
Vol.:(0123456789)

1 3

Ultra‑Stable and Durable Piezoelectric 
Nanogenerator with All‑Weather Service Capability 
Based on N Doped 4H‑SiC Nanohole Arrays

Linlin Zhou1, Laipan Zhu2, Tao Yang1 *, Xinmei Hou1 *, Zhengtao Du3, Sheng Cao3, 
Hailong Wang4, Kuo‑Chih Chou1, Zhong Lin Wang2

HIGHLIGHTS

• An ultra‑stable all‑weather service piezoelectric nanogenerator (PENG) with awide operating temperature range (‑80~80  ℃) and a 
wide operating relativehumidity range (0~100%) is proposed.

• The PENG based on N doped 4H‑SiC exhibits long‑term service stability up to 50 days.

• The short circuit current density of PENG based on N doped 4H‑SiC is enhanced significantly.

ABSTRACT Ultra‑stable piezoelectric nanogenerator (PENG) driven by environ‑
mental actuation sources with all‑weather service capability is highly desirable. 
Here, the PENG based on N doped 4H‑SiC nanohole arrays (NHAs) is proposed 
to harvest ambient energy under low/high temperature and relative humidity (RH) 
conditions. Finite element method simulation of N doped 4H‑SiC NHAs in com‑
pression mode is developed to evaluate the relationship between nanohole diameter 
and piezoelectric performance. The density of short circuit current of the assembled 
PENG reaches 313 nA  cm−2, which is 1.57 times the output of PENG based on 
N doped 4H‑SiC nanowire arrays. The enhancement can be attributed to the exist‑
ence of nanohole sidewalls in NHAs. All‑weather service capability of the PENG is 
verified after being treated at ‑80/80 ℃ and 0%/100% RH for 50 days. The PENG is 
promising to be widely used in practice worldwide to harvest biomechanical energy 
and mechanical energy. 
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1 Introduction

Environmental actuation sources, one of the most widely 
distributed energy sources in nature, are being explored and 
developed. Nowadays, nanogenerators (NGs) have been con‑
sidered favorable candidates for ambient sources harvesting 
[1–5]. Among them, piezoelectric nanogenerator (PENG) 
has a tighter connection structure, smaller size and longer 
service life, making it more suitable for practical applica‑
tions. Due to the complexity of the Earth’s environment, 
such as from − 70 °C in polar region to 60 °C in Africa, 
from 0% relative humidity (RH) in desert to 100% RH in 
rainforest, the PENG with all‑weather service capability is 
in urgent need of development. So, the standards required 
for piezoelectric materials used to assemble all‑weather 
service PENG, such as chemical and thermal stability, 
environmental friendliness and durability, have become the 
main obstacles restricting their wide application [6]. The 
piezoelectric polymer, for example, PVDF, P(VDF‑TrFE) 
and PVDF‑HFP, can’t be applied in extreme temperature 
environments due to thermal instability [7–10]. As for piezo‑
electric ceramics, i.e., Pb(Zr, Ti)O3 (PZT), Pb(Mg1/3Nb2/3)
O3‑PbTiO3 (PMN‑PT),  CsPbBr3, with high piezoelectric 
coefficients usually contain lead (Pb), which is harmful to 
the environment [11–14]. While the lead‑free piezoelec‑
tric ceramics, i.e.,  BaTiO3,  NaNbO3 usually have complex 
preparation processes and harsh synthesis conditions, which 
makes them not suitable for promotion in practical applica‑
tions [15–18]. In particular, the high brittleness of ceram‑
ics makes them easily damaged, limiting their service life 
severely. In addition to the classic piezoelectric materials, 
multiple piezoelectric semiconductors such as ZnO [19, 
20], GaN [21, 22],  MoS2 [23], and  MoSe2 [24], have been 
widely investigated to assemble PENG. Among them, the 
chemical instability of ZnO to acids and bases prevents it 
from harvesting ambient sources. The preparation process 
of highly oriented GaN nanoarrays is cumbersome. And the 
fabrication of uniform monolayer  MoS2 and  MoSe2 is pretty 
complex to control bonding and crystal, making it impracti‑
cal for global promotion [25].

