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HIGHLIGHTS

• Shed light on MXene-based electrochemical aptasensors for the detection of cancer biomarkers.

• Strategies for the design and synthesis of biomarker-specific aptamer are presented.

• The properties such as electrical conductivity, chemical stability, mechanical properties, and the hydrophilic–hydrophobic nature of 
MXenes are discussed.

• Brief insight on futuristic sensing applications along with challenges are highlighted.

ABSTRACT Delayed diagnosis of cancer using conventional diag-
nostic modalities needs to be addressed to reduce the mortality rate of 
cancer. Recently, 2D nanomaterial-enabled advanced biosensors have 
shown potential towards the early diagnosis of cancer. The high sur-
face area, surface functional groups availability, and excellent electri-
cal conductivity of MXene make it the 2D material of choice for the 
fabrication of advanced electrochemical biosensors for disease diag-
nostics. MXene-enabled electrochemical aptasensors have shown great 
promise for the detection of cancer biomarkers with a femtomolar limit 
of detection. Additionally, the stability, ease of synthesis, good repro-
ducibility, and high specificity offered by MXene-enabled aptasensors 
hold promise to be the mainstream diagnostic approach. In this review, 
the design and fabrication of MXene-based electrochemical aptasensors 
for the detection of cancer biomarkers have been discussed. Besides, 
various synthetic processes and useful properties of MXenes which can be tuned and optimized easily and efficiently to fabricate sensitive 
biosensors have been elucidated. Further, futuristic sensing applications along with challenges will be deliberated herein.
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1 Introduction

Cancer is one of the major threats to the life and leading 
cause of death. As per the WHO estimations, cancer is the 
first or second leading cause of death for people aged below 
70 in 112 countries out of the 183 countries and is the third or 
fourth leading cause in 23 other countries [1]. As per the esti-
mation provided by The International Agency for Research 
on Cancer (IARC), during the lifetime of a person 1 in 5 
people develops cancer. One woman out of 11 women dies 
with cancer, whereas 1 out of 8 men dies. About 50 million 
people are living with 5-year history of cancer. Breast, colo-
rectal, lung, cervical, and thyroid cancers are common can-
cers among women. Lung and prostate cancer are common 
cancer in men. It was predicted in GLOBOCAN 2020 report 
that the countries which are identified as low or medium 
human development index would have the most increase in 
cancer cases by 2040 [2]. The estimated number of incident 
cases and mortality associated with various types of cancer 
is represented in the bar graph in Fig. 1a. The increasing rate 
of cancer incidence can be controlled if diagnosed at an early 
stage. Diagnosis at an early stage is quite a difficult challenge 
because cancer can be asymptomatic which can mislead the 
diagnosis [3]. Cancer progression is associated with differ-
ent types of biomarkers. For instance, EGFR, VEGF, HER2, 
EpCAM, Mucin 1, CEA, CD44 are some important biomark-
ers found to be associated with the development and progres-
sion of cancer [4]. The quantification of these biomarkers can 
state the stage of cancer progression [5, 6]. By exploring the 
new technologies and strategies, diseases can be detected at 
an early stage and can decrease the death rate, and can save 
lives [7]. Biomarker’s study can be benefited in multiple ways 
such as risk assessment [8], diagnosis [9], prognosis [10], 
predicting the treatment efficiency [11], toxicity [12], recur-
rence of any type of tumor, and many more [13]. The identifi-
cation of biomarkers associated with a specific type of cancer 
can help to develop reliable and cost-effective diagnostics to 
detect cancer at an early stage and monitor it throughout the 
process of treatment [6, 14, 15]. For cancer diagnosis, con-
ventional techniques such as PET, CT, X-ray, mammography, 
and tissue biopsy are the mainstream diagnostic modality 
being still used. However, these techniques failed to detect 
cancer at an early stage and need a centralized laboratory 
facility along with trained personnel. Besides, these conven-
tional techniques, molecular techniques such as polymerase 

chain reaction (PCR), enzyme-linked immunosorbent assay 
(ELISA), electrophoresis are also used; however, these meth-
ods lack accuracy, sensitivity, and selectivity [16]. 

