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S1 RCS Simulation 

The RCS simulation of EM absorber was used CST software based on far-field response. In 

this simulation, the constructed model consists of the absorber/ paraffin layer and the perfect 

electric conductor (PEC) layer, where PEC also is also regarded as a reference value to 

determine the RCS reduction. In detail, the length and width of each layer were set as 200 mm 

and the thicknesses of the absorber/paraffin layer (35% filling ratio) and the PEC layer were 

set as 2.67 and 5.00 mm, respectively. The simulation used plane wave excitation, and the 

EMW propagates in the negative direction of the x-axis and the electric polarization direction 

is along the z-axis. In addition, the free space boundary conditions were used and the center 

frequency was defined as 11 GHz. The RCS value of the simulated FFSC uses the time 

domain method for calculation and the detail equation expressed as following: 
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where S is the area of the layer, λ is the length of the incident EMW, Es and Ei are the electric 

field intensity of transmitting waves and receiving waves, respectively. 

Formula S1 

calculated delta value 
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S2 Formula of Shielding Performance 

Films were cut into rectangular shapes with a size of 22.8 mm × 10.2 mm to match the 

waveguide device. The EMI shielding effectiveness is expressed as the total effectiveness 

(SET), the absorption effectiveness (SEA), and reflection effectiveness (SER): 
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𝑆𝐸𝑇 = 𝑆𝐸𝐴 + 𝑆𝐸𝑅 + 𝑆𝐸𝑀 

𝑅 + 𝐴 + 𝑇 = 1 

𝑅 = |𝑆11|2 = |𝑆22|2 

𝑇 = |𝑆12|2 = |𝑆21|2                 

𝑆𝐸𝑅 = 10𝑙𝑜𝑔 (
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) 

𝑆𝐸𝐴 = 10𝑙𝑜𝑔 (
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S3 Supplementary Figures and Tables 

 

Fig. S1 Schematic illustrating PNM model in introduction 

 

Fig. S2 Electrostatic adherence phenomenon between CNO and β-chitin 

 

Fig. S3 Wide-scan XPS survey of CONA-2 
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Fig. S4 TEM images of CNO 

 

Fig. S5 SEM images of a CA, b COA, c-d CONA-2, and e-f CONF-2 

 

Fig. S6 Statistical RL value of a CA, b COA, c CONA-1, d CONA-2, and e CONA-2 

with different thicknesses (1.0−5.0 mm) 
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Fig. S7 Statistical EAB value of a CA, b COA, c CONA-1, d CONA-2, and e CONA-

2 with different thicknesses (1.0−5.0 mm) 

 

Fig. S8 Dependence matching thickness (tm) on matching frequency of CONA-2 

Table S1 Comparison of the specific EMW absorption performance in similar works 

Sample EAB(GHz)  thickness (mm) RL  Refs. 

C /MoS2 aerogel 1.3 4.00 -43.00 [S1] 

G/CNT/Fe3O4 aerogel 3.2 4.00 -49.00 [S2] 

G/MXenes aerogel 4.2 4.40 -20.00 [S3] 

N-NixSy/CoxSy@C aerogel 3.7 2.50 -47.20 [S4] 

CNT/FeNi aerogel  4.2 2.00 -39.39 [S5] 

G/SiC aerogel 4.7 3.00 -47.30 [S6] 

SiC aerogels 4.0 2.00 -43.00 [S7] 

G/polyethylene glycol aerogel 5.3 2.35 -43.20 [S8] 

Polyaniline/G aerogel 3.2 3.00 -42.30 [S9] 

CoFe2O4 /CNT/ polyurethane aerogel 2.3 6.00 -45.80 [S10] 

CONA-2 6.8 2.67 -50.83 this work 

C:Carbon    G:Graphene  
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Fig. S9 RCS schematic diagram and RCS reduction achieved by subtracting the 

samples with the PEC 

 

Fig. S10 Co value of samples 

 

Table S2 The thickness of all films in electromagnetic shielding measurement 

Sample thickness (μm) 

CF 39 

COF 41 

CONF-1 63 

CONF-2 82 

CONF-3 130 
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Fig. S11 Heating time versus sample temperature line charts of the CONA-2 

 

Fig. S12 EMI shielding performance of the CONF-2 in air after long-term 

photothermal stability test 
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