SiC, one of the most important third‑generation semicon‑
ductors with extraordinary chemical and thermal stability, 
outstanding mechanical properties and good thermal shock 
resistance, is recognized as one of the potential materials for 
constructing devices with excellent stability and durability to 

service in harsh conditions including high temperature, high 
pressure, high irradiation and high power [26–29]. Recently, 
our group has noted the excellent piezoelectric properties 
of 4H‑SiC due to the separation of positive and negative 
charge centers along c‑axis and proposed a PENG based 
on N doped 4H‑SiC nanowire arrays (NWAs) [30, 31]. The 
stable output under high temperature and high concentration 
of acid/alkali solutions environments verifies the stability of 
the PENG based on 4H‑SiC. However, in order to obtain the 
PENG with all‑weather service capability, the output per‑
formance of the PENG based on 4H‑SiC needs to be further 
improved, the stability (including different temperature and 
RH) and durability of the PENG need to be further explored.

Herein, an ultra‑stable and durable PENG with all‑
weather service capability and improved output ability was 
fabricated by N doped 4H‑SiC NHAs. The influence of 
nanohole diameter on structural stability and output ability 
of the NHAs was studied by finite element method (FEM). 
Especially, all‑weather service capability of the PENG, 
including high/low temperature and RH, was investigated 
systematically. The results of practical applications show 
that N doped 4H‑SiC NHAs is one of the most favorable 
candidates for PENG worked in harsh conditions.

2  Experimental Section

2.1  Materials

The N doped single‑crystalline 4H‑SiC wafer was obtained 
from TankeBlue Semiconductor Co. Ltd.. Ethanol  (C2H5OH, 
99%) and hydrogen peroxide  (H2O2, 30%) were purchased 
from Sinopharm Chemical Reagent. Hydrofluoric acid (HF, 
40%) was from Aladdin in Beijing of China.

2.2  Materials Preparation and Fabrication of PENG

The N doped 4H‑SiC NHAs were prepared by anodic oxida‑
tion. The etching solution is composed of HF,  C2H5OH and 
 H2O2 with a volume ratio of 6:6:1. The voltage of 21 V with 
a cycle time (T) of 8 ms and a pause time (Toff) of 4 ms was 
applied for 10 min to form NHAs. The freestanding NHAs 
film was exfoliated under the function of the direct volt‑
age of 21 V for 60 s and utilized to assemble a well‑sealed 
PENG. PDMS was spin‑coated on one side of NHAs and 
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cured at 80 °C for 20 min and a piece of Al foil was attached 
to PDMS tightly. The obtained N doped 4H‑SiC/PDMS/Al 
was fixed on another piece of Al foil by silver paste. The 
sandwich‑structure device was fixed on a PET plate and 
encapsulated with PDMS.

2.3  Characterization and Measurement

The morphology and structure of the NHAs were inves‑
tigated by field emission scanning electron microscope 
(FESEM; JSM‑6701F, JEOL) and transmission electron 
microscopy (TEM; JEM‑2100, JEOL). The crystal structure 
of samples was studied by X‑ray diffraction (XRD; Smart‑
Lab/Ultima IV, Rigaku). X‑ray photoelectron spectroscopy 
(XPS; ESCALAB 250Xi, Thermo Fisher Scientific) was 
used to measure their surface species. Displacement‑voltage 
butterfly loop of NWAs was recorded by the piezoresponse 
force microscopy (PFM; Dimension Icon, Bruker).

2.4  Simulation Settings

The bottom of the NHAs is treated as grounding and fixing 
constraints. The top of NHAs with floating potential was 
rigid and the normal displacement of the side walls was set 
to zero [32]. And the pressure of 1 MPa was applied on the 
top surface of NHAs along the c‑axis.

3  Results and Discussion

The N doped 4H‑SiC NHAs were prepared by anodic oxida‑
tion of single‑crystalline N doped 4H‑SiC wafer [33, 34]. 
The representative fabrication procedure of PENG based on 

the exfoliated N doped 4H‑SiC NHAs is schematically illus‑
trated in Fig. 1a‑e. The SEM image of the N doped 4H‑SiC 
NHAs in the inset of Fig. 1a reveals the actual nanohole 
distribution in the arrays. The cross‑sectional SEM image 
reveals the interlayer structure of the PENG (Fig. 1f). And 
the excellent flexibility of the well‑sealed PENG is disclosed 
in the inset of Fig. 1f.