Recently, biosensors-based advanced diagnostic 
approaches have shown potential for the early diagnosis 
of cancer and other deadly diseases [6, 16, 17]. Several 
techniques employed for the detections are optical [18, 
19], electrochemical [20, 21], and piezoelectric [22]. The 
electrochemical-based detection of several biomarkers such 
as EpCAM, CD44, VEGF, Mucin 1, CEA has fetched great 
attention [23]. The electrochemical techniques (amperom-
etry, impede metric, or potentiometric) deliver a highly sen-
sitive rapid and cost-effective platform for early detection of 
cancer biomarkers. The miniaturization of electrochemical 
devices helps in their handy usage. Moreover, the electro-
chemical techniques can reach to attomole detection level 
and offer high selectivity [24]. Recent studies have shown 
the crucial role of nanomaterials in the enhancement of the 
performance of electrochemical devices for the early detec-
tion of cancer [23]. The excellent electrical, mechanical, 
electrochemical, and optical features of 2 D materials have 
fetched much attention from the past decade in terms of their 
wide applicability in various fields including disease diag-
nosis and therapeutics [25]. There are several types of 2D 
materials such as graphitic carbon nitride [26], transition 
metal dichalcogenides [27], black phosphorous [28], hex-
agonal boron nitride (borophene) [29], graphene [30], metal 
halides [31], metal oxides [32], metal–organic frameworks 
[33], some polymer [34] which have been investigated for 
various biosensing applications. Among these, early transi-
tion metal carbides and/or nitrides (MXene) are unique in 
terms of their hydrophilicity, electrochemical, mechanical, 
and optical properties [35]. They are commonly synthesized 
using the HF etching method [36]. MXenes are relatively 
newer when compared to other 2D materials as they were 
introduced in 2011 at Drexel University. The MXene was 
usually produced by the etching of the Al element from the 
MAX phase. MXenes are members of 2D transition metal 
carbides and carbonitrides [37] and are considered as new 
generation material currently being used for a wide range 
of applications [38]. MXene has also been involved in the 
formation of multifunctional composites such as polymer 
nanocomposites, carbon nanocomposites, oxide composites.

Recently, MXene has been efficiently used for various bio-
sensing applications [39], targeted drug delivery [40], cancer 
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therapies [41], energy storage [42–44], heat resistance mate-
rial synthesis [45], catalysis [46], and many other [47]. The 
MXenes are considered a promising material in analytical 
chemistry applications owing to their various unique proper-
ties [48]. High surface area, high functionalities on the surface, 
hydrophilicity, production in large batches, high stability, high 
conductivity, and non-hazardous nature are some of such prop-
erties [49]. Moreover, the properties of the MXenes can be 
tuned accordingly with the changing size, spacing, and thick-
ness of the layers [50]. The MXenes show excellent biocom-
patibility [51]. MXene-based electrochemical devices display 
ultra-high sensitivity of detection of target analyte and have 
shown potential for the detection of cancer biomarkers [52].

In the last few years, the use of MXenes has been 
increased exponentially for various biomedical sensing 
applications. As per the data collected from Web of Sci-
ence, the exponential increase was observed in the number 
of articles that dealt with MXenes and their usage in onco-
logical applications (Fig. 1b, c). However, the biorecogni-
tion elements (BREs) play a crucial role in terms of device 
reusability, repeatability, stability. In this context, conven-
tional biorecognition elements such as an antibody, enzyme, 
nucleic acid have their limitations in terms of their stability 
under ambient conditions. The usage of aptamers in vari-
ous oncological applications has been well reflected by the 
number of publications as per the data collected from Web 
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of Science (Fig. 1). Among the various BREs, aptamers 
are preferred. Aptamers are single-stranded DNA, RNA, or 
peptide sequences that specifically bind to the target mol-
ecule [53]. Aptamers offer various advantages over other 
conventional biorecognition elements as they can be applied 
to a wide range of targets from small molecules, proteins, 
viruses to whole cells [54]. Aptamers have increased chemi-
cal and thermal stability with high affinity and can also 
be synthesized easily in large batches. Aptamers are also 
referred to as chemical antibodies as they function as a 
chemical substitute to the antibody for diagnostic and detec-
tion purposes [55]. Aptamers are carefully chosen from the 
random pools of sequences using the systematic evolution 
of ligands by exponential enrichment (SELEX) technique 
[56]. Aptamers-based biosensors are effectively used in bio-
sensing and other therapeutic application; it is also used for 
the diagnosis and targeted therapy of cancer [57]. Besides, 
aptamers are widely used in bioimaging, therapeutics, and 
diagnosis of cancer [58]. In recent studies, aptamer was 
used for the detection of cancer biomarkers Mucin 1 [59]; 
it was also successfully utilized for the blocking/inhibi-
tion of SARS-CoV-2 [60]. In another study, aptamer was 
used to detect the circulating biomarkers in cancer patients’ 

