Supporting Information for

Photocatalytic H₂ Evolution on TiO₂ Assembled with Ti₃C₂ MXene

and Metallic 1T-WS₂ as Cocatalysts

Yujie Li^{1, #}, Lei Ding^{1, #}, Shujun Yin¹, Zhangqian Liang¹, Yanjun Xue¹, Xinzhen Wang^{1, *}, Hongzhi Cui^{1, *}, Jian Tian^{1, *}

¹School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China

*Corresponding authors. Email: xzwang@sdust.edu.cn (Xinzhen Wang); cuihongzhi1965@163.com (Hongzhi Cui); jiantian@sdust.edu.cn (Jian Tian)

[#]These authors contributed equally to this work.

Supplementary Figures

Fig. S1 XRD patterns of (a) Ti_3AlC_2 , Ti_3C_2 MXene and (b) $1T-WS_2@TiO_2@Ti_3C_2$ composites with different WS₂ loading amounts (10, 20, and 25 wt%)

Fig. S2 SEM images of (**a**) Ti_3AlC_2 MAX and 1T-WS₂@TiO₂@Ti₃C₂ composites with different WS₂ loading amount (**b**) 10 wt%, (**c**) 20 wt%, and (**d**) 25 wt%

Table S1 BET surface area of Ti_3C_2 MXene, 1T-WS₂@TiO₂@Ti₃C₂ composites with different WS₂ loading amounts (10, 15, 20, and 25 wt% MoS₂) and the 1T-WS₂

Samples	BET Surface area (m ² g ⁻¹)
Ti ₃ C ₂ MXene	7.081
$1T\text{-}WS_2@TiO_2@Ti_3C_2\text{-}10 \text{ wt\%}$	21.105
$1T-WS_2@TiO_2@Ti_3C_2-15 wt\%$	23.334
$1T\text{-}WS_2@TiO_2@Ti_3C_2\text{-}20 \ wt\%$	22.001
1T-WS ₂ @TiO ₂ @Ti ₃ C ₂ -25 wt%	19.677
1T phase WS ₂	6.302

Fig. S3 Raman spectra of 2H-WS₂@TiO₂@Ti₃C₂ and 1T-WS₂@TiO₂@Ti₃C₂ composite

Fig. S4 N_2 adsorption–desorption isotherms curves of 1T-WS₂@TiO₂@Ti₃C₂ composites with 10, 15, 20, and 25 wt% WS₂ ratios

Fig. S5 UV–Vis diffuse reflectance spectra of 1T-WS₂@TiO₂@Ti₃C₂ composites with different WS₂ loading amounts (10, 15, 20, and 25 wt%)

Table S2 Comparison of AQE values over the phase	hotocatalysts
--	---------------

Sample	AQE values (%)
TiO ₂ NSs	0.049%
1T-WS2@TiO2@Ti3C2-10 wt%	1.513%
1T-WS2@TiO2@Ti3C2-15 wt%	2.464%
1T-WS2@TiO2@Ti3C2-20 wt%	1.956%
1T-WS2@TiO2@Ti3C2-25 wt%	1.173%

Fig. S6 Photocatalytic H_2 production of control experiments in the absence of irradiation and photocatalyst

Fig. S7 Stability and recyclability of the 1T-WS₂@TiO₂@Ti₃C₂ composites (15 wt% WS₂)

Fig. S8 SEM image of 1T-WS₂@TiO₂@Ti₃C₂ composites (15 wt% WS₂) after 3 cycles

Fig. S9 XRD pattern of 1T-WS₂@TiO₂@Ti₃C₂ composites (15 wt% WS₂) after 3 cycles

Fig. S10 (a) XRD patterns of $TiO_2@Ti_3C_2$ (monolayer) and (b) photocatalytic H_2 production of the samples under simulated sunlight illumination

