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Supplementary Figures and Tables 

 

Fig. S1 Schematic diagram of a low repetition rate, and b high repetition rate laser treated PI 

film in air 

 

Fig. S2 Transmittance of the PI, LRLLP and HRHLP films in the spectral range of 220-1400 

nm 
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Fig. S3 SEM images of various positions of the LRLLP film surface 

 

Fig. S4 SEM images of various positions of the HRHLP film surface 

 

Fig. S5 SEM images of LRLLP (5 kHz, 80 mW) film surfaces with the scanning speeds of 50, 

100, and 150 mm s-1. The downsets are corresponding magnified images 
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Fig. S6 SEM images of HRHLP (100 kHz, 900 mW) film surfaces with the scanning speeds 

of 50, 100, and 150 mm s-1, respectively. The downsets are corresponding magnified images 

 

Fig. S7 LCM images of LRLLP (5 kHz, 80 mW) film surfaces with the scanning speeds of 

50, 100, and 150 mm s-1 
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Fig. S8 LCM images of HRHLP (100 kHz, 900 mW) film surfaces with the scanning speeds 

of 50, 100, and 150 mm s-1 

 

Fig. S9 Pictures of a water droplet sliding (~3 °) on the HRHLP film surface 

 

Fig. S10 Self-cleaning demonstration of the HRHLP film 
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Fig. S11 Thermal stability test of the HRHLP film wettability 

 

Fig. S12 Resisting bending test for the HRHLP film wettability 

 

Fig. S13 Three liquids (water, tea and coffee) placed on the PI, LRLLP and HRHLP films and 

comparison of contact angles. The used water was dyed with Methylene Blue 
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Fig. S14 SEM images of HRHLP (100 kHz, 900 mW, 50 mm s-1) film surface, indicating the 

presence of uniformly distributed micro-protrusions 

 

 

Fig. S15 Sequential photographs of a water droplet impact on the PI, LRLLP and HRHLP 

film surfaces 

 

 

Fig. S16 Shape comparison of some and much water on the superhydrophilic paths 
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Fig. S17 Various patterns with different shapes (triangle, rectangle, and hexagon) to form 

droplet arrays 

 

 

Fig. S18 Images of liquid wells with various shapes (triangle, hexagon and conjoined square) 

containing 1-decanol 

 

 

Fig. S19 Confinement for different organic liquids (red) with a water wall (blue) 
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Fig. S20 Location stability test for the liquid well. The height of the contained oil is 

approximately equal to the water wall (60 μL) 

 

Table S1 Wettability of the laser-treated PI surfaces under different conditions 
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Table S2 Different methods to construct surfaces with heterogeneous wettability 

 

Video S1 A water droplet sliding on the HRHLP film surface which is inclined about 3°. 

Video S2 Self-cleaning effect examination of the HRHLP film. The chalk powder was picked 

up by the rolling water droplets and readily removed. 

Video S3 A water droplet impacting on the PI film surface. The water droplet fell, spread, and 

finally adhered to PI film surface. 

Video S4 A water droplet impacting on the LRLLP film surface. The water droplet fell and 

was quickly absorbed. 

Video S5 A water droplet impacting on the HRHLP film surface. The water droplet 

experienced falling, spreading, retracting, and finally rebounding back into the air. 

Video S6 The whole process for water transportation on the superhydrophilic path. 

Video S7 Location stability test for the water limited to the superhydrophilic path surrounded 

by the superhydrophobic border. 

Video S8 The process of creating droplet arrays through immersing the fabricated pattern in 

water and then pulling it out from water. 

Video S9 Formation of a liquid well on a superhydrophobic-superhydrophilic patterned 

surface. The organic solvent is oil (dyed red). 

Video S10 Cutting a liquid well with a knife. The liquid well structure remained intact after 

cutting by a knife. 

Video S11 Capacity test for a liquid well. The water wall can contain amounts of oil through 

an adaptive deformation. 
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