samples such as proteins, nucleic acids, miRNA in body 
fluids such as blood, urine, and saliva [61]. Besides, the 
aptamers platform has been used as a delivery vehicle for 
targeted drug delivery to the cancerous cells as it possesses 
various advantages like small size, low immunogenicity, 
high specificity, and they are flexible that it can easily pass 
through the solid tumors [62]. Moreover, aptamers have 
successfully been used for wider applications including 
environmental monitoring, food analysis, hazardous chemi-
cal detection, bioanalytical application, viral detection, bio-
medical research, and therapeutics. MXenes and aptamer 
share various common applications including bio-imaging 
(Fig. 1d) [63], therapeutics [64, 65], and diagnosis [66]. 
Besides their usage in various other applications, as shown 
in Fig. 1d. The timeline showing the evolution of usage 
of MXene since its discovery in 2011 to the fabrication of 
MXene-based aptasensor for cancer diagnostics and thera-
peutics is shown in Fig. 2. Additionally, the schematic for 
the fabrication of IoT-enabled smartphone-based electro-
chemical aptasensors using MXene is shown in Fig. 2. The 
use of biomarkers along with the aptamer using electro-
chemical detection technique can be exploited as a boon 
towards early cancer diagnostics [66–69].
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In the present review, we gathered information regarding 
MXene-based electrochemical aptasensors for the detec-
tion of cancer biomarkers. The potential cancer biomarkers 
for which aptamers are available along with approaches for 
designing and synthesis biomarker-specific aptamers have 
been discussed. Various synthetic techniques, as well as 
post-processing modification of MXenes, have been eluci-
dated, which can be helpful for the development of selec-
tive and sensitive aptasensors. In addition, emphasis has 
been given to properties such as electrical, optical, thermal, 
chemical stability, and mechanical properties of MXenes. 
Furthermore, a brief insight over futuristic sensing applica-
tions of MXene, as well as difficulties and perspectives, has 
been presented. The content of this review is expected to 
improve knowledge and pave the way for the development 
of future next-generation electrochemical biosensors which 
could revolutionize the field of disease diagnosis.

2  Potential Biomarkers Associated 
with Cancer

The cancer cells grow rapidly which often led to tumor cell 
heterogeneity because it exhibits different morphology and 
behavior. Tumor heterogenicity can be identified using reli-
able biomarkers. A biomarker is an abbreviation for bio-
logical markers associated with a specific disease, and it is 
measured as an indicator of the extent of clinical diseases 
[20, 70]. The presence of a biomarker in blood or any other 
body fluid or tissues indicates the particular condition of dis-
ease [71]. Biomarkers can be classified into subtypes based 
on their application as diagnostic biomarkers, monitoring 
biomarkers, pharmacodynamic/response biomarkers, predic-
tive biomarkers, and prognostic biomarkers [72]. Diagnostic 
biomarker assists in knowing disease development and the 
accomplishment of the treatment. The diagnostic biomarker 
not only recognizes the person with a certain disease but also 
classifies the disease [73]. Monitoring biomarkers are used 
multiple times for evaluating the disease status or patient’s 
condition in response to pharmaceuticals or any other 
external agent [74]. The pharmacodynamics/response bio-
marker is those biomarkers whose level changes in response 
to medicine or any other environmental factors [75]. The 
predictive biomarkers are used to recognize people which 
are more likely to be affected either positively or negatively 
by specific medical products or any other external agents 
[76]. A prognostic biomarker is a biomarker that predicts 

the probability of the occurrence of a clinical condition, 
its recurrence, or progression in a certain population [33]. 
Cancer biomarkers can be employed for early diagnosis of 
a tumor or its reappearance, for prognosis or predicting a 
patient’s response to specific drugs or treatment, or knowing 
the toxicity of therapeutic interventions [77]. The valuation 
of biomarkers can be influenced by some factors such as 
type of tumor whether it is new or recurrent, tumor het-
erogeneity, and treatment effect [78]. The malignancy and 
metastasis pathways are the major barriers that limit the con-
ventional therapeutics strategies. Due to tumor heterogene-
ity, the expression of cancer biomarkers can differ between 
biopsy tissue and surgical resection specimens in a patient 
with untreated newly diagnosed cancer. Further, cancer treat-
ment can also cause a change in the expression of biomark-
ers and the emergence of resistant cancer cells that survive 
and become prevalent following each treatment. Because 
tumor DNA is fundamentally unstable, it can change over 
time, resulting in differences between initial and recurrent/
persistent tumors. Because of the primary tumor’s treatment 
and the innate instability of tumor DNA, the molecular phe-
notype and the biomarkers of primary vs. recurring malig-
nancies can differ [78].

