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Self‑Assembly 3D Porous Crumpled MXene Spheres 
as Efficient Gas and Pressure Sensing Material 
for Transient All‑MXene Sensors
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HIGHLIGHTS

• 3D porous crumpled MXene spheres were synthesized by ultrasonic spray pyrolysis technology.

• All-MXene transient sensors utilizing porous crumpled MXene sphere as sensing material and MXene films as electrodes were 
developed, which achieved excellent gas/pressure sensing performance.

• Both gas and pressure sensors can achieve rapid and controllable degradation in medical-grade H2O2 (2%) within 6 h.

ABSTRACT Environmentally friendly degradable sen-
sors with both hazardous gases and pressure efficient 
sensing capabilities are highly desired for various prom-
ising applications, including environmental pollution 
monitoring/prevention, wisdom medical, wearable smart 
devices, and artificial intelligence. However, the transient 
gas and pressure sensors based on only identical sens-
ing material that concurrently meets the above detection 
needs have not been reported. Here, we present transient 
all-MXene  NO2 and pressure sensors employing three-
dimensional porous crumpled MXene spheres prepared 
by ultrasonic spray pyrolysis technology as the sensing 
layer, accompanied with water-soluble polyvinyl alcohol 
substrates embedded with patterned MXene electrodes. 
The gas sensor achieves a ppb-level of highly selective 
 NO2 sensing, with a response of up to 12.11% at 5 ppm 
 NO2 and a detection range of 50 ppb–5 ppm, while the pressure sensor has an extremely wide linear pressure detection range of 0.14–22.22 kPa 
and fast response time of 34 ms. In parallel, all-MXene  NO2 and pressure sensors can be rapidly degraded in medical  H2O2 within 6 h. This 
work provides a new avenue toward environmental monitoring, human physiological signal monitoring, and recyclable transient electronics.
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1 Introduction

In the Internet of Things era, wearable sensors as informa-
tion receiving nodes have grown rapidly [1]. Wearable gas 
and pressure sensors, in particular, are useful for detect-
ing hazardous gases and monitoring human physiological 
signals [2, 3]. Meanwhile, transient and environmentally 
friendly devices that reduce the growing electronic waste 
are becoming crucial [4–6]. Therefore, the development of 
high-performance transient gas and pressure sensors has 
essential significance in wearable electronics.

Recently, transient gas and pressure sensors have been 
emerging [7, 8]. Jiang et al. developed a transient paper-
based composite decorated with reduced graphene oxide and 
polyaniline with ammonia sensitivity and partial degradation 
[9]. Shen’s group demonstrated a bacterial cellulose/MXene 
composite aerogel toward ammonia and pressure detection 
[10]. However, the above-mentioned sensors only achieved 
partial degradation when realizing gas/pressure sensing. In 
this regard, traditional composite-based sensor materials 
struggle to meet the demands of high gas and pressure sen-
sitivity and complete device transiency. Gas and pressure 
sensors made of the same degradable sensing and electrode 
materials are ideal for achieving full transiency upon only 
one external trigger. MXenes  (Ti3C2Tx), as a novel class 
of two-dimensional nanomaterials with rich surface func-
tional groups, have been identified as the sensing layer and 
electrode due to their high conductivity, excellent signal-to-
noise ratio, and abundant hydroxyl on the surface, which is 
superior to other metal oxides and two-dimensional (2D) 
materials [11–18]. Meanwhile, because of their chemical 
instability, MXenes exhibit controllable transiency in  H2O2 
and NaOH aqueous solutions [19, 20]. To achieve superior 
gas and pressure-sensing properties while maintaining com-
plete degradation, it is necessary to tailor the architecture 
and composition of MXene sensing materials and ingen-
iously design the device architectures.

