016

^{*a*}*C.N.*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE : the inner potential correction. *R* factor: goodness of fit. * The experimental EXAFS fit of metal foil by fixing CN as the known crystallographic value.

	Mn–NC	Fe–NC	Co–NC	Cu–NC	Ni–NC	NC
σ (S m ⁻¹)	4.40	4.16	4.02	3.96	3.87	1.01

 Table S5 Electrical conductivity for all the samples.

	CN	Mn–NC	Fe–NC	Co-NC	Cu–NC	Ni–NC
С	0.18	0.11	0.11	0.11	0.11	0.11
Ν	-0.33	-0.43	-0.47	-0.46	-0.49	-0.45
Metal		1.17	1.23	1.18	1.42	1.20

Table S6 Mulliken charge (local of N_4C and M- N_4C structure) for all the samples.

 Table S7 Comparison of the EMW absorption performance of the previously reported

 carbon-based absorbers.

Absorbers	$R_{ m L,\ min}$	Optimum	Filler	SRL_1	SRL _{lt}	Ref.
	(dB)	thickness	loading	$(dB \cdot mg^{-1})$	$(dB \cdot mm^{-1} \cdot mg^{-1})$	
		(mm)	(wt. %)			
Mn–NC	-46.2	2	10	-4.62	-2.31	This
						work
GO–CNT–Fe ₃ O ₄	-37.25	5	30	-1.24	-0.25	[s1]
FeCo-CNT	-46.5	1.7	50	-0.93	-0.55	[s2]
C-Fe ₂ O ₃ -Fe ₃ C-	-42.6	3.5	20	-2.13	-0.61	[s3]
Fe-CNT						
Co-CNT-G	-65.6	2.19	30	-2.18	-0.99	[s4]
Fe ₃ O ₄ -CNT-	-50.9	2.5	25	-2.03	-0.81	[s5]
Carbon fibers						
Fe ₃ O ₄ -CNT	-43	1.5	30	-1.43	-0.95	[s6]

Ferrite/Co/porous	-47.3	2.5	70	-0.68	-0.27	[s7]
carbon						
Co–C	-62.12	2.4	30	-2.07	-0.86	[s8]
Co@C	-68.7	1.65	70	-0.98	-0.59	[s9]
microspheres						
CNT@TiO2	-31.8	2.0	30	-1.06	-0.53	[s10]
sponges						
FeCo/graphene	-40.2	2.5	50	-0.80	-0.32	[s11]
hybrids						
CoFe@C	-43.5	2.5	50	-0.87	-0.34	[s12]

References

[s1] L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang et al., Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe₃O₄ nanoparticles. J. Mater. Chem. A 2, 14940–14946 (2014). https://doi.org/10.1039/C4TA02815E

[s2] B. Yang, Y. Wu, X. Li, R. Yu, Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers. Materials and Design 136, 13–22 (2017). https://doi.org/10.1016/j.matdes.2017.09.055

[s3] B. Zhong, C. Wang, G. Wen, Y. Yu, L. Xia, Facile fabrication of boron and nitrogen co-doped carbon@Fe₂O₃/Fe₃C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Compos.

Part B-Eng. **132**, 141–150 (2018). http://dx.doi.org/10.1016/j.compositesb.2017.09.001

[s4] X. Qi, Q. Hu, H. Cai, R. Xie, Z. Bai et al., Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties. Sci. Rep. 6, 37972 (2016). https://doi.org/10.1038/srep37972

[s5] J. Qiu, T. Qiu, Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon 81, 20–28 (2015). http://dx.doi.org/10.1016/j.carbon.2014.09.011

[s6] N. Li, G. Huang, Y. Li, H. Xiao, Q. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe₃O₄ nanocoating structure. ACS Appl. Mater. Interfacs 9, 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142

[s7] L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan et al., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework. Chem. Eng. J. 326, 945–955 (2017). http://dx.doi.org/10.1016/j.cej.2017.06.006

[s8] K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces **10**, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965

[s9] D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111,

722-732 (2017). http://dx.doi.org/10.1016/j.carbon.2016.10.059

[s10] C. Mo, R. Yang, D. Lu, L. Yang, Q. Hu et al., Lightweight, three-dimensional carbon nanotube@TiO₂ sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019). https://doi.org/10.1016/j.carbon.2018.12.064

[s11] X. Li, J. Feng, Y. Du, J. Bai, H. Fan et al., One-pot synthesis of CoFe₂O₄/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015). https://doi.org/10.1039/C4TA05718J

[s12] X. Zeng, B. Yang, L. Zhu, H. Yang, R. Yu, Structure evolution of prussian blue analogues to CoFe@C core-shell nanocomposites with good microwave absorbing performances. RSC Adv. 6, 105644–105652 (2016). https://doi.org/10.1039/C6RA18928H