Biomarkers associated with various diseases including 
cancer can be detected through various approaches. The 
general approach depends on the basic biology of the tumor 
and surroundings [79]. With the advancements in technol-
ogy and more knowledge about the tumor, biomarkers can be 
identified easily and rapidly using different techniques [80]. 
Some of the techniques used for the identification and quan-
tification of the biomarker are advanced sequencing, gene 
expression arrays, and mass spectroscopy [81]. The major 
challenge is that these techniques produce a vast amount 
of data that needs to be analyzed. The more focus is on the 
development of such techniques which can deliver accurate 
results and avoid further validation.

Various other analytical techniques such as polymerase 
chain reaction (PCR), immunohistochemistry, flow cytom-
etry have been used for the evaluation of cancer biomarkers; 
however, they lack acceptable sensitivity and need sophisti-
cated instrumentation facilities with long run time. Biosen-
sors-based detection of biomarkers can be used efficiently for 
the early diagnosis of cancer disease [15, 20, 23]. The use of 
biorecognition elements (BREs) such as an antibody, aptam-
ers, enzymes with conjugation to biomarkers associated with 
cancer cells enhanced the selectivity and sensitivity of the 
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detection technique [82]. The use of aptamers over conven-
tional BREs biorecognition elements gives promising results 
with increased selectivity and sensitivity. Moreover, aptam-
ers over other BREs such as antibodies, enzymes, cells are 
physically, chemically stable, and also, regenerated without 
losing integrity. Aptamers can be synthesized for a wide 
range of analytes with high specificity [83]. To date, a vari-
ety of aptamers with the ability to bind to the receptors of 
the once cells have been employed. These include prostate-
specific membrane antigen (PSMA), Mucin 1 (MUC1), pro-
tein tyrosine kinase-7 (PTK7), VEGF, CA-125, CEA, CD44, 
and IL-6, etc. [84]. Aptamers designed for the identification 
and detection of various biomarkers associated with differ-
ent types of cancer are enlisted in Table 1 along with their 
sequences and their properties.

3  Approaches for Designing of Aptamers

Aptamers are single-stranded synthetic nucleic acids (DNA 
or RNA sequences) that selectively binds with specific bio-
marker and can be wrapped into 2D (two-dimensional) and 
3D (three-dimensional) structures. Due to 2D and 3D struc-
tures, they possess enhanced surface density and reduced 
spatial blockage and thus show high binding performance 
toward the target [82, 122–124]. Aptamers are robust mol-
ecules in terms of structure and functional aspects and hence 
remain stable throughout a wide variety of temperatures and 
other stringent conditions. Unlike antibodies, which need 
the biological systems for their synthesis, aptamers can be 
synthesized chemically, remain stable in the pH range of 
2–12, and can undergo heat refolding. Another advantage of 
aptamers is that they can be chemically modified by adding 
functional groups to match the target molecule’s detection 
requirements [125]. Aptamers can be generated from oligo-
nucleotide libraries via an in vitro selection technique called 
SELEX (Systematic Evolution of Ligands by EXponential 
Enrichment) [125, 126]. In this process, the aptamers have 
been selected via an iterative process that involves binding 
of the target protein/biomarkers with an oligonucleotide in a 
library followed by washing unbound aptamers and amplifi-
cation of bound selected oligonucleotide. Multiple cycles of 
the SELEX process led to the enrichment of highly specific 
oligonucleotides against a particular target. Afterward, the 
aptamer with high selectivity was selected, affinity-purified, 
and sequenced to produce a specific aptamer library [127]. 