In MXene-based gas sensors, researchers have adopted 
different strategies to induce abundant oxygen terminals and 
high specific surface area, such as surface group modifica-
tion [21, 22], microstructure design [23], and compounding 
with other nanomaterials [24], resulting in good sensitivity, 
selectivity, and low detection limits. In addition, the inter-
calation of various nanomaterials between MXene layers, 
such as silk fibroin [25, 26], cellulose nanofibers [19, 27], 

and holothurian-like microspheres [28], effectively enhances 
the piezoresistive properties. However, none of the above 
modification treatments are efficient toward the synergetic 
improvement of both the gas and pressure-sensing proper-
ties. Recent work has demonstrated that increasing the mate-
rial porosity is a practical approach for boosting both gas and 
pressure sensing characteristics, attributed to the increased 
contact area between the sensitive layer and gas molecules 
as well as the compressibility of the sensing layer [29, 30]. 
3D MXene spheres with the hollow porous structure meet 
the above requirements via multiple synergetic strategies. 
Compared with 2D MXene film, the anti-aggregation struc-
ture of porous 3D MXene spheres is very beneficial for gas 
sensing because of the minimized loss of specific surface 
area caused by the film aggregation [23, 31]. Porous MXene 
spheres have substantially more edge defects than MXene 
sphere, which has shown to significantly increase the gas 
adsorption capacity, particularly for  NO2 [23]. Therefore, 
porous MXene spheres may have better  NO2 selectivity 
than MXene spheres. Moreover, the hollow structure of the 
3D MXene spheres could deform when exposed to external 
pressure, resulting in changes in electrical conductivity. As 
a result, all-MXene sensors based on a 3D MXene spheres 
with a porous hollow structure are expected to achieve high-
performance gas and pressure sensing without composite 
other materials.

Herein, we developed transient all-MXene sensors with 
gas and pressure sensing capabilities, respectively. The 
transient gas and pressure sensors employ porous crumpled 
MXene spheres prepared by ultrasonic spray pyrolysis tech-
nology as the sensing layer and polyvinyl alcohol (PVA) 
substrate embedded with MXene slurry as the electrodes. 
This fully transient sensor outperforms state-of-the-art stud-
ies regarding ultra-wide pressure detection range and ultra-
high sensitivity toward  NO2. This work provides another 
way along the route to wearable and recyclable transient 
electronics.

2  Experiment

2.1  Preparation of  Ti3C2Tx MXene Colloid

Ti3C2Tx MXene colloids were synthesized by etching the 
 Ti3AlC2 phase (Jilin 11 Technology Co., Ltd., China) with 



Nano-Micro Lett.           (2022) 14:56  Page 3 of 14    56 

1 3

LiF/HCl as reported previously [23]. First, 1 g LiF (Alad-
din, > 99.99%) was added into 40 mL 12 M HCl (Xilong 
Scientific Co., Ltd.) and stirred in a water bath of 40 °C for 
10 min. After LiF was completely dissolved, 1 g  Ti3AlC2 
was slowly added to the mixed solution, and then, a 40 °C 
water bath was conducted for 24 h. After the reaction, the 
product was centrifugally washed until the supernatant 
became neutral. Next, the clay  Ti3C2Tx was dispersed in 
an ice bath by ultrasonic treatment for 1 h. Finally, a small 
amount of  Ti3C2Tx dispersion was extracted to make the 
 Ti3C2Tx membrane by vacuum filtration to determine the 
concentration.

2.2  Preparation of Polyphenylene (PS) Sphere Colloid

PS spheres were synthesized by an emulsion-free polym-
erization method [32]. In brief, 30 mL styrene (Xilong Sci-
entific Co., Ltd.) and 0.25 g poly(sodium 4-styrene sulfonic 
acid) (Aladdin, Mw: ~ 70,000), and 0.15 g sodium bicarbo-
nate (Aladdin) were dissolved in 300 mL deionized water 
and stirred in an oil bath of 70 °C for 1 h. 0.15 g potassium 
persulfate (Aladdin, > 99.99%) was then added into the solu-
tion, and the solution was stirred in a 70 °C oil bath under 
 N2 atmosphere for 6 h. After the reaction, the white pre-
cipitate was thoroughly washed by high-speed centrifuga-
tion. Finally, the white precipitate was uniformly dispersed 
in deionized water using a column ultrasonic machine to 
obtain a colloid of PS spheres. Similarly, a small amount of 
PS spheres colloid was extracted to make PS spheres mem-
brane by vacuum filtration to determine the concentration.

