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Fig. S1 Schematic diagram of a low repetition rate, and b high repetition rate laser treated PI
film in air
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Fig. S2 Transmittance of the PI, LRLLP and HRHLP films in the spectral range of 220-1400
nm
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Fig. S4 SEM images of various positions of the HRHLP film surface
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Fig. S5 SEM images of LRLLP (5 kHz, 80 mW) film surfaces with the scanning speeds of 50,
100, and 150 mm s*. The downsets are corresponding magnified images
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Fig. S6 SEM images of HRHLP (100 kHz, 900 mW) film surfaces with the scanning speeds
of 50, 100, and 150 mm s, respectively. The downsets are corresponding magnified images
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Fig. S7 LCM images of LRLLP (5 kHz, 80 mW) film surfaces with the scanning speeds of
50, 100, and 150 mm s
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Fig. S8 LCM images of HRHLP (100 kHz, 900 mW) film surfaces with the scanning speeds
of 50, 100, and 150 mm s
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Fig. S9 Pictures of a water droplet sliding (~3 < on the HRHLP film surface

Fig. S10 Self-cleaning demonstration of the HRHLP film
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Fig. S11 Thermal stability test of the HRHLP film wettability
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Fig. S12 Resisting bending test for the HRHLP film wettability
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Fig. S13 Three liquids (water, tea and coffee) placed on the PI, LRLLP and HRHLP films and
comparison of contact angles. The used water was dyed with Methylene Blue
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Fig. S14 SEM images of HRHLP (100 kHz, 900 mW, 50 mm s) film surface, indicating the
presence of uniformly distributed micro-protrusions
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Fig. S15 Sequential photographs of a water droplet impact on the PI, LRLLP and HRHLP
film surfaces

Fig. S16 Shape comparison of some and much water on the superhydrophilic paths
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Fig. S17 Various patterns with different shapes (triangle, rectangle, and hexagon) to form
droplet arrays

Fig. S18 Images of liquid wells with various shapes (triangle, hexagon and conjoined square)
containing 1-decanol

Oil 1-decanol Ethanol Isopropyl alcohol

Fig. S19 Confinement for different organic liquids (red) with a water wall (blue)
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Fig. S20 Location stability test for the liquid well. The height of the contained oil is
approximately equal to the water wall (60 pL)

Table S1 Wettability of the laser-treated PI surfaces under different conditions

Laser source Addition  Atmosphere Wettability Post treatment Ref.
. Superhydrophilic O, plasma

Laser None Air (~0°) treatment [1

CW infrared CO, laser KMnO, Air Sup er?fgic))p hilic None [2]

Universal laser systems None Ar Sup eI(‘E){;lgoE)ll obic None [3]

1060 nm CO, laser None N, H’Eirl"fé‘f,’;’ ¢ None [4]
Hydrophilic to

1064 nm Nd:YAG laser Gelatin Air superhydrophobic None [5]
(24.3 °-153.5 %)

1060 nm CO, laser None Air Hydrophobic None [6]

(~131.3°)
Superhydrophilic to
Femtosecond fiber laser None Air superhydrophobic None Our work

(3.6°-151.6°)
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Table S2 Different methods to construct surfaces with heterogeneous wettability

Main material Main Method Consuming step Wettability Post treatment Ref.
. Laser-induced backward ‘ Superhydrophilic/ Fluoroalkylsilane
Slide glass transfer technique Two steps superhydrophobic  ethanol solution 7]
. . Superhydrophilic/  Fluoroalkylsilane
Electroch | etct steps ) .
6061 Al ectrochemical etching Two steps supethydrophobic ethanol solution [8]
. . . . Superhydrophilic/  Perfluorodecyl
Aluminum Inkjet-printing Five steps superhydrophobic  trimethoxysilane ]
Stainless steel . ‘ Superhydrophilic/
mesh Spray-coating Four steps superhydrophobic None [10]
Aluminum Nanosecopd laser Three steps Controllable Boiling water and [11]
ablation heat treatment
PE-coated . Superhydrophilic/
paper Spark-coating Two steps superhydrophobic None [12]
PI Femtosecond laser One step Controllable None Our work

thermal accumulation

Video S1 A water droplet sliding on the HRHLP film surface which is inclined about 3<

Video S2 Self-cleaning effect examination of the HRHLP film. The chalk powder was picked
up by the rolling water droplets and readily removed.

Video S3 A water droplet impacting on the PI film surface. The water droplet fell, spread, and
finally adhered to PI film surface.

Video S4 A water droplet impacting on the LRLLP film surface. The water droplet fell and
was quickly absorbed.

Video S5 A water droplet impacting on the HRHLP film surface. The water droplet
experienced falling, spreading, retracting, and finally rebounding back into the air.

Video S6 The whole process for water transportation on the superhydrophilic path.

Video S7 Location stability test for the water limited to the superhydrophilic path surrounded
by the superhydrophobic border.

Video S8 The process of creating droplet arrays through immersing the fabricated pattern in
water and then pulling it out from water.

Video S9 Formation of a liquid well on a superhydrophobic-superhydrophilic patterned
surface. The organic solvent is oil (dyed red).

Video S10 Cutting a liquid well with a knife. The liquid well structure remained intact after
cutting by a knife.

Video S11 Capacity test for a liquid well. The water wall can contain amounts of oil through
an adaptive deformation.
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