The steps of aptamer synthesis via the SELEX process 
are shown in Fig. 3a. Cell-SELEX, microfluidics-SELEX, 
capillary electrophoresis-based SELEX, FACS-based 
SELEX, magnetic bead SELEX, microtiter plate-SELEX, 
and in vivo SELEX are a few of the SELEX variations that 
have recently been developed for the improved synthesis of 
aptamers [127–129]. Figure 3a, b depicts the fabrication of 
aptasensors along with the advantages of using aptamers 
over antibodies. The most common biosensor-based diag-
nostic approaches are optical, electrochemical, and piezo-
electric. These biosensors are classified as labeled or label-
free aptasensors based on the transduction processes used. 
The electrochemical sensing techniques can be used for both 
label-free optical sensors as well as label-based aptasen-
sors [130]. The details of electrochemical aptasensors their 
design and fabrication strategies are discussed in Sect. 5 of 
this review.

4  MXene: Synthesis and Properties

Owing to the wide application of MXenes’, its intrinsic 
compositional properties are necessary to evolve in distinct 
directions. These properties, on the other hand, are deter-
mined during the synthesis stage and are influenced by a 
variety of parameters, including the precursor MAX phase, 
the reaction duration, the etchant, and the temperature of the 
process. The regulation of these parameters remains a chal-
lenge to get appropriately designed MXenes with desired 
characteristics [131]. Conventional MXene, o-MXene, and 
i-MXene are the types of MXene [132]. MXenes are pro-
duced by a process of selective etching in appropriate sol-
vents or solutions. Etching is generally carried out in acidic 
solutions [133]. Etching results in surface terminations with 
the various functional groups making them feasible to be 
used further [133, 134]. Due to the strong mechanical, opti-
cal, and electrical properties, MXene’s have attracted atten-
tion for a wide range of applications in energy, medicines, 
and diagnostics [135].

4.1  Structure and Synthesis of MXene

After the discovery of MXene a decade ago, it has gained 
considerable attention in the research field [37]. The gen-
eral formula for MXene is  Mn+1Xn, while for MAX phase 
the general formula is  Mn+1AXn, where n = 1, 2, or 3, M is 
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an early transition metal (Ti, V, Nb, Mo, Cr, Ta, Hf), A is 
group 13 or 14 elements, and X is mostly C and/or N [136]. 
There are about 70 MAX phases known (such as  Ti2AlC and 
 Ti3AlC2), and many new combinations are being discov-
ered day by day (e.g., the quaternary ordered MAX phases) 
and related materials [130, 131, 136]. In the MAX phases, 
 Mn+1Xn are the stable layers, whereas the A layer is com-
prised of weaker bonds. The etching of the Al layer from the 
MAX phase  (Ti3AlC2) gives rise to  Ti3C2 (MXene) [137]. 
The suffix “ene” to the MXene shows that MXene properties 
are similar to another popular 2D material graphene [138]. 
MXenes possess excellent physical and chemical properties 
including low density, high hardness, good resistivity against 
corrosion, high conductivity [139]. The various compounds 
of MXenes can be categorized into different categories 
based on the complexity of the structure. The MAX phase 
is an MXenes precursor with the stoichiometry  Mn+1AXn, 
where n = 1, 2, or 3, and “M” is a metal which belongs to 
the d-block transition metal family, “A” is a group 13 or 14 
elements (e.g., Si, Ge, Al, or Sn), and “X” can be carbon, 
nitrogen, or both. The layers “M” and “A” are intercalated in 
between phases, which have a hexagonal structure. The “X” 
atoms occupy the octahedral positions created by the “M” 
elements [44]. A detailed insight into the structure of MXene 
is shown in Fig. 4a. The removal of "A" elements from the 
MAX phase led to the production of multi-layer MXenes 
which upon intercalation produces intercalated MXene 
that can be exfoliated or undergo delamination. The steps 
are depicted in Fig. 4b. Taking the properties of MXene 
into consideration, recent studies have employed all OD, 
1D, 2D, and 3D dimensions of MXene. For instance, 0D 
MXene  Ti3C2Tx quantum dots used for ultra-fast and ultra-
narrow laser fibers manufacturing [140], 1D MXene fibers/
CoNi/C has been used as microwave absorbers [141], 2D 
 Ti3C2 MXene nanosheets for biosensing and photothermal 
therapy [137], and 3D MXene architecture (3DMA) used 
for highly efficient solar steam generation (Fig. 4c) [142]. 
The accessibility of a large surface area of material for inter-
action, selective binding, and the ability to transduce the 
binding of analyte into the recognizable signal is the ideal 
properties of sensing material. The 2D materials exhibit a 
large surface-to-volume ratio when compared to 0D, 1D, and 
3D analogs for material analyte interaction which ensures 
high sensitivity at an extremely low concentration of target 
analyte [143]. Their unique features, which result from a 
rare blend of ceramic and metallic behaviors, have grabbed Ta
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much research interest. MAX phases have high hardness, 
low density, and high corrosion resistance, akin to ceramics, 
while also having high electrical and thermal conductivities 
and enhanced machinability which mimics metallic material 
[143, 144]. A schematic of desirable properties of MXene is 
depicted in Fig. 4d.