2.3  Preparation of Porous Crumpled MXene Sphere

Porous crumpled MXene spheres were synthesized by ultra-
sonic spray pyrolysis technology. Taking 2–5 as an exam-
ple, the prepared  Ti3C2Tx MXene colloid (10 mg  mL−1) 
and 5 mL PS sphere colloid (48 mg  mL−1) were mixed and 
diluted by adding deionized water to prepare 50 mL ultra-
sonic spray precursor solution, in which the concentration of 
 Ti3C2Tx MXene was maintained at 2 mg  mL−1. The prepared 
precursor solution was put into the atomization chamber. 
The fine water mist generated by ultrasound was brought 
into the tubular furnace preheated to 800 °C through Ar 
gas. Finally, the MS-2-5 powder generated was collected 
by the electrostatic collector at the back end. For MS-2-10 

and MS-2-20, the only difference was that 10 and 20 mL 
of PS sphere colloid were added to the precursor solution, 
respectively.

2.4  Characterizations

The morphology of porous crumpled MXene sphere 
observed by field-emission scanning electron microscopy 
(FESEM; JEOL JSM-7500F) with an acceleration volt-
age of 5 kV and transmission electron microscopy (TEM; 
JEM 2100 F) with an acceleration voltage of 200 kV. The 
X-ray diffraction (XRD) patterns of the porous crumpled 
MXene sphere powder were analyzed using Rigaku D/
Max 2550 with Cu Kα radiation (λ = 1.5418 Å) in the 2θ 
range of 3°–80°. The surface characteristics of the porous 
crumpled MXene sphere powder were measured using an 
ESCALAB 250 X-ray photoelectron spectrometer (XPS) 
with an X-ray source (Al Kα hυ = 1486.6 eV). The spe-
cific surface area and pore size distribution of the pre-
pared porous crumpled MXene sphere powder were deter-
mined from nitrogen adsorption/desorption isotherms by 
Brunauer–Emmett–Teller (BET, Micromeritics Gemini VII).

2.5  Fabrication and Performance Measurement 
of the Transient  NO2 Sensor

The prepared  Ti3C2Tx MXene colloid was centrifuged at 
20,000 rpm for 30 min, and the MXene slurry was precipi-
tated. Masked by the hydrocoagulant film, the MXene slurry 
was scraped on the glass mold (square groove specification: 
21 × 21 × 2  mm3) to form a cross-finger electrode pattern. 
The electrode width and electrode spacing were all 1 mm. 
After the MXene slurry was dried, PVA (0588 low-viscos-
ity) aqueous solution with a concentration of 15 wt% was 
slowly dropped into the prepared solution. After natural dry-
ing, the PVA film with MXene cross-finger electrode was 
peeled off. The electrode was masked through the adhesive 
tape, and then, 5 mg porous crumpled MXene spheres pow-
der was dispersed in 0.1 mL ethanol and finally dip-coated 
on the surface of the electrode. After natural drying and 
removing the mask, the  NO2 sensor based on porous crum-
pled MXene spheres was successfully fabricated. The sen-
sor was placed in the gas cavity of the self-made dynamic 
test system, where the different concentrations of the target 
gas were obtained by controlling the ratio of dry air (80% 
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 N2 and 20%  O2) and the target gas, with the total flow rate 
of gas maintained at 500 sccm (standard cubic centimeter 
per minute). The real-time resistance change of the sensor 
was detected by connecting the digital multimeter (Fluke 
8846A), and the built-in power supply of Fluke 8846A was 
5 V for resistance measurement.

