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S1 Experimental Section 

S1.1 Flow Cell Measurements 

The flow cell measurements were performed within a custom-designed flow cell reactor 

consisting catalysts loaded gas-diffusion layer (1 cm2) as the cathode, anion exchange 

membrane separator and Pt sheet as the anode. These three compositions were positioned and 

clamped together using polytetrafluoroethylene spacers for electrolyte circulation. Ag/AgCl 

reference electrode (saturated KCl) was located inside the cathode compartment. During the 

measurement, the CO2 gas feed for the reaction was supplied at rate of 20 mL min-1 as a 

continuous stream over the cathodic GDL using a flow controller (D07-19B, Sevenstar). 1M 

KOH was used as the electrolyte. Both the catholyte and the anolyte streams were circulated 

through the electrolyte channels using a syringe pump (BT100-2 J, LONGER) at flow rate of 

8 mL min-1.  

S1.2 Raman Spectroscopy Measurements 

The Raman spectra acquisition was carried out using a RENIDHAW invia Raman 

Microscope and 514 nm excitation laser. A homemade H-type in situ cell was used for Raman 

signal collection with a piece of round quartz glass on the top of the cell to allow light 

transmission. A piece of the catalysts supported carbon paper was inserted through the wall of 

the cell to keep the plane of the working electrode perpendicular to the incident laser. Pt wire 

was used as a counter electrode and Ag/AgCl (saturated KCl) was used as a reference 

electrode. A 0.5 M NaHCO3 aqueous solution with CO2 bubbling continuously was pumped 

through the cathode compartment. The Raman spectra were then recorded at different 

potentials that driven by a potential station. 

S2 Supplementary Figures and Table 
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Fig. S1 SEM image of Bi-H sample 

  

Fig. S2 XRD patterns of (a) Bi-H and (b) Bi-B2 catalysts 

  
Fig. S3 (a) SEM and (b) TEM images of Bi-B2 sample 

 

Fig. S4 HRTEM images of Bi-B2 sample 
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Fig. S5 (a) SEM and corresponding elemental mappings of (b) overall, (c) Bi and (d) B for Bi-

B2 sample 

 

 

 
Fig. S6 SEM images of (a, b) Bi-B4, (d, e) Bi-B3, (g, h) Bi-B1 and corresponding EDX 

mappings of (c) Bi-B4, (f) Bi-B3 and (i) Bi-B1 samples 
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Fig. S7 XRD patterns of Bi-B4, Bi-B3, Bi-B2 and Bi-B1 samples 

 

Fig. S8 XPS spectra for (a) B 1s and (b) Bi 4f of Bi-B2 with Ar+ etching  

 
Fig. S9 (a) Bi L-edge edge XANES spectra and (b) corresponding first derivatives of samples. 

Commercial Bi and Bi2O3 powders are also listed as the references 

 
Fig. S10 XPS B 1s spectra of (a) Bi-B4, (b) Bi-B3 and (c) Bi-B1 samples 
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Fig. S11 FEs of CO on Bi-B2 and Bi-H samples 

   

   
Fig. S12 CV curves for (a) Bi-B2 and (b) Bi-H, (c) corresponding current density differences 

plotted against scanning rates, and (d) normalized formate partial current density 

 

Fig. S13 SEM images of the Bi-B2 catalyst after long-time electrolysis 
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Fig. S14 XPS spectra of (a) B 1s and (b) Bi 4f of the Bi-B2 catalyst after long-time electrolysis 

 
Fig. S15 Nyquist plots of Bi-B2 and Bi-H samples 

 

 
Fig. S16 (a) LSV curve, (b) FEs of formate, H2 and CO, (c) formate partial current density and 

(d) stability test at -0.8 V (vs RHE) for the Bi-B2 catalysts in the flow cell 
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Fig. S17 Free energy diagrams the reaction pathways for the formate generation in terms of two 

intermediates on the (012) plane for (a) Bi and (b) Bi-B 

 

Fig. S18 In situ Raman spectra of Bi-B2 during electrochemical reduction of CO2 at different 

potentials (vs RHE) in 0.5 M CO2-saturated KHCO3 

 

Fig. S19 Room-temperature CO2 adsorption isotherms for Bi-H and Bi-B2 
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Fig. S20 Calculated free-energy diagrams at different external potentials (U= −0.6, −1.0 and 

−1.4 V) for CO2 reduction to HCOOH on (a) Bi(012) and (b) Bi-B(012) surfaces 

 

Fig. S21 Calculated free-energy diagrams of key intermediates for *H, *CO2, *OCHO, 

*HCOOH and HCOOH (a) at different Us and (b) at U= −1.0 V as an example on Bi-B (012) 

surface 

 

Fig. S22 Free energy diagrams of interstitial and substitutional B doped Bi with 1/18 ML 

configuration at U= 0 V 
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Fig. S23 Free energy diagrams of Bi with different B concentrations at U= 0 V 

 

 
Fig. S24 (a, b) Initial and (c, d) after geometrical optimization DFT models of a B-doped Bi 

surface with a 18/18 ML concentration of boron 

 

Fig. S25 Nyquist plots of different Bi-B samples 
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Fig. S26 Top view of differential charge densities of *OCHO and *H adsorbed on different 

surfaces, regions of yellow and cyan denote electron accumulation and depletion, respectively. 

Blue, pink, brown, red, and pale balls represent Bi, B, C, O, and H atoms, respectively. (The 

value of isosurface is 0.0005 e Å-3) 

Table S1 

Catalyst Electrolyte 

(KHCO3) 

Potential range 

(FE>90%) 

Potential range 

(FE>95%) 

Refs. 

Bismuthene 0.5 M  
‒0.73 V~  

‒1.18 V 

‒0.83 V~  

‒1.18V 

[S1] 

Bi nanosheet 0.1 M  
‒0.6 V~ 

‒0.95 V 

‒0.77 V~  

‒0.87 V 

[S2] 

Bi Nanosheet 0.5 M  
‒0.7 V~ 

‒0.8 V 
‒0.7 V 

[S3] 

 

Bi Nanosheet 0.1 M  -0.9 V none [S4] 

nanoscale Bi 0.5 M 
‒0.97 V~ 

‒1.17 V 
‒0.97 V 

[S5] 

Bi/rGO 0.1 M  
‒0.8 V ~ 

‒0.9 V 
‒0.8 V 

[S6] 

dendritic Bi 0.5 M  
‒0.72 V~ 

‒0.92 V 
‒0.82 V 

[S7] 

Bi nanotube 0.5 M  
‒0.78 V~ 

‒1.2 V 

‒0.9 V~ 

‒1.05 V 

[S8] 

Bi-NSS 0.1 M  
‒1.0 V~ 

‒1.3 V 

‒1.1 V~ 

‒1.2 V 

[S9] 

Bi@Bi2O3 0.5 M  
‒0.65 V~ 

‒1.0 V 

‒0.72 V~ 

‒0.9 V 

[S10] 

Bi NWs − 
‒0.69 V ~ 

‒0.99 V 
‒0.69 V 

[S11] 

NTD-Bi 0.5 M  
−1.0 ~ 

−0.7V 

‒0.75 V ~  

‒0.9 V 

[S12] 

Bi-B2 0.5 M  
‒0.72 V~  

‒1.22 V 

‒0.75 V~  

‒1.13 V 

This 

work 
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