Supporting Information for

Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability based on N-Doped 4H-SiC Nanohole Arrays

Linlin Zhou¹, Laipan Zhu², Tao Yang^{1, *}, Xinmei Hou^{1, *}, Zhengtao Du³, Sheng Cao³, Hailong Wang⁴, Kuo-Chih Chou¹, Zhong Lin Wang²

¹Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China

²Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

³MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, P. R. China

⁴School of Materials Science Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding authors. E-mail: yangtaoustb@ustb.edu.cn (Tao Yang), houxinmeiustb@ustb.edu.cn (Xinmei Hou)

Supplementary Figures

Fig. S1 (a, b) SEM images of NHAs. (c) The diameter distribution of N doped 4H-SiC NHAs

Fig. S2 (a) XRD results of NHAs and their powder. (b) TEM images of NHAs. (c) HRTEM image and (d) SAED patterns of the selected area B in (b)

Nano-Micro Letters

Fig. S3 (a) Full XPS spectrum of NHAs. Fine XPS spectrum of different elements: (b) C 1s; (c) Si 2p; (d) O 1s; (e) N 1s

Fig. S4 PFM amplitude-voltage butterfly curve of 4H-SiC and N doped 4H-SiC

Nano-Micro Letters

Fig. S5 Distribution of D and V of the units with different diameter: (**a**) 20 nm; (**b**) 40 nm; (**c**) 80 nm; (**d**) 100 nm; (**e**) 200 nm

Fig. S6 Density of Isc of PENG based on N doped 4H-SiC NHAs and the blank one

Nano-Micro Letters

Fig. S7 (a) V_{oc} of PENG under resistive load varies from 1 M Ω to 100 M Ω . (b) The tendency of V_{oc} and power density of PENG under different resistances. (c) The voltage of PENG after bridge rectification. (d) The charging curve of 100 μ F capacitor

Fig. S8 Density of I_{sc} of PENG when stimulated in different ways: (**a**) finger tapping; (**b**) foot striking; (**c**) simulated cantilever beam; (**d**) simulated exhaust emission