2.6  Fabrication and Performance Measurement 
of the Transient Pressure Sensor

MXene top and bottom electrodes were made in the same 
way that MXene cross-finger electrodes were made. The 
square scratching pattern (6 × 6  mm2) and lead connec-
tion were different. After the MXene slurry was dried, the 
copper wires were connected to the MXene blocks using 
conductive silver slurry, and then, the PVA solution was 
poured. 20 mg porous crumpled MXene spheres powder 
was evenly dispersed in 2 mL MXene colloid (2 mg  mL−1), 
and then, a round membrane with a diameter of 18 mm 
was obtained by vacuum filtration. The membrane was cut 
into a square (6 × 6  mm2) as the pressure sensing layer and 
placed between the top and bottom MXene electrodes. The 
square sensing layer was tightly encapsulated by brushing 
PVA aqueous solution on the top and bottom PVA mem-
brane to produce a pressure sensor. Copper wire leads 
reserved in the top and bottom MXene square electrodes 
were used for output signals. The pressure-sensing prop-
erties were measured by the electromechanical universal 
testing machine (Mark-10), and the dynamometer model 
was M5-5. During the pressure test, the sensing area of 
the pressure sensor was fixed directly below the dynamom-
eter probe about 1  cm2, and the probe completely covers 
the sensing area of a pressure sensor. The test condi-
tions such as pressure, frequency, and press time can be 
adjusted by setting maximum force and maximum brake 
point. The real-time resistance change of the sensor was 
detected by connecting the digital multimeter (Keithley 
DMM6500). The pressure response (Re) was defined as 
|ΔR/R0|× 100%, where ΔR means the change of the stable 
resistance between pressure releasing and loading states, 
and  R0 represented the stable resistance of sensor without 
pressure loading. In addition, δRe/δP was recorded as the 
sensitivity (S) of the pressure sensors, where P represented 
the intensity of the applied pressure.

3  Results and Discussion

The synthetic process of porous crumpled MXene sphere is 
displayed in Fig. 1a. MXene colloid and PS sphere colloid 
(grain diameter: ~ 250 nm, Fig. S1a–b) were evenly mixed 
in a particular proportion and then atomized into aerosols 
through an ultrasonic atomizer, which was immediately car-
ried into a high-temperature tubular furnace through high-
purity Ar gas. The aerosol encountered high temperatures 
in the tube furnace, and the moisture vaporized instantly. 
The disappearance of the internal stress caused the dispersed 
MXene films and PS spheres in the aerosol to collapse and 
accumulate inward. At the same time, PS spheres began 
to decompose when heated and produced  CO2 gas, which 
broke through crumpled MXene spheres and formed a large 
number of holes on their surface. Porous crumpled MXene 
sphere powder generated in one step in the tube furnace 
was then collected by the back-end electrostatic collector. 
In order to achieve the best porous effect, different propor-
tions of porous crumpled MXene spheres were synthesized 
by mixing PS spheres with different amounts of MXene, 
denoted as MS-2-5, MS-2-10, and MS-2-20, respectively.

SEM images of porous crumpled MXene spheres 
(Fig. 1b–g) indicated the surface morphology became wrin-
kled, and the size and number of surface holes increased 
with the increase of PS spheres. Specifically, the round and 
smooth state in MS-2-5 was transformed into many ridge-
like humps on the surface in MS-2-10 and MS-2-20. The 
resulting ridge-like humps structure was formed by decom-
posing PS spheres in crumpled MXene spheres, leading to 
the internal collapse and rupture and holes formed on porous 
crumpled MXene spheres (Fig. S1f). As the proportion of 
PS spheres increased, these phenomena became more pro-
nounced. However, when further increase of PS spheres to 
20 mL, a large area of the porous crumpled MXene spheres 
would lose the supporting force, resulting in the collapse 
of the porous crumpled MXene spheres and the loss of 3D 
crumpled sphere structure (Fig. S1c–e).

XPS was applied to reveal the chemical states and bond-
ing configurations of porous crumpled MXene spheres. 
The XPS survey spectra of 2D MXene, MS-2-5, MS-2-
10, and MS-2-20 displayed different Ti, C, O, and F ele-
ments signals in porous crumpled MXene spheres (Fig. 
S2a). The intensity of C 1 s peak and O 1 s peak rose with 
the proportion of PS spheres increased, demonstrating the 
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decomposition of PS spheres and increase in oxygen ter-
minals. In detail, we measured the high-resolution Ti 2p 
spectra of 2D MXene, MS-2-5, MS-2-10, and MS-2-20 
in Fig. 2a. The Ti 2p spectra were spin splitting into Ti 
2p3/2 and Ti 2p1/2 with a distance of 5.8 eV. Each splitting 
peak can be divided into four peaks at 455.57, 456.34, 
456.64, and 458.98 eV, corresponding to the four states 
of Ti-C,  Ti2+,  Ti3+, and  TiO2 [23]. The intensity of  TiO2 
peaks enhanced gradually with more PS spheres due to the 

increase in oxygen terminals and slight oxidation. The for-
mation of porous crumpled MXene spheres was caused by 
the destruction of the complete lamellar structure, yielding 
more edges and defects on MXene. In high-resolution O 
1 s spectra of 2D MXene, MS-2-5, MS-2-10, and MS-2-20 
(Fig. S2b), each spectrum can be fitted from three peaks at 
529.89, 531.86, and 533.23 eV, representing Ti–O, O–H, 
and C–O–C, respectively [33–35]. It can be seen that the 
proportion of –OH terminal in porous MXene crumpled 