3.1  Characterization of NHAs

At the beginning of anodic oxidation, extremely small holes 
appear. HF etching solution tends to enter the bottom of 
these holes under the electric field perpendicular to the sur‑
face of the N doped 4H‑SiC sheet. The holes expand gradu‑
ally and  CO2 gas generated by the oxidation of SiC accumu‑
lates on sidewalls, hindering the lateral etching reaction. Yet 
the longitudinal etching process proceeds normally, forming 
neatly arranged NHAs perpendicular to the SiC substrates. 
The larger pore is generated by the corrosion and penetration 
of the sidewalls between small holes [34]. SEM images show 
that the N doped 4H‑SiC NHAs exhibits a dense nanohole 
structure with diameters ranging from 14.5 nm to more than 
200 nm (Fig. S1a, b). The average diameter of nanohole in 
arrays is 73.67 nm and most of the apertures are less than 
100 nm (Fig. S1c) [35]. The XRD patterns of the NHAs 
powder confirm that it can be indexed to 4H‑SiC (JCPDS 
Card No. 73–1664) (Fig. S2a). There is only one sharp peak 
of (004) in the XRD spectrum of N doped 4H‑SiC NHAs, 
disclosing their single‑crystalline nature and high crystallin‑
ity. Further, the detailed morphology of the as‑prepared sam‑
ple was disclosed by TEM (Fig. S2b). The N doped 4H‑SiC 
NHAs exhibits different widths at different locations, which 
results from the combined effects of the voltage oscillations, 

Fig. 1  a–e Schematic diagram of the fabrication process for the PENG. The inset in a is the SEM image of the top‑view of N doped 4H‑SiC 
NHAs. f SEM image of the cross‑sectional view of the assembled PENG. The inset in the upper right corner is the picture of bending PENG
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the periodical etching reaction and the different etching rates 
of the C and Si faces [34, 36]. The well‑arranged crystal‑
line lattice fringes represented in high‑resolution TEM 
(HRTEM) image correspond to the (004) crystal plane 
of 4H‑SiC (Fig. S2c). The select area electron diffraction 
(SAED) patterns (Fig. S2d) are consistent with XRD results. 
XPS spectrum of the NHAs reveals that they are composed 
of C, Si, O, and N (Fig. S3). The O 1 s spectrum indicates 
the presence of  SiOxCy and  SiO2 formed during anodizing 
(Fig. S3d) [26]. And the N dopants incorporated into 4H‑SiC 
lattice are revealed by N 1 s fine XPS spectrum (Fig. S3e).

Further, the displacement‑voltage butterfly loops of 
4H‑SiC and N doped 4H‑SiC verify that the N doped 4H‑SiC 
exhibits more significant piezoelectric properties (Fig. S4). 
Actually, 4H‑SiC belongs to hexagonal P63mc space‑group 
symmetry with a wurtzite structure. The tetrahedral unit of 
4H‑SiC is composed of one Si atom and four C atoms coor‑
dinated with the Si atom. In this unit, the apical bond length 
of Si–C is 1.890 Å (parallel to the c‑axis) yet the basal one is 
1.880 Å. The distortion of the tetrahedron along c‑axis leads 
to the separation of the cation and anion centers of 4H‑SiC, 
forming c‑axis‑oriented dipole moments. Once an external 
force is applied along the c‑axis, the deformation of the tet‑
rahedral units of 4H‑SiC will significantly strengthen the 
dipole moments and enhance piezoelectricity [31, 37–39]. 
Furthermore, N doping will enhance the piezoelectricity of 
4H‑SiC by adjusting crystal structure and inducing dipoles. 
On one hand, the lattice distortion caused by the introduction 
of N atoms in 4H‑SiC lattice increases the asymmetry of the 
wurtzite structure [40]. On the other hand, the remaining 
electrons of N atoms tend to become free electrons. The 
electron‑losing N ion makes the surrounding positively 
charged center shift, forming a dipole. These dipoles will 
emerge orientation polarization under the force field, result‑
ing in an enhanced piezoelectric effect [41]. Hence, the N 
doped 4H‑SiC possesses more significant piezoelectricity.

