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S1 Supplementary Text 

S1.1 Microwave Absorption (MA) Measurements 

The MA performance is generally evaluated by the reflection loss (RL) and effective absorption 

bandwidth (EAB, the bandwidth of RL<−10 dB). The RL can be calculated according 

transmission theory as follows [S1, S2]:  
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Where Zin is the input impedance of the microwave absorbers, Z0 is the impedance of free space, 

f is the frequency of microwave, d is the thickness of the absorbers, c is the velocity of light in 

free space, 𝜀𝑟  (𝜀𝑟 = 𝜀′ − 𝑗𝜀′′) and 𝜇𝑟  (𝜇𝑟 = 𝜇′ − 𝑗𝜇′′) refer to the complex permittivity and 

complex permeability, respectively. 

S1.2 Impedance Matching and Attenuation Constant 

The impedance matching degree between absorbers and free space determines whether the 

electromagnetic wave (EMW) can be propagated to the interior of the absorber. Specifically, 

the impedance of microwave absorbers should be infinitely close to that of free space. The 

impedance matching can be revealed by delta functions as follows [S3]: 

 

|∆|=| sin h
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in which, the K and M are calculated according to the complex permittivity and permeability 

as expressed as: 

K=
4π√μ'ε' sin

δe+δm

2

c cos δe cos δm
                                                      (S4) 
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The smaller value of |∆| represents more excellent impedance matching without excessive 

reflection of EMW. 

 

In addition, the attenuation constant α is another vital factor for MA, determining the 

attenuation ability of the absorbers to incident EMW, which can be described as following 

equations [S4]: 
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S1.3 Debye Relaxation 

According to the Debye theory, the relative complex permittivity can be expressed as follows 

[S2, S5]: 

𝜀𝑟 = 𝜀′ − 𝑗𝜀′′ = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏
                                   (S7) 

Where 𝜀𝑠 is the static dielectric constant, 𝜀∞ is the dielectric constant at infinite frequency, 

𝜔 = 2𝜋𝑓 is the angular frequency, and 𝜏 refer to the polarization relaxation time. In 

consequence, the 𝜀′ and 𝜀′′ can be described as follows: 

𝜀′ = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝜔2𝜏2
                                                       (S8) 
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Based on the Eqs. S8 and S9, the relationship between 𝜀′ and 𝜀′′ can be expressed as follows: 
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                             (S10) 

 

S1.4 Calculation of Specific Reflection Loss 

Specific reflection loss (SRL) is proposed to compare the effectiveness of microwave absorbers. 

Taking into account the matching thickness, density, and absorption intensity. Mathematically, 

SRL can be obtained by dividing the RL value with filler loading and matching thickness of 

absorbers as follows [S6]:  

 

𝑆𝑅𝐿 =
𝑅𝐿

𝑓𝑖𝑙𝑙𝑒𝑟 𝑙𝑜𝑎𝑑𝑖𝑛𝑔×𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
                       (S11) 
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S2 Supplementary Figures and Tables 

 

 

Fig. S1 Structural evolution from Ti3AlC2 MAX to Ti3C2Tx MXene. (a) Schematic illustration 

of the synthesis process of Ti3C2Tx MXene nanosheets; (b) XRD patterns of raw Ti3AlC2, multi-

layer Ti3C2Tx MXene etched by HCl/LiF and few-layer Ti3C2Tx MXene after ultrasonication 

process; SEM images for raw Ti3AlC2 (c) and multi-layer Ti3C2Tx MXene (d); TEM image of 

the few-layer Ti3C2Tx nanosheets(e) 
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Fig. S2 SEM images for PMMA microspheres (a) and PMMA@Ti3C2Tx composite 

microspheres (b), as well as corresponding elemental Mapping of PMMA@Ti3C2Tx 

microspheres (c) 

 

 

 

Fig. S3 FTIR spectra of PMMA and PMMA@Ti3C2Tx 
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Fig. S4 TGA curves of PMMA, Ti3C2Tx and PMMA@Ti3C2Tx in N2 atmosphere 

 

 

 

Fig. S5 XRD patterns of Ti3C2Tx hollow spheres 
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Fig. S6 High-resolution XPS spectra of PMMA@Ti3C2Tx, Ti3C2Tx-450, Ti3C2Tx-550, and 

Ti3C2Tx-650, (a) C 1s, (b) O 1s, (c) Ti 2p 

 

 

Fig. S7 SEM images of PMMA/ZnO 
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Fig. S8 TGA curves of PMMA@Ti3C2Tx@ZnO in N2 atmosphere 

 

 

Fig. S9 High-resolution XPS spectra of Ti3C2Tx@ZnO-450, Ti3C2Tx@ZnO-550, and 

Ti3C2Tx@ZnO-650, (a) Zn 2p, (b) O 1s 
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Fig. S10 Frequency dependence of (a) real part ε′, (b) imaginary part ε″, and (c) dielectric 

loss tangents of complex permittivity of Ti3C2Tx hollow spheres 

 

Fig. S11 Calculated delta value maps of (a) Ti3C2Tx-450, (b) Ti3C2Tx-550, and (c) Ti3C2Tx-

650 

 

Fig. S12 Frequency dependence of (a) real part ε′, (b) imaginary part ε″, and (c) dielectric 

loss tangents of complex permittivity of Ti3C2Tx@ZnO hollow spheres 

 

Fig. S13 Frequency dependence of reflection loss for ZnO with the filler loading of 40 wt% 
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Fig. S14 Frequency dependence of (a) real part ε′ and imaginary part ε″, and (b) dielectric 

loss tangents of complex permittivity of ZnO 

 

Fig. S15 Cole−Cole semicircles of (a) Ti3C2Tx@ZnO-450, (b) Ti3C2Tx@ZnO-550, and (c) 

Ti3C2Tx@ZnO-650 

 

Fig. S16 Calculated delta value maps of (a) Ti3C2Tx@ZnO-450, (b) Ti3C2Tx@ZnO-550, and 

(c) Ti3C2Tx@ZnO-650 

 

Fig. S17 Attenuation constants of Ti3C2Tx@ZnO hollow spheres 
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Table S1 Comparison for the EMW adsorption properties of ZnO-based EMW absorbers 

reported in previous literatures (assume that the mass of each sample is 100 mg) 

Samples RLmin 

(dB) 

Filler loading 

(wt%) 

Thickness 

(mm) 

EAB 

(GHz) 

SRL 

(dB mm-1 mg-1) 

Refs 

GS-ZnO –45.05 50 2.2 2.5 –40.95  [S7] 

ZnO-MXene –26.3 75 4 1.4 –8.76  [S8] 

CF-Ti3C2Tx/Ni/ZnO –35.1 100 2.8 ~3 –12.53  [S9] 

ZnO@C –50.05 60 2 5.76 –41.70  [S10] 

MnO2/ZnO –41.3 40 5.4 ~1.5 –19.12  [S11] 

ZnO/Fe3O4 –36.23 60 2.7 4.02 –22.36  [S12] 

Ni@ZnO –30.2 50 2.2 2.5 –27.45  [S13] 

FeCo/ZnO –34.8 60 1.5 5.1 –38.66  [S14] 

CH/ZnO –54.68 50 3.21 1.0 –34.06  [S15] 

C/NiCo2O4/ZnO –43.61 60 2.4 4.32 –30.28  [S16] 

Ti3C2Tx@ZnO-650 –57.4 40 2 4.24 –71.75 This 

work 
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