The electrostatic collector
collects the powder

(a)

Ti3C2Tx colloid

Ar carries the aerosols
into the HT tube furnace

Porous crumpled
MXene sphere

PS sphere colloid

(b)

(e) (f) (g)

(c) (d)MS-2-5 MS-2-10 MS-2-20

MS-2-5 MS-2-10 MS-2-20
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1
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21

Fig. 1  a The synthesis scheme of porous crumpled MXene spheres. SEM images of b MS-2-5, c MS-2-10, and d MS-2-20. TEM images of e 
MS-2-5, f MS-2-10, and g MS-2-20
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spheres was significantly lower than that in 2D MXene 
film after high-temperature treatment.

XRD patterns of 2D MXene, MS-2-5, MS-2-10, and 
MS-2-20 are shown in Fig. 2b. The (002) characteristic dif-
fraction peak of 2D MXene was strong, and the secondary 
diffraction peak was also prominent [23]. Combined with 
the XPS spectrum of 2D MXene, it could be indicated that 
the 2D MXene we prepared with high quality and purity. 
After forming a porous sphere structure, the intensity of 
(002) peak decreased significantly, and (110) peak became 
pronounced due to the increased stacking and random ori-
entation of MXene films. The  N2 adsorption/desorption iso-
therms of porous crumpled MXene sphere displayed typical 
mesoporous characteristics with the type III isotherm and a 
type H3 hysteresis loop (Fig. 2c). The isotherm had no inflec-
tion point, and the adsorption appeared self-accelerating 

phenomenon. Moreover, there was no apparent saturated 
adsorption platform under high pressure, indicating that the 
pore structure was irregular, consistent with the irregular 
holes observed in SEM. The pore size observed by SEM 
was also coincident with the pore size distribution analy-
sis (Fig. 2d). The pore sizes of MS-2-20 and MS-2-10 were 
concentrated around 100 nm, while the pore sizes of MS-2-5 
were mainly distributed around 80 nm. It should be noted that 
the specific surface area of MXene increases sharply with the 
generation of the porous sphere structure. The specific sur-
face area of MS-2-5, MS-2-10, and MS-2-20 reached 91.77, 
137.80, and 93.35  m2  g−1, respectively, compared with 33.56 
 m2  g−1 for the dried MXene films as previously reported [23]. 
The specific surface area of MS-2-20 did not further increase 
due to the collapse of the sphere structure with excessive PS 
spheres mentioned above in Fig. S1e.
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The fabrication process of the transient substrate with the 
MXene interdigital electrode is shown in Fig. 3a. MXene 
slurry was readily produced by high-speed centrifugation 
(Fig. 3b), yielding a single layer mixture and few MXene 
films. The interdigital electrode pattern was fabricated by 
scraping and coating the MXene slurry on the bottom of 
the glass mold through the hydrogel mask. Subsequently, 
PVA aqueous solution (15 wt%) was coated onto the dried 
MXene patterned electrode. After dried at room temperature 
for 24 h, the PVA film with MXene cross-finger electrode 
(Fig. 3c) was peeled off and clipped to obtain the substrate. 
We also prepared PVA films with conductive patterns of 
"MXENE" and "JLU," as shown in Fig.  3d–e, and the 
detailed production steps are displayed in Fig. S3. As evi-
denced by the excellent conductivity (15.1 Ω) of the MXene 
electrode (Fig. S4a), we confirmed its feasibility as an elec-
trode. The stability of MXene electrodes was tested with 
polyimide tape (Fig. S4b–d). After removing the adhesive 
tape, MXene electrodes could stably adhere to the substrate 
with a resistance change rate of only 1.3%. As shown in 
Fig. 3f–g, MXene electrodes were embedded in the PVA 
membrane, enabling robust and highly stable MXene elec-
trodes on the PVA substrate.