3.2  FEM Simulation of NHAs

To further investigate the piezoelectric effect of the N 
doped 4H‑SiC NHAs, a finite element method (FEM) 
simulation was performed by the COMSOL Multiphysics 
software [32, 42, 43]. The geometry schematic of N doped 
4H‑SiC NHAs with the size of 1 μm × 1 μm × 200 nm is 
presented in Fig. 2a. The aperture of nanoholes in NHAs 
was set to vary from 40 to 200 nm according to the sta‑
tistical distribution of nanoholes (Fig. S1c). The electric 
potential (V) of the N doped 4H‑SiC NHAs is uniformly 
distributed (Fig. 2b) and the peak value of V (Vmax) reaches 
‑4.89 mV. To distinguish the contribution of nanoholes 
with different apertures to performance, five NHAs units 
with diameters of 20, 40, 80, 100, and 200 nm were estab‑
lished (Fig. S5). The tendency of maximum displacement 
(Dmax) and |Vmax| of NHAs with increasing diameters are 
represented in Fig. 2c. When the same pressure is applied, 
the displacement and electric potential increase nonline‑
arly with the enlargement of nanohole diameters. Although 
the larger displacement of NHAs will induce better elec‑
trical output performance, the resulting giant structural 
deformation will greatly limit their service life in practice. 
Especially, the trend of electric potential and deforma‑
tion growth slows down as the aperture increases. As for 
the as‑prepared N doped 4H‑SiC NHAs, the smaller holes 
will improve the structural stability and the larger holes 
can optimize the piezoelectric performance. Therefore, the 
NHAs with a diameter within the range of 20 to 200 nm 
approximately are suitable for assembling PENG. As the 
anodizing time increases, the nanohole size expands and 
the sidewalls of the holes in NHAs gradually collapse to 
form NWAs. Hence, the structural stability of the 4H‑SiC 
NWAs is inevitably worse than that of the NHAs, making 
them inapplicable in practice.

Fig. 2  a Geometry Schematics of the N doped 4H‑SiC NHAs. b Distribution of the V in NHAs at a pressure of 1 MPa. c The tendency of Dmax 
and |Vmax| with the increase of nanohole diameters
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3.3  Performance Test of PENG

When a force of 0.6 N is applied, the density of Isc and 
open circuit voltage (Voc) of the assembled PENG are 108 
nA  cm−2 and 1.35 V, respectively (Fig. 3a, b). A blank 
PENG without N doped 4H‑SiC NHAs was constructed to 
verify the effective piezoelectric output of NHAs. Com‑
pared with the PENG based on N doped 4H‑SiC NHAs, 
the blank one shows a negligible signal generated by the 
noise in surrounding environments (Fig. S6). Hence, it can 
be concluded that the electrical signals originate from the 
piezoelectric effect of N doped 4H‑SiC NHAs.

The performance of PENG based on N doped 4H‑SiC 
NHAs under actual working conditions was evaluated by 
changing the force and frequency of the external stimulus. The 
density of Isc rises from 108 to 313 nA  cm−2 with external force 
increasing from 0.6 to 4.9 N. And then, the current remains 
constant as the force increases (Fig. 3c). When the force is less 
than 4.9 N, the deformation of the NHAs possibly increases 
with the increase of the force, resulting in an enhanced polari‑
zation and larger output. Once the force reaches 4.9 N or 
above, it might be difficult for NHAs to produce greater defor‑
mation and stronger polarization. Thus the forward output will 
no longer improve with the increase of force but stabilize at a 

Fig. 3  a Density of Isc and b Voc of the PENG. The density of Isc and the output trend of PENG based on N doped 4H‑SiC NHAs under different 
external stimulus: c various forces and d various frequencies. The long‑term stability of as‑constructed PENG within up to 50 days under differ‑
ent temperatures and RHs: e ‑80, f 80 °C, g 0% RH, and h 100% RH
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fixed value [34]. It should be noted that subsequent tests are all 
carried out under the external force of 0.6 N. The PENG shows 
excellent stability under frequency interference in the range of 
0.45 to 1.35 Hz (Fig. 3d). As frequency increases, the density 
of Isc of the PENG fluctuates slightly within the range of 105 to 
119 nA  cm−2. The changing rate of dipole moments in NHAs 
is not affected by frequency fluctuations of external stimuli. 
So that both the escaped charges and the accumulated charges 
on surface remain unchanged, resulting in a stable output [44]. 
The insensitivity to frequency allows the as‑prepared PENG 
to be applied in situations with multiple interference factors, 
such as heavy rains and typhoons.

