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Supplementary Tables and Figures 

Table S1 Summary of tri-s-triazine-based g-C3N4 nanosheets and monolayer. Synthetic 

methods and characterization are listed 

Precursor Method Thickness Characterization 

(Morphology) 

Characterization 

(XRD) 

 Compare with bulk 

g-C3N4 

References 

FT-IR XPS 

Dicyanamide Bottom 

up 

0.4-0.5 None Crystallinity Same Same [S1] 

Dicyanamide Bottom 

up 

0.4 TEM 

(nanosheet image) 

Crystallinity Same Same [S2] 

Melamine Bottom 

up 

0.38 SEM, TEM 

(nanosheet image) 

Crystallinity Same Same [S3] 
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Melamine Bottom 

up 

0.5 SEM, TEM 

(nanosheet image) 

Crystallinity Same Same [S4] 

Melamine Bottom 

up 

0.64 SEM, HRTEM 

(nanosheet image) 

Crystallinity Same Same [S5] 

Urea Bottom 

up 

0.6 TEM 

(nanosheet image) 

Crystallinity Same Same [S6] 

Melamine Bottom 

up 

0.32 SEM, TEM 

(nanosheet image) 

Crystallinity Same Same [S7] 

Urea Bottom 

up 

0.34 SEM, TEM 

(nanosheet image) 

Crystallinity Same Same [S8] 

Cyanamide Top 

down 

0.45 Cs-HRTEM 

(atomic image) 

Amorphous Blue 

shift 

Blue 

shift 

This work 

 

Fig. S1 Tyndall effect and zeta potential of the g-C3N4–m colloidal suspension. 

 

Fig. S2 Typical high resolution-transmission electron microscopy (HR-TEM) images of g-

C3N4–m. a-c Transmission electron microscopy (TEM) images of randomly chosen g-C3N4–m. 

d-f A magnified view of the area marked by the yellow box in c-e, respectively. The g-C3N4–

m exhibited well-known orderly structure with hexagonal symmetry along with triangular 

cavity formed by encirclement of three adjacent heptazine units on the surface 
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Fig. S3 Unit cell structures with the simulated through-focal series spherical aberration (Cs) 

corrected high-resolution transmission electron microscopy (Cs-HRTEM) images for g-C3N4–

b. a Top view of super unit cell and side view of unit cell. b The simulated through-focal series 

showing the effect of objective lens defocus on image contrast and the corresponding atomic 

identification. The simulation program operated was MacTempas. (the acceleration voltage of 

80 kV, Cs of 0.034 mm, the spread of defocus of 30 nm, the beam convergence of 2 mrad, the 

specimen thickness of 1 nm and the defocus value of a step of 6 nm in the range from 54 to 300 

nm were used for the simulation. c, d Magnified images of the areas marked by the yellow (f = 

90 nm) and red boxes (f = 0 nm) in b 
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Fig. S4 Unit cell structures with the simulated through-focal series Cs-HRTEM images for g-

C3N4–m. a Top view of super unit cell and side view of unit cell. b The through-focal series 

simulation showing the effect of objective lens defocus on contrast in images and the 

corresponding atomic identification. The simulation program was MacTempas. The 

acceleration voltage of 80 kV, Cs of 0.034 mm, the spread of defocus of 30 nm, the beam 

convergence of 2 mrad, the specimen thickness 1 nm and the defocus value of a step of 6 nm 

in the range from 54 to 300 nm were used for the simulation. c, d Magnified images of the areas 

marked by the yellow (f = 276 nm) and red (f = 48 nm) boxes in b, respectively 

In general, atomically thin and freely suspended 2D supramolecular entities, such as the 

monolayers of g-C3N4-m in solution as shown in this study, are not expected to be perfectly 

flat; i.e. they are rather flexible and probably exhibit a microscopic corrugation or a randomly 

curved single molecular sheet. Such a microscopic crumpling has often raised a problem in 

detailed HRTEM analysis, since the phase contrast  seems to be extremely sensitive particularly 

for 2D compounds to defocus (f), spherical aberration (Cs) and alignment conditions of the 

http://springer.com/40820


Nano-Micro Letters 
 

S5 /S9 

 

objective lens, which means that there are often multiple defocus values at different microscopic 

corrugating positions, even within the same HRTEM image. In this study, the defocus series of 

simulated images were performed to assist in interpreting experimental Cs-HRTEM images. 