The transient  NO2 sensors were fabricated by drop-casting 
porous crumpled MXene spheres powder on the prepared 
water-soluble PVA substrates embedded with interdigital 
MXene electrodes (Fig. 3h). The gas-sensing properties were 
tested by a dynamic test system (Fig. S5). We measured 
the performance of porous crumpled MXene spheres with 
different ratios in continuous response to 50 ppb, 100 ppb, 
500 ppb, 1 ppm, and 5 ppm  NO2 in Fig. 3i. The transient 
sensor based on MS-2-5 had higher noise and the lowest 
responses at each concentration among three porous crum-
pled MXene spheres, while the sensor based on MS-2-20 
performed best at a low concentration of  NO2. The above 
results were confirmed by the response values corresponding 
to different concentrations of  NO2 shown in Fig. 3j. When 
the concentration of  NO2 reached 5 ppm, the response value 
of the MS-2-10 sensor remained the highest among the three 
kinds of porous spheres in multiple tests, reaching 12.11% 
at most, which was a considerable improvement compared 
with previous gas sensors based on MXene film [11, 23]. 
Meanwhile, the sensor based on MS-2-10 had a low detec-
tion limit of 50 ppb with a response of 0.25%.

The repeatability of the sensors was measured by exposing 
the sensors to 5 ppm  NO2 three consecutive times (Fig. 3k). It 

could be seen that the MS-2-10 sensor maintained the highest 
response with almost the same response values three times in 
Fig. 3c. It had an irreversible response to each concentration 
of  NO2 and could maintain the initial response when out of 
the gas atmosphere to be measured, making sensors very suit-
able as disposable and discardable  NO2 sensors. In Fig. S6, 
the selectivity of the sensors was investigated by comparing 
the response of the sensors to 100 ppm ammonia and various 
volatile organic compounds (VOCs). Although the concentra-
tion of the contrast gases was much higher than 5 ppm, the 
response of the sensors based on porous crumpled MXene 
spheres was much higher to 5 ppm  NO2 than to ammonia and 
various VOCs. Obtained from Fig. 3l, the MS-2-10 sensor 
showed the best  NO2 selectivity among the sensors based 
on porous crumpled MXene spheres, and its responses to 
ammonia, ethanol, acetone, ethanol, and toluene were 4.35%, 
1.99%, 1.39%, 2.98%, and 0.73%, respectively. It was note-
worthy that the MS-2-10 sensor exhibited much higher gas 
response and lower detection limits than those of the sensors 
based on MXene films reported in previous work (Fig. 3m) 
[11, 21, 23, 36, 37]. The effect of relative humidity on  NO2 
sensing performance was also investigated at the relative 
humidity of 0%, 30%, 60%, and 90%, respectively (Fig. S7). 
The response of MS-2-10 to  NO2 was improved as humid-
ity increased, indicating that water molecules can promote 
the adsorption of  NO2 molecules to the MXene surface. The 
excellent gas-sensing performance of MS-2-10 was attributed 
to its large specific surface area, as well as an abundance of 
edges and defects generated by folding and porous structure, 
as previously discussed [23]. MS-2-10 has many adsorption 
sites for gas molecules because of its large specific surface 
area, while the rich edge defects greatly enhanced the adsorp-
tion capacity of gas molecules, especially for  NO2 molecules. 
The electron transfer between the surface of MXene and  NO2 
molecules led to the decrease in carrier concentration and 
electrical conductivity.

The hollow structure of porous crumpled MXene spheres 
provided a large specific surface area, which enabled excel-
lent  NO2 sensing performance and changed its conductivity 
under external pressure by readily collapsing the structure. 
We mixed porous crumpled MXene spheres and MXene 
films and produced a composite membrane by vacuum fil-
tration, which can obtain the ultra-high pressure-sensing 
properties that pure MXene membrane does not possess. 
As shown in Fig. 4a, the transient pressure sensor can be 
fabricated quickly by encapsulating a porous crumpled 
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MXene spheres (MS-2-10) composite membrane between 
the MXene square electrodes. Figure 4b–c displays the cross 
section morphology of the composite membrane. It shows 

many porous crumpled MXene spheres among MXene films, 
producing a larger interspace for pressure regulation than 
pure MXene membranes (Fig. S8).