We have delaminated the multilayered Ti_3C_2 MXenes to get monolayered Ti_3C_2 nanosheets (**Fig.** S10), and the resulting dispersion concentration is 2 mg mL⁻¹. In the process of preparing $TiO_2@Ti_3C_2$ (monolayer), the reaction conditions are guaranteed to be consistent with the preparation conditions of $TiO_2@Ti_3C_2$ (multilayer) in the article, that is, the amount of other materials and the reaction conditions remain unchanged. As shown in **Fig.** S10a, the XRD patterns of $TiO_2@Ti_3C_2$ (monolayer) did not detect the diffraction peak of Ti_3C_2 . Since Ti_3C_2 monolayer is in full contact with the reaction solution, all Ti_3C_2 may be converted into $TiO_2@Ti_3C_2$ (monolayer) presents worse photocatalytic H₂ production activity than that of 1T-WS₂@TiO₂@Ti₃C₂ (multilayer), which demonstrate that the lack of Ti_3C_2 by oxidation in 1T-WS₂@Ti₃C₂

Fig. S11 The photocatalytic H_2 production of the samples with different molar amount of HCl (0.5, 1.0, and 2.0 M) under simulated sunlight illumination

In order to study the influence of three compositions in $1T-WS_2@TiO_2@Ti_3C_2$ on the photocatalytic properties of composites, it is necessary to explore whether the performance can be improved by further increase the proportion of addition. So in $1T-WS_2@TiO_2@Ti_3C_2$ composites, the content of WS_2 (15 wt% WS_2) is kept unchanged. We further changed the ratio between Ti_3C_2 and TiO_2 by changing the molar amount of HCl (0.5, 1.0, and 2.0 M), so as to explore the photocatalytic performance of 1T-

 $WS_2@TiO_2@Ti_3C_2$ composites. As shown in **Fig.** S11, with the increase of molar amount of HCl from 0.5 to 2.0 M, an increase in the photocatalytic performance of $1T-WS_2@TiO_2@Ti_3C_2$ composites is discovered. It can be concluded that the three compositions in $1T-WS_2@TiO_2@Ti_3C_2$ work together to improve the photocatalytic performance of the composite.

Fig. S12 The photocatalytic H₂ production of the samples with different titanium sources under simulated sunlight illumination

Considering the in-situ loading of TiO₂ nanosheets has poor controllability and has a certain influence on the structure and properties of MXene nanosheets, therefore we synthesis of TiO₂ nanosheets by foreign titanium sources. TiO₂ nanosheets (foreign titanium sources) is synthesized as follows: 1.0 mL Ti(OBu)₄ was slowly dropped into HCl (18 mL, 5 M) solution. After the solution was stirred for 30 min, 0.35 mL HF was added to the mixed solution. After another 5 min stirring, the solutions were transferred into Teflonlined stainless-steel autoclaves with a total volume of 25 mL. The hydrothermal synthesis was conducted at 180 °C for 4 h in an electric oven. To synthesis of 1T-WS₂@TiO₂@Ti₃C₂ composites (foreign titanium sources), 24 mg WCl₆, 9 mg TAA, 80 mg Ti₃C₂ and 20 mg TiO₂ nanosheets (foreign titanium sources) were dissolved in 50 mL DMF to form a transparent solution. After stirred for 60 min, the solution was transferred into a 100 mL Teflon-lined stainless-steel autoclave, which was hydrothermally treated at 200 °C for 24 h. After naturally cooling down to room temperature, the reaction solution was collected by vacuum filtration, and the resulting $1T-WS_2@TiO_2@Ti_3C_2$ composites (foreign titanium sources) were washed with distilled water several times, and dried in vacuum oven at 60 °C for 12 h. The photocatalytic performance of 1T-WS₂@TiO₂@Ti₃C₂ composites (foreign titanium sources) was evaluated using H_2 evolution under simulated sunlight irradiation in an aqueous acetone solution at room temperature (Fig. S12). Compared with in-situ loading of TiO₂ nanosheets, the foreign titanium sources do not improve the photocatalytic performance of 1T-WS₂@TiO₂@Ti₃C₂ composites, which may be caused by the non-close contact between TiO₂ and Ti₃C₂ caused by the foreign titanium sources.