The fundamental bonds are responsible for these revolu-
tionary properties, whereas M–X bonds include a mixture 
of ionic and covalent interactions. The nature MA bonds 
are entirely metallic. As a result, unlike other 3D layered 
materials like transition metal dichalcogenides and gra-
phene, which have weak interactions, MAX phases have 
robust bonds that provide stability and inhibit cleavage by 
shearing or other mechanical means. Initially, the chemical 
exfoliation method allowed the creation of MXene-based 2D 
materials from primary bonded MAX phases [37].

Due to low cost, simplicity, and scalability, high-temper-
ature synthesis of MAX phase from binary elements is the 
most commonly used procedure. In this method, TiC, Ti, and 
Al powders are mixed in ball milling (Fig. 5a, b) and then 
annealed in a tube furnace under an inert atmosphere in pres-
ence of argon at 1400 °C for 2 h with a rate of heating and 
cooling of 3 °C  min−1 (Fig. 5c). Afterward, the material was 
ground, milled, and drilled using pestle mortar followed by 
sieving to yield a powder of known particle size. The powder 

was subjected to HCL wash to remove impurities (metallic 
and intermetallic) before sieving (Fig. 5d) [145].

Various synthesis techniques have been introduced which 
contributed significantly to the field of MXenes’ research to 
meet the appropriate requirement for various applications. 
Etching and delamination are extensively used as prime 
methods for the synthesis of MXenes [146]. In the precur-
sor MAX phase, the etching procedure is primarily used to 
disrupt the M–A metal bond. Fluorine-containing acid etch-
ing [34, 147], halogen etching [148], strong alkaline etching 
[149], high-temperature etching [150], and electrochemical 
etching [151] are the different types of etching methods used 
so far. The most popular technique for etching the A layer 
is to use a hydrofluoric acid (HF) or a strong alkali. Many 
sagging bonds arise on the surface of 2D MXene nanosheets 
as a result of this process, which is converted into numer-
ous terminations in groups such as –F, –O, and –OH. In 
the meantime, the MXene nanosheets are exposed to more 
or lesser flaws during the reaction, making it easier for the 
material to deteriorate and lose its original properties [152], 
while in the delamination method, under the influence of 
mechanical force [37] or chemical intercalants [153], mul-
tilayer MXenes peel apart to generate single- or few-layer 
lamellae in the delamination stage. The extreme vibrations 
caused by ultrasound, on the other hand, cause a shrink of 
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Fig. 5  Steps associated with the production of the MAX phase: a ball milling, b passivation by oxygen, c high-temperature synthesis, and d 
acid washing to remove interferents
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the size of the MXene nanosheet which led to a loss of elec-
trical and mechanical characteristics. Chemical intercalation 
allows MXenes to be reduced in size to some extent, but it 
is tough to eliminate these chemical agents in successive 
operations, which affect the conductivity of MXenes films 
significantly [154]. As a result, MXenes’ real properties 
deviate significantly from their theoretical values, restrict-
ing their uses in several areas such as energy storage [155], 
catalysis [156–158], electromagnetic shielding [40, 45, 48, 
158, 159], flexible electronics [160], and chemical sensing 
[161]. Based on literature several methods of MXene syn-
thesis can be categorized into top-down [133], wet chemi-
cal [148], and bottom-up [162] approaches. The detailed 
insight of each method is illustrated in Fig. 6. The top-down 
method is the most preferred approach for the synthesis of 
MXene. In this method, etching of A elements from the 3D, 
MAX phase was carried out using HF (Fig. 6a), while in the 
bottom-up method the MXene is constructed using small 
organic or inorganic molecules (Fig. 6b). The bottom-up 
method provides the advantage of controlled synthesis with 
appropriate size and morphology and surface terminations 

when compared to the top-down method. Further, in the wet 
chemical method, anodic etching was performed followed 
by delamination (Fig. 6c). The precautions taken during the 
synthesis of the MAX phase and MXene remain a concern 
among the scientific community as it uses acid and high 
temperature. The safety measures such as PPEs kit, gloves, 
fume hood, and proper handling of acid and water while 
synthesis of MXene should be properly taken care of. The 
safety measures should be followed in general, while acid 
and other corrosive chemicals are shown in Fig. 6d.