Fig. 3  a Schematic diagram of the fabrication process of the transient PVA substrate with the MXene cross-finger electrode and the photograph 
of the MXene slurry. b Images of the preparation process of MXene slurry. c Image of the transient PVA substrate with MXene cross-finger 
electrode. d–e Images of the transient PVA substrate with conductive patterns of “JLU” and “MXENE.” f The frontal SEM image and g the sec-
tional SEM image of the PVA substrate with MXene cross-finger electrode. h Schematic diagram of the transient  NO2 sensor based on a porous 
crumpled MXene sphere. i Dynamic response–recovery curve of sensors based on MS-2-5, MS-2-10, and MS-2-20 in the different concentra-
tions of dry  NO2. j Gas response of sensors based on MS-2-5, MS-2-10, and MS-2-20 depending on  NO2 concentration. k Real-time resistance 
curve of MS-2-5, MS-2-10, and MS-2-20 in response to 5 ppm of  NO2 for three consecutive times. l The maximum resistance change rate of 
sensors based on MS-2-5, MS-2-10, and MS-2-20 to 100 ppm of ethanol, acetone, ethanol, toluene,  NH3, and 5 ppm of  NO2. m Comparison of 
the performance of MXene-based  NO2 sensors
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The response values of the sensor under different intensi-
ties of pressure are showed in Fig. 4d. The rate of increase in 
the response gradually slowed down as the intensity of pres-
sure increased. The sensors maintained the highest linear 
sensitivity of 3.14  kPa−1 in the range of 0.14 to 22.22 kPa 
and only 0.22  kPa−1 in the range of 22.22–140 kPa. In a 
small pressure range, the external force applied to the sensor 
deformed porous MXene crumpled spheres, increasing the 
conductive path above and below porous MXene crumpled 
spheres and lowing the resistance of pressure sensors. When 
the pressure reached a large pressure range, however, porous 
MXene crumpled spheres cannot be further compressed as 
the pressure rises. The applied pressure can only further 
reduce the interspace between MXene films and porous 
MXene crumpled spheres, but the compression was more 
difficult and the variation was tiny. So the sensitivity of the 
pressure sensor was divided into two parts as the pressure 
increased. Figure 4e shows the real-time change of the resist-
ance at different pressure intensities. When the same inten-
sity of pressure was loaded three times in a row, the response 
was almost the same and enhanced with increasing the inten-
sity of pressure. Specifically, a saturated response value of 
91.56 was achieved at 555.56 kPa, while a response of 2.22 
was obtained at a very low pressure of 140 Pa, indicating 
an outstanding ultra-wide range of pressure tests. Thus, the 
sensitivity of pressure sensors based on porous crumpled 
MXene spheres was not outstanding because the pressure 
load would reduce the sensor’s resistance, and the response 
range can only be measured between 0 and 100. However, 
pressure sensor based on porous crumpled MXene spheres 
shows the widest linear detection range of 0.14–22.22 kPa 
(Fig. 4f) compared to the previously reported pressure sen-
sors based on MXene and graphene [14, 38–45]. We tested 
the effect of load residence times on the sensor of 0.1, 0.5, 
1.0, 2.0, and 5.0 s. As shown in Fig. S9, the width of the 
response peak of the real-time resistance curve increased as 
the loading time lengthened.

Meanwhile, we measured the effect of loading frequency 
on the performance of sensors under 22.22 kPa pressure 
load (Fig. S10). With the increase in loading frequency, 
the response value remained stable to be about 52.5, which 
proved that the sensor could work stably under different 
pressure loading frequencies. Immediately afterward, we 
carried out an anti-fatigue test on the sensor. By continu-
ously applying a load of 41.67 kPa 1000 times, we observed 
the response was consistently stable around 59 (Fig. 4g), 

confirming a stable and robust operation even in multiple 
consecutive tests. The accurate response to the loading 
times again demonstrated the high sensitivity of the sen-
sors to pressure loads. The response time (defined as the 
time required during 10–90% of the stable resistance change 
between pressure releasing and loading states) was only 
34 ms at a load of 55.56 kPa (Fig. 4h), ensuring a real-time 
sensing response to the pressure load.

