Supporting Information for

Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation

Ziyang Wu¹, Ting Liao^{1, 2, *}, Sen Wang³, Janith Adikaram Mudiyanselage⁴, Aaron S. Micallef ^{4, 5}, Wei Li⁴, Anthony P. O'Mullane^{2, 4}, Jianping Yang⁶, Wei Luo⁶, Kostya (Ken) Ostrikov^{2, 4}, Yuantong Gu^{1, 2} and Ziqi Sun^{2, 4, *}

¹School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

²Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

³School of Earth and Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

⁴School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

⁵Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

⁶State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

*Corresponding authors. E-mail: <u>t3.liao@qut.edu.au</u> (Ting Liao); <u>ziqi.sun@qut.edu.au</u> (Ziqi Sun)

Supplementary Figures and Tables

Fig. S1 The fabrication process of the N₂ plasma processed Bi₂O₃ sample on Ni foam

Nano-Micro Letters

Fig. S2 OES spectra of the atmospheric pressure DBD plasma under nitrogen. Here, the bands corresponding to the second positive system of N_2 with the range of 300-400 nm [S1]

Fig. S3 SEM images of the sample after hydrothermal reaction (**a**, **b**) and the sample Pl-60 (**c**, **d**)

Fig. S4 AFM images of different samples and the EDS mapping image of sample PI-30 S2/S7

Fig. S5 The refined XRD surveys of the plasma processed samples

Nano-Micro Letters

Fig. S6 Wide XPS spectrums of different samples

Fig. S7 The polarization curves of bare Ni foam and Pt/C loaded Ni foam with a scan rate of 5 mV $s^{\text{-1}}$

Fig. S8 The comparation of HER performance of bismuth based electrocatalysts [S2-S4]. As very few Bismuth-based electrocatalysts was employed for alkaline HER, only three references were listed here

Nano-Micro Letters

Fig. S9 The simulated Tafel slopes for different samples

Fig. S10 The cyclic voltammetry (CV) cycles in the region between 1.01 and 1.08 V (vs. Ag/AgCl) at different scan rates (5, 10, 20, 50, and 100 mv s⁻¹) of Pl-0 (**a**), Pl-15 (**b**), Pl-30 (**c**) and Pl-60 (**d**)

Fig. S11 The wetting ability Ni foam (**a**), the sample after hydrothermal reaction (**b**), Pl-0 (**c**), Pl-15 (**d**), Pl-30 (**e**) and Pl-60 (**f**)

Nano-Micro Letters

Fig. S12 XRD spectrum of sample Pl-30 after HER durability test. The corresponding PDF cards are Ni-PDF#04-004-6807, Bi-PDF#04-007-9968, BiNi-PDF#04-003-5243, α -Bi₂O₃-PDF#04-017-2112 and β -Bi₂O₃-PDF#04-008-7003

Fig. S13 SEM images of sample Pl-30 after HER durability test

Fig. S14 XPS of Pl-30 after HER durability test

Table S1 The contents of V_o calculated from the XPS data

XPS	Pl-0	Pl-15	Pl-30	Pl-60
Value (%)	19.7	26.5	44.1	49.0
Increase (%)	0	6.8	24.4	29.3
Ratios (/Pl-0)	1	1.34	2.24	2.49

Table S2 The intensity of V_o signal calculated from the EPR data

EPR	Pl-0	Pl-15	Pl-30	Pl-60
Value (a.u.)	50	977	3050	3885
Ratios (/Pl-0)	1	19.5	61	77.7

Nano-Micro Letters

M-S	Pl-0	Pl-15	Pl-30	Pl-60
Slope	32.2	21.9	5.37	6.09
Value (cm ⁻³)	2.53×10^{23}	3.71×10^{23}	1.52×10^{24}	1.34×10^{24}
Ratios (/Pl-0)	1	1.47	6.0	5.29

Table S3 The contents of carrier density derived from the M-S data

Supplementary References

- [S1] J. Weerasinghe, S. Sen, J.M.K.W. Kumari, M.A.K.L. Dissanayake, G.K.R. Senadeera et al., Efficiency enhancement of low-cost metal free dye sensitized solar cells via nonthermal atmospheric pressure plasma surface treatment. Solar Energy 215, 367-374 (2021). <u>https://doi.org/10.1016/j.solener.2020.12.044</u>
- [S2] S. Khatun, P. Roy, Bismuth iron molybdenum oxide solid solution: a novel and durable electrocatalyst for overall water splitting. Chem. Commun. 56(53), 7293-7296 (2020). <u>https://doi.org/10.1039/D0CC01931C</u>
- [S3] S. Razzaque, M.D. Khan, M. Aamir, M. Sohail, S. Bhoyate et al., Selective synthesis of bismuth or bismuth selenide nanosheets from a metal organic precursor: investigation of their catalytic performance for water splitting. Inorg. Chem. 60(3), 1449-1461 (2021). <u>https://doi.org/10.1021/acs.inorgchem.0c02668</u>
- [S4] Z. Wu, J. Mei, Q. Liu, S. Wang, W. Li et al., Phase engineering of dual active 2D Bi₂O₃based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. J. Mater. Chem. A 10(2), 808-817 (2021). <u>https://doi.org/10.1039/D1TA09019D</u>