Further, the PENG is verified to be capable of working nor‑
mally after being frozen at − 80 °C (Fig. 3e) and heated at 
80 °C for 50 days (Fig. 3f). There is no significant drop during 
the imparting and releasing processes throughout the long‑
term stability test, indicating the ultra‑stability and durability 
of the PENG. Hence, the PENG can be utilized as an energy 
harvester to collect and transfer irregular environmental actua‑
tion sources in our living environment for a long period. In 
addition, The PENG also shows a stable output within the 
RH range of 0 to 100% for 50 days (Fig. 3g, h). As a result, 
the ultra‑stable and durable PENG with all‑weather service 
capability based on N doped 4H‑SiC NHAs is proven to be 
applicable worldwide.

The load capacity of PENG was monitored by measuring 
Voc across the resistor connected to the PENG. The peak value 
of Voc increases nonlinearly from 0.014 to 0.574 V with the 
external load ranging from 1 to 100 MΩ (Fig. S7a, b). And 
the power density of PENG rises with the resistances increase 
from 1 to 30 MΩ and then decreases once the external load 
exceeds 30 MΩ. The NHAs‑based PENG exhibits a maximum 
power density value of 26.52 nW  cm−2 when the resistance of 
30 MΩ is connected. Notably, the electrical energy converted 
from mechanical energy by PENG can be stored in capaci‑
tors through a bridge rectifier. The pulsed electrical signals 
are converted into forward voltage by a rectifier circuit (Fig. 
S7c). A 100 μF capacitor is charged to 0.033 V by the PENG 
within 800 s (Fig. S7d), proving the feasibility of the PENG 
to be applied in practical applications.

3.4  Environmental Energy Harvesting

Here, the PENG was used to harvest biomechanical energy, 
i.e. finger tapping, foot striking and mechanical energy, i.e., 

cantilever beam, simulated automobile exhaust emission. 
When the PENG is subjected to finger tapping and foot strik‑
ing, the density of Isc reaches 45 and 318 nA  cm−2, respec‑
tively (Fig. S8a, b). The mechanical energy generated from 
the vibration of the simulated cantilever beam can be con‑
verted to electrical energy by the PENG (55 nA  cm−2, Fig. 
S8c). Besides, the automobile exhaust emission process was 
simulated by air blower and the PENG was used to harvest the 
wind and vibration energy simultaneously (− 116 nA  cm−2, 
Fig. S8d). The thermal stability of N doped 4H‑SiC breaks 
through the limitation of high temperature conditions, mak‑
ing the N doped 4H‑SiC NHAs‑based PENG can be applied 
to harvest multiple energy sources during the automobile 
exhaust emission process.

The key performance of N doped 4H‑SiC NHAs‑based 
PENG is compared with PENGs constructed by various 
material systems, i.e., lead‑based perovskite, lead‑free per‑
ovskite, piezoelectric polymer and piezoelectric semicon‑
ductor (Table 1). Notably, the density of Isc of the PENG 
based on N doped 4H‑SiC NHAs is basically the same as 
that of some PENGs assembled by classic piezoelectric 
materials, such as  CsPbBr3/P(VDF‑TrFE) [45],  BiFeO3 
[46], ZnO [20] and GaN [21, 22]. Most importantly, PENG 
based on N doped 4H‑SiC NHAs possesses a wider ser‑
vice temperature range (− 80 ~ 80 °C), wider operating RH 
range (0 ~ 100%) and longer service life (50 days), indicating 
the all‑weather service capability. In addition, the N doped 
4H‑SiC has been verified to be capable of working at 200 °C 
in our previous work [30]. The wide service temperature and 
RH range of the N doped 4H‑SiC is of great significance to 
the practical application of PENG.