Under a certain condition, for instance, with 276 nm defocus, the white dots are coinciding with 

the atom positions as shown in Fig. S4c, but in the case with 48 nm defocus, a reversed contrast 

can be seen as well demonstrated in Fig. S4d. After performing detailed simulation studies, we 

were able to find a systematically periodic structure with a triangle arrangement of bright white 

dots and a triangular cavity in the hexagonal, which is well consistent with the structure model 

shown in Fig. S4a. 

 

Fig. S5 Selected area electron diffraction (SAED) patterns of g-C3N4–b. a A low-magnification 

TEM image of g-C3N4–b. b Cs-HRTEM image which is magnified from the yellow box in a. c 

The experimental diffraction pattern and d the simulated one. The electron beam is given along 

the [0001] g-C3N4–b axis 

 

Fig. S6 Cs-HRTEM images of g-C3N4–b. a Low-magnification TEM image of g-C3N4–b. b 

The image magnified from the yellow box in a. c A Wiener-filtered Cs-HRTEM image 

experimentally observed, which is magnified from the yellow box in b. And the  inset is 

theoretically simulated image with the corresponding atomic model overlaid for g-C3N4-b 
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Fig. S7 Annular dark field scanning transmission electron microscopy (ADF-STEM) images 

of a g-C3N4–b and b g-C3N4–m were marked with red color-coded lines for the corresponding 

electron energy loss spectroscopy (EELS) data 

Table S2 Elemental analysis of g-C3N4–b and g-C3N4–m determined from their EELS spectra 

Element Atomic % 

Theoretical 

g-C3N4–b 

Experimental 

g-C3N4–m 

Experimental 

C 42.9 44.2 43.2 

N 57.1 55.8 56.8 

N/C Ratio 1.33 1.26 1.32 

 

Fig. S8 X-ray photoelectron spectra (XPS) of a C1s and b N1s for g-C3N4–b and g-C3N4–m  
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The C 1s peak here for the bulk could be deconvoluted into three peaks at 284.8, 286.3 and 

288.1 eV, corresponding to the signals from the standard reference carbon, the carbon atoms in 

C-NH2 and the sp2-hybridized carbon in the aromatic ring (N-C=N), respectively [S9]. The 

binding energy for the N1s spectrum was also deconvoluted into three peaks, 398.7, 400.0 and 

400.9 eV, corresponding to the sp2-hybridzed aromatic N bonded to carbon atoms (C-N=C), 

tertiary N bonded to carbon atoms in the form of N-(C3), and to the quaternary N bonded to 

three carbon atoms in the aromatic rings (C-NH2), respectively [S10]. An additional small peak 

at 404.5 eV was ascribed to the π-π excitation occurring between layers [S3]. 

 

Fig. S9 Atomic force microscope (AFM) image of g-C3N4-n. a The g-C3N4–n dispersed on 

the freshly-cleaved muscovite mica substrate. b The height profile along the white dashed line 

in a 

 

Fig. S10 Photocatalytic activity for visible light-induced H2O2 generation 

The excellent photocatalytic property of g-C3N4–m was also evidenced by the visible light (λ> 

420 nm)-induced generation test of H2O2, and the photocatalytic formation rate of H2O2 on g-

C3N4-m was determined to be twenty times and three times faster than that on g-C3N4–b and g-

C3N4–n 
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Fig. S11 a Linear sweep voltammograms (LSV) curves of ORR, b Tafel plots, and Nyquist 

plots measured at c OCV and d 0.6 V 

The monolayer g-C3N4–m showed excellent electro-catalytic properties compared to the bulk 

and the nanosheets, due to the fact that the formation of monolayers resulted in a remarkable 

increase in active sites. 
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