An ultrafast polyaniline@MXene cathode was created by 
casting a homogeneous polyaniline layer onto a 3D porous 
 Ti3C2Tx MXene; by Li et  al., PS spheres with a nega-
tive surface charge can disperse homogeneously in water 
with the same negatively charged  Ti3C2Tx MXene flakes 
(Fig. 7a), which can then be vacuum-assisted filtered into a 
flexible PS@Ti3C2Tx film (6 m) with  Ti3C2Tx MXene flakes 
wrapping the PS spheres’ surface (500 nm). A freestanding 
and flexible 3D microporous  Ti3C2Tx (3D M-Ti3C2Tx) film 
with an open and interconnected structure was developed 
after eliminating the PS by thermal annealing at 450 °C 
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in argon. This film displayed an electrical conductivity of 
600 S  cm−1, which is higher than a 3D graphene film with 
a comparable structure (12 S  cm−1) (Fig. 7a) [163]. Lipatov 
et al. described a new synthetic approach for making high-
quality monolayer  Ti3C2Tx flakes. In this work, two varie-
ties of  Ti3C2Tx flakes were created.  Ti3C2Tx was manufac-
tured following the Route 1 method, which involved soaking 
 Ti3AlC2 powder in a LiF-HCl solution with a molar ratio of 
LiF to MAX of 5:1. This approach produces mostly mon-
olayer flakes. The molar ratio of LiF to MAX was increased 
to 7.5:1 in the modified technique in the method opted in 
Route 2 which provides an excess of  Li+ ions for intercala-
tion. Herein, the HCl to LiF ratio was doubled to enhance 
aluminum etching. Further, the delamination of  Ti3C2Tx 
particles created using Route 2 did not require sonication. 
The key distinctions between Routes 1 and 2 along with the 
atomic force microscopy (AFM) images which were used 
to examine the thickness and morphologies of the flakes 

produced by both procedures are shown in Fig. 7b. The 
AFM images revealed that the  Ti3C2Tx flakes synthesized 
by Route 2 are much larger than those produced by Route 
1 (Fig. 7b) [164]. Alhabeb et al. produce titanium carbide 
 (Ti3C2Tx), the most researched MXene, utilizing several 
etchants and delamination processes. They also discuss the 
implications of synthesis settings on  Ti3C2Tx size and qual-
ity, as well as the best procedures for the application. Low 
concentrations of HF (5 wt%) for 24 h were shown to be 
just as effective as higher concentrations (10 wt. percent HF 
for 18 h and 30 wt. percent HF for 18 h), as confirmed by 
energy-dispersive X-ray (EDX) analysis and X-ray diffrac-
tion (XRD) patterns (Fig. 7c) by a shift of the (002) peak 
of  Ti3AlC2 from 9.5° to 9.0° for  Ti3C2Tx and no residual 
 Ti3AlC2 peaks after etching for 5, 10, and 30F–Ti3C2Tx. 
Further, the elimination of Al in  Ti3AlC2 and the insertion 
of surface terminations (expressed as Tx) in  Ti3C2Tx (e.g., 
–F, –O, –OH) result in a reduced peak shift of the basal 
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planes ((002) peak) [165]. The MXenes were characterized 
using scanning electron microscopy (SEM). As shown in 
Fig. 7d, the MXenes had a dense layer and an accordion-
like shape [166]. The high-resolution transmission electron 
microscopy (HR-TEM) picture of the  Ti3C2Tx@FePcQD 
nanohybrid (Fig. 7e) revealed interplanar distances of 0.25, 
0.245, and 0.21 nm, respectively, corresponding to the (020) 
plane of graphite, the (012) planes of hexagonal  Fe2O3, and 
the crystallographic (100) plane of graphitic carbon. In the 
synthesis of FePc QDs,  Fe2O3 nanoparticles and carbon 
dots were produced concurrently at 180 °C. The findings 
suggested that FePc QDs and  Ti3C2Tx nanosheets can be 
successfully integrated [167]. FTIR spectra of MXene and 
MXene fiber are shown in Fig. 7f. The X-ray photoelectron 
spectroscopy (XPS) curves of each group of samples are 
shown in Fig. 7g. The typical peaks of C 1 s (285 eV), Ti 2p 
(459 eV), and O 1 s (530 eV) were visible [141]. The bulk 
gene and MXene QDs were also characterized using Raman 
spectroscopy. From 200 to 1100 cm, the spectrum has six 
conspicuous peaks (Fig. 7h), which is consistent with ear-
lier findings. The peak of about 500 cm, on the other hand, 
represents the signal of the Si substrate, as shown in sev-
eral test results. The optical quality of MXene  Ti3C2Tx QDs 
as investigated using UV–Vis absorption spectroscopy is 
shown in Fig. 7i. The bandgap is calculated as 2.84 eV by 
mapping the absorption to the band edge. A fluorescence 
spectrometer for determining the PLE spectra of MXene 
QDs and testing their fluorescence properties is displayed in 
Fig. 7j. As stimulated at 367 nm, the brightest peak appears 
about 415 and 430 nm [140].