The ultra‑stability and enhanced performance of the 
PENG based on N doped 4H‑SiC NHAs can be attributed 
to the following points. Firstly, the intrinsic properties 
of N doped 4H‑SiC. The wide band gap, stable physical/
chemical properties and intrinsic piezoelectricity of N doped 
4H‑SiC enable it to adapt to various extreme environments. 
Secondly, the nanostructure of the as‑prepared NHAs. On 
one hand, the NHAs composed of nanoholes with differ‑
ent diameters exhibit both excellent structural stability and 
significant electrical output. On the other hand, the NHAs 
undergo anodic oxidation in a short period and retain the 
sidewalls. There are more SiC units in NHAs to produce 
dipoles in crystals when subjected to external stimuli, result‑
ing in an enhanced macroscopic current output. Finally, the 
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well‑sealed structure of the PENG. The as‑prepared PENG 
is completely wrapped to isolate external pollutions and pre‑
vent the structure from being damaged.

4  Conclusions

In summary, an ultra‑stable PENG based on N  doped 
4H‑SiC NHAs with all‑weather service ability is dem‑
onstrated. The assembled PENG shows the density of Isc 
and Voc of 108 nA  cm−2 and 1.35 V when subjected to an 
external force of 0.6 N. Once a force of 4.9 N is applied, 
it produces the density of Isc of 313 nA  cm−2, which is 
1.57 times the output of that assembled by NWAs (200 
nA  cm−2). The FEM simulation results reveal that the 
deformation and the electric potential of the NHAs both 

increase with the enlargement of the aperture. And the 
PENG based on NHAs with diameters ranging from 20 to 
200 nm approximately possess excellent structural stabil‑
ity and enhanced short circuit current density. The PENG 
can effectively resist the interference caused by frequency 
varying from 0.45 to 1.35 Hz. And the PENG maintains 
high output after being treated at − 80/80 ℃ and 0%/100% 
RH for 50 days. It realizes the conversion from mechanical 
energy to electricity by harvesting ambient energy gener‑
ated by finger tapping, foot striking, cantilever beam and 
simulated automobile exhaust emission. The ultra‑stable 
and durable PENG based on the N doped 4H‑SiC NHAs 
can harvest environmental actuation sources effectively and 
is of great significance for the development of self‑powered 
systems.

Table 1  The key performance of PENGs based on various materials

Materials‑types of materials used to assemble PENGs; Mode‑the working mode of the PENG, mainly including pressing and bending; Isc‑short 
circuit current of the PENG; Service temperature‑the temperature range in which the PENG works normally; Relative humidity‑the humidity 
range in which the PENG works normally; Stable service time‑the service life of the PENG in normal operation; Refs‑corresponding references

Materials Mode Isc Service temperature 
(℃)

Relative humidity Stable service time Refs

Lead‑based perovs‑
kite

PZT Bending 10.9 μA  cm−2 RT Air 50,000 cycles [47]

PZT Pressing 17.5 μA RT Air – [48]
PMN‑PT Pressing 290 μA  cm−2 RT Air – [12]
CsPbBr3/P(VDF‑

TrFE)
Pressing 0.17 μA RT Air – [45]

Lead‑free perovskite BaTiO3 Pressing 2.9 μA RT Air 14 days [49]
BiFeO3 Pressing  ~ 250 nA RT Air 1000 cycles [46]
NaNbO3 Pressing 16 nA  cm−2 RT Air 30 h [17]

Piezoelectric poly‑
mer

PVDF Pressing  > 0.7 μA RT Air – [7]

P(VDF‑TrFE)/GeSe Pressing 1.14 μA RT Air – [8]
P(VDF‑HFP) Pressing 0.9 μA  cm−2 RT Air – [9]

Piezoelectric semi‑
conductor

ZnO Pressing 7.2 μA  cm−2 RT Air – [19]

ZnO Pressing 36 nA RT Air – [20]
ZnO/AlN Pressing 1.10 μA RT Air – [50]
GaN Bending 85.6 nA RT Air 20,000 cycles [21]
GaN Pressing 150 nA RT Air – [22]
AlN Bending 1.6 μA RT Air 1800 cycles [51]
MoS2 Bending – RT Air  ~ 175 s [23]
MoSe2 Bending – RT Air  > 1500 s [24]
N doped 4H‑SiC 

NWAs
Pressing 200 nA  cm−2 25 ~ 200 Air 20,000 cycles [30] Our 

previous 
work

N doped 4H‑SiC 
NHAs

Pressing 313 nA  cm−2  − 80 ~ 80 (200) 0 ~ 100% 50 days This work
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