Supporting Information for

Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber

Xiao Li^{1, #}, Zhengchen Wu^{1, #}, Wenbin You¹, Liting Yang¹, and Renchao Che^{1, 2, *}

¹ Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China

² Department of Materials Science, Fudan University, Shanghai 200438, P. R. China

[#]Xiao Li and Zhengchen Wu contributed equally to this work

*Corresponding author. E-mail: <u>rcche@fudan.edu.cn</u> (Renchao Che)

Supplementary Figures

Fig. S1 (a) The digital photo and (b) cross-section SEM image of ring sample for the measurement of EM parameters

Fig. S2 Image of rGO/CoNi powder

Fig. S3 SEM image of MAX

Fig. S4 The AFM image of $Ti_3C_2T_x$ MXene

Fig. S5 (a) SEM image and (b) cross-sectional SEM image of pure GO film

Fig. S6 (a) SEM images and (b) magnified region of red line in (a) of of MXene-rGO/CoNi film

Fig. S7 The hysteresis loop of CoNi and MXene-rGO/CoNi

Fig. S8 (a) TEM image and (b) SAED pattern of rGO/CoNi powder

Fig. S9 (a) TEM image, (b) HRTEM and (c) corresponding strain maps of free-growing CoNi without rGO

Table S1 The maximum reflection loss (RLmax) and effective absorption bandwidth (EAE	3) of
MXene-rGO/CoNi and some $Ti_3C_2T_x$ MXene-based absorbents reported previously	

Samples	RL _{max} (dB)	EAB (GHz)	Refs.
Ti ₃ C ₂ T _x	-40.3	3.66	[S1]
Amorphous carbon-Ti ₃ C ₂ T _x	-48.6	2.8	[S2]
Carbon nanosphere- $Ti_3C_2T_x$	-21.3	3.2	[S3]
Cellulose-Ti ₃ C ₂ T _x	-43.4	4.5	[S4]
Fe_3O_4 - $Ti_3C_2T_x$	-53.4	1.5	[S5]
Ni-Ti ₃ C ₂ T _x	-49.9	2.1	[S6]
$Ni_{0.5}Zn_{0.5}Fe_2O_4$ - $Ti_3C_2T_x$	-42.5	3.0	[S7]
$PVB/Ba_3Co_2Fe_{24}O_{41}/Ti_3C_2T_x$	-46.3	1.6	[S8]
ZnO-Ti ₃ C ₂ T _x	-26.3	1.4	[S9]
MXene-rGO/CoNi	-54.1	4.9	This work

Fig. S10 The C₀ curves of rGO/CoNi and MXene-rGO/CoNi samples

Supplementary References

- [S1] G. Cui, X. Zheng, X. Lv, Q. Jia, W. Xie et al., Synthesis and microwave absorption of Ti₃C₂T_x MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram. Int. 45(17), 23600-23610 (2019). https://doi.org/10.1016/j.ceramint.2019.08.071
- [S2] M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., Ti₃C₂ MXenes with modified surface for high-performance electromagnetic absorption and shielding in the x-band. ACS Appl. Mater. Interfaces 8(32), 21011-21019 (2016). <u>https://doi.org/10.1021/acsami.6b06455</u>
- [S3] B. Dai, B. Zhao, X. Xie, T. Su, B. Fan et al., Novel two-dimensional Ti₃C₂T_x MXenes/nano- carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 6(21), 5690-5697 (2018). <u>https://doi.org/10.1039/c8tc01404c</u>
- [S4] Y. Jiang, X. Xie, Y. Chen, Y. Liu, R. Yang et al., Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 6(32), 8679-8687 (2018). <u>https://doi.org/10.1039/c8tc02900h</u>
- [S5] X. Zhang, H. Wang, R. Hu, C. Huang, W. Zhong et al., Novel solvothermal preparation and enhanced microwave absorption properties of Ti₃C₂T_x MXene modified by in situ coated Fe₃O₄ nanoparticles. Appl. Surf. Sci. 484, 383-391 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.03.264</u>
- [S6] L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti₃C₂T_x MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399-25409 (2019). https://doi.org/10.1021/acsami.9b07294
- [S7] Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li et al., Facile preparation of in situ coated Ti₃C₂T_x/Ni_{0.5}Zn_{0.5}Fe₂O₄ composites and their electromagnetic performance. RSC Adv. 7(40), 24698-24708 (2017). <u>https://doi.org/10.1039/c7ra03402d</u>
- [S8] H. Yang, J. Dai, X. Liu, Y. Lin, J. Wang et al., Layered PAB/Ba₃Co₂Fe₂₄O₄₁/Ti₃C₂T_x MXene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 200, 179-186 (2017). <u>https://doi.org/10.1016/j.matchemphys.2017.05.057</u>
- [S9] Y. Qian, H. Wei, J. Dong, Y. Du, X. Fang et al., Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 43(14), 10757-10762 (2017). <u>https://doi.org/10.1016/j.ceramint.2017.05.082</u>