4.2  Properties of MXene

High Young’s modulus, a tunable bandgap, thermal and 
electric conductivities are some of the distinctive MXene 
features. The hydrophilic surfaces of MXenes along with 
high electrical and thermal conductivities set them apart 
from the majority of 2D materials [148]. Eventually, spe-
cific composition and involvement of different transition 
metals “M” and “X” elements, and varied functionaliza-
tion of the surface via chemical and thermal processes led 
to structure/morphological changes, which can be used to 
tune their properties and applications performances [163]. 
The MXenes family’s main properties are discussed in this 
section.

4.2.1  Mechanical Properties

Mechanical features of MXenes drew a lot of attention 
because of the presence of strongest M–C and M–N bonds 
and two times higher elastic constants (c11) than MAX 
phases [168], and other 2D materials like  MoS2, as per the 
first simulation investigation. Despite having c11 values 2 
to 4 times lesser than graphene [36, 166] their bending stiff-
ness is higher [169, 170], indicating that they could be used 
as composite reinforcements. Thin discs of titanium-based 
MXenes exhibit hydrophilic behavior with contact angles 
ranging from 27 to 41 degrees, whereas  Ti3C2Tx exhibited 
a contact angle of 35 degrees [168]. The Young’s modulus 
tends to decrease as the number of layers (“n”) increases 
in both MXene carbides and nitrides [168]. Furthermore, 
nitride-based MXene compounds have greater values than 
carbides [171]. The presence of ends reduces the values of 
elastic constants but upsurges their critical distortions. The 
significantly higher values of elastic constant of MXene than 
graphene are a key property for flexible electronics [147]. 
While there are various mechanical testing methods for the 
characterization of bulk materials, evaluating the mechani-
cal properties of 2D materials remains difficult. The AFM 
tip exerts a force at the center of a 2D MXene film in the 
nanoindentation technique which was used to determine 
the mechanical properties of 2D nanomaterials [172]. The 
experimental  Ti3C2Tx monolayer Young’s modulus of 
333 ± 30 GPa was obtained using this technique. Further 
experimental research should concentrate on developing 
more controllable synthesis techniques to adjust structural 
defects, vacancies, and different functional groups, including 
original molecules [170]. However, overall theoretical and 
practical analyses of the mechanical properties of MXene 
and their composites with various functionalization groups 
still need to be illustrated.

4.2.2  Optical Properties

Photocatalytic, optoelectronic, photovoltaic, and transpar-
ent conductive electrical devices can be made up of 2D 
material which absorbs in the range of visible and UV light. 
 Ti3C2Tx films absorbed light in the UV–Vis ranges from 
300 to 500 nm wavelength and had a transmittance of up 
to 91.2 percent at 5 nm thickness [173, 174]. In addition, 
depending on the film thicknesses, it may have a strong 
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absorption band at roughly 700–800 nm, which causes pale 
greenish film color [172] and is important for photothermal 
diseases (PTT) treatment [175–177]. It is worth noting that 
the transmittance values could be improved by adjusting the 
thickness [178] and ion intercalation [174]. The existence of 
functional groups alters the optical characteristics of these 
2D compounds, according to first-principles calculations 
[179]. In reality, unlike oxygen terminations, fluorinated 
and hydroxyl terminations have identical properties. When 
compared to pure MXene, –F, –O, and –OH terminations in 
MXene lower the absorption and reflectivity in the visible 
range, while all terminations collectively increase reflectiