Supplementary Information for

Room-temperature Assembled MXene-based Aerogels for High Mass-

Loading Sodium-Ion Storage

Fei Song¹, Jian Hu¹, Guohao Li¹, Jie Wang¹, Shuijiao Chen², Xiuqiang Xie^{1, *}, Zhenjun Wu^{2,} *, and Nan Zhang^{1, *}

¹ College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China

²College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

*Corresponding authors. E-mail: <u>xiuqiang_xie@hnu.edu.cn</u> (Xiuqiang Xie); <u>nanzhang@hnu.edu.cn</u> (Nan Zhang); <u>wooawt@hnu.edu.cn</u> (Zhenjun Wu)

Supplementary Figures

Fig. S1 Digital photos of the diluted solution of (a) $Ti_3C_2T_x$, (b) GO, (c) $Ti_3C_2T_x/GO$ mixture and (d) $Ti_3C_2T_x/GO$ -APTES

Fig. S2 Digital photo of the MGA sample with a larger volume

Fig. S3 Ti₃C₂T_{*x*} aerogels obtained by using different metal ions (Mn²⁺, Fe²⁺, Zn²⁺, and Co²⁺) and the corresponding demonstrations bearing 100 g weight

Fig. S4 Digital photos of: (a) MGA@S hydrogel, (b) SMGA, and (c) SMGA bearing 100 g weight

Fig. S5 Digital photos of SMGA floating on water under ultrasonication for (**a**) 5 min, (**b**) 20 min, (**c**) 60 min, and (**d**) 150 min

Fig. S6 SEM images of MGA at different magnifications

Nano-Micro Letters

Fig. S7 TGA curves of SMGA and MGA

Fig. S8 S 2p XPS spectrum of SMGA

Fig. S9 Si 2p XPS spectrum of: (a) $Ti_3C_2T_x$, (b) MGA, (c) and SMGA

Fig. S10 Galvanostatic charge-discharge profiles of MGA (1.5 mg cm⁻²) at 100 mA g⁻¹

Fig. S11 (a) Long-term cycling performances and Coulombic efficiencies of SMGA, MGA, and pure $Ti_3C_2T_x$ at a current density of 0.1 A g⁻¹. (b) Rate performances of SMGA and MGA

Fig. S12 (a) CV curves of the MGA electrode at different scan rates from 0.1 to 3 mV s⁻¹. (b) Relationship between the peak current and scan rate for the MGA electrode

Fig. S13 Linear fit of the Warburg impedance of SMGA and MGA

Fig. S14 Galvanostatic charge-discharge profiles of (a) SMGA and (b) AC after 10 cycles at 100 mA $g^{\text{-}1}$

Fig. S15 The electrical conductivities of MGA and SMGA

S5 /S8

Materials	Form	Key assembly method	MXene ratio (wt%)	Reaction temperature	Refs.
Ti ₃ C ₂ T _x /RGO	Aerogel	Ascorbic acid reduction	15-80	65 °C	[S1]
Ti ₃ C ₂ T _x /RGO	Aerogel	HI reduction	30-90	80 °C	[S2]
Ti ₃ C ₂ T _x /RGO	Aerogel	Freeze-drying	5-20	200 °C	[S3]
Ti ₃ C ₂ T _x /RGO	Aerogel	Freeze-drying	6-37	60 °C	[S4]
Ti ₃ C ₂ T _x /RGO	Foam	Solvothermal treatment	10-25	180 °C	[85]
Ti ₃ C ₂ T _x /RGO	Hydrogel	NaHSO ₃ reduction	30-70	70 °C	[S6]
Ti ₃ C ₂ T _x /RGO	Hydrogel	EDA crosslinking	65-100	95 °C	[S7]
Nb ₂ C/RGO	Aerogel	PDDA crosslinking	50	RT	[S8]
Ti ₃ C ₂ T _x /RGO	Aerogel	EDA crosslinking	90	95 °C	[S9]
Ti ₃ C ₂ T _x /RGO	Aerogel	Dipping	15-39	120 °C	[S10]
Ti ₃ C ₂ T _x /RGO	Aerogel	Ascorbic acid reduction	10-30	95 °C	[S11]
Pt-Ti ₃ C ₂ T _x /RGO	Aerogel	K ₂ PtCl ₄	10-90	100 °C	[S12]
Ti ₃ C ₂ T _x /RGO	Foam	Zn foil reduction	10-70	RT	[S13]
Ti ₃ C ₂ T _x /RGO	Foam	Freeze-drying	25-50	300 °C	[S14]
Ti ₃ C ₂ T _x /RGO	Aerogel	EDA crosslinking	10-90	85 °C	[S15]
Ti ₃ C ₂ T _x /RGO	Aerogel	Ascorbic acid reduction	25-75	90 °C	[S16]
Ti ₃ C ₂ T _x /RGO	Aerogel	Freeze-drying	25-75	RT	[S17]
Ti ₃ C ₂ T _x /RGO	Powder	Zinc powder reduction	90-95	RT	[S18]

Table S1 Comparison of the GO assisted assembly of 3D MXene

Supplementary References

- [S1] S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti₃C₂T_x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193-11202 (2018). <u>https://doi.org/10.1021/acsnano.8b05739</u>
- [S2] X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57(46), 15028-15033 (2018). <u>https://doi.org/10.1002/anie.201808714</u>
- [S3] Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209-3216 (2018). <u>https://doi.org/10.1021/acsnano.7b06909</u>

- [S4] Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12(5), 4224-4232 (2018). <u>https://doi.org/10.1021/acsnano.7b07528</u>
- [S5] W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang et al., Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Appl. Mater. Interfaces 11(28), 25369-25377 (2019). https://doi.org/10.1021/acsami.9b03406
- [S6] Y. Chen, X. Xie, X. Xin, Z.R. Tang, Y.J. Xu, Ti₃C₂T_x-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 13(1), 295-304 (2019). <u>https://doi.org/10.1021/acsnano.8b06136</u>
- [S7] T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D macroscopic architectures from selfassembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). <u>https://doi.org/10.1002/adfm.201903960</u>
- [S8] R. Butt, A.H. Siddique, S.W. Bokhari, S. Jiang, D. Lei et al., Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries. Int. J. Energy Res. 43(9), 4995-5003 (2019). <u>https://doi.org/10.1002/er.4598</u>
- [S9] Z. Wang, N. Zhang, M. Yu, J. Liu, S. Wang et al., Boosting redox activity on MXeneinduced multifunctional collaborative interface in high Li₂S loading cathode for highenergy Li-S and metallic Li-free rechargeable batteries. J. Energy Chem. 37, 183-191 (2019). <u>https://doi.org/10.1016/j.jechem.2019.03.012</u>
- [S10] Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei et al., MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 5(12), 1900537 (2019). <u>https://doi.org/10.1002/aelm.201900537</u>
- [S11] J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium– sulfur batteries. J. Mater. Chem. A 7(11), 6507-6513 (2019). <u>http://dx.doi.org/10.1039/C9TA00212J</u>
- [S12] C. Yang, Q. Jiang, W. Li, H. He, L. Yang et al., Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation. Chem. Mater. **31**(22), 9277-9287 (2019). <u>https://doi.org/10.1021/acs.chemmater.9b02115</u>
- [S13]Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao et al., Highly stable 3D Ti₃C₂T_x MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109-2117 (2020). <u>https://doi.org/10.1021/acsnano.9b08832</u>
- [S14]Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). <u>https://doi.org/10.1016/j.cej.2019.122696</u>
- [S15] X. Zhao, L.M. Peng, C.Y. Tang, J.H. Pu, X.J. Zha et al., All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater. Horiz. 7(3), 855-865 (2020). <u>http://dx.doi.org/10.1039/C9MH01443H</u>
- [S16] D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti₃C₂T_x MXenebased hybrid aerogels for compression-resilient devices. ACS Nano 15(3), 5000-5010 (2021). <u>https://doi.org/10.1021/acsnano.0c09959</u>

- [S17] L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti₃C₂T_x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622-6632 (2021). <u>https://doi.org/10.1021/acsnano.0c09982</u>
- [S18] X. Yang, Q. Wang, K. Zhu, K. Ye, G. Wang et al., 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward highperformance supercapacitors. Adv. Funct. Mater. 31(20), 2101087 (2021). <u>https://doi.org/10.1002/adfm.202101087</u>