The pressure sensor in the actual application scenarios 
was examined when the experimenter presses manually in 
the low-pressure range in Fig. 5a. The sensor was attached to 
the wrist of the 25-year-old experimenter through the medi-
cal polyurethane (PU) membrane (inset of Fig. 5b) to record 
radial artery blood pressure. Figure 5b displayed the regular 
and repetitive waveforms of the wrist pulse with a periodic 
beating of 96 beats per minute, where the characteristic sys-
tolic peak (P1) and diastolic peak (P2) were observed [46, 
47]. Another proven application was the detection of tiny 
vibrations by sensors. In Fig. 5c, we used the pressure sen-
sors to detect the different vibration patterns of the mobile 
phone (“Off-beat,” “Ripple,” “Waltz” and “Zig-Zig-Zig” 
vibration patterns in Samsung S10 plus). The phone was 
placed flat on the sensor with the sensor in the center of 
the phone. Then, the experimenter pressed different vibra-
tion modes, which were automatically repeated three times 
(Video S1). It can be observed that the signal waveform of 
the sensor output was highly consistent with the vibration 
sound waveform in Fig. 5d–g, which confirmed the capabil-
ity to respond to tiny vibrations. Based on the performance 
of sensors, we aggressively tried to simulate the sensors as 
an electronic throat to receive the sound signal by detect-
ing the motion of the throat and the vibration of the vocal 
cords [48]. Similarly, the sensor was tightly attached to the 
throat of the experimenter (Fig. 5h), and then, the experi-
menter spoke three words (“degradable,” “MXene” and 
“sensor”) as smoothly as possible and repeated each word 
three times. In Fig. 5i–k, as a triphthong word, the response 
signal waveform of the word “degradable” had three peaks, 
while as diphthong words, the response signal waveform 
of words “MXene” and “sensor” had only two peaks. In 
addition, because the pronunciation of the word “MXene” 
brought greater throat peristalsis than the word “sensor,” the 
response signal waveform of the word “MXene” was more 
undulating than that of the word “sensor.” Therefore, the 
sensors can predict the speech content by recording throat 
peristalsis and vocal cord vibration to a certain extent. After 
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further improvement and system integration, it is expected 
to help some mute people.

In order to study the degradable performance of the tran-
sient all-MXene gas and pressure sensors based on porous 
crumpled MXene spheres, the sensors were placed in watch 
glasses with 50 mL  H2O2 of different concentrations, and the 
state of the sensors was continuously observed and recorded. 
Figure 6a displays the degradation process of the gas and 

pressure sensor in 2% medical-grade  H2O2. The PVA sub-
strate was rapidly dissolved within 60 min, while porous 
crumpled MXene spheres and MXene electrodes were also 
slowly disappeared after 6 h degradation with the help of 
 H2O2 in Fig. 6b. The pressure sensors showed a faster full-
degradation (4 h) than the gas sensor in 2% medical-grade 
of  H2O2 (Fig. 6c). The sensors could be rapidly degraded 
in 10% and 30%  H2O2 for only 30 and 60 min, respectively 
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(Fig. S11), indicating their capability toward controllable 
degradation. These results fully proved that the transient all-
MXene gas and pressure sensors were degradable without 
any environmental footprint.

4  Conclusions

In summary, we have demonstrated the transient all-
MXene sensors based on porous crumpled MXene spheres, 
which took advantage of the unique properties of MXene 
and the novel structure to achieve excellent gas- and pres-
sure-sensitive performance, respectively. The fabricated 
 NO2 sensor exhibited high selectivity, low detection limit 
(50 ppb), and high response (12.11% to 5 ppm  NO2). The 

assembled pressure sensor showed an ultra-wide linear 
detection range of 0.14–22.22 kPa with a sensitivity of 
3.14  kPa−1, fast response (34 ms), and excellent repeatabil-
ity (over 1000 cycles). The pressure sensor attached to the 
human body can effectively detect the physiological data 
signals from the wrist pulse signal and the throat vibration 
during speaking. The multi-functional wearable sensors 
show excellent controllable transiency with a degrada-
tion profile within 6 h in medical  H2O2 (2%). These results 
highlight the feasibility of realizing wearable multi-func-
tional all-MXene sensors, thus promoting the application of 
MXene under multiple scenarios and providing new ways 
to manufacture high-performance, wearable, and degrada-
ble sensors required for the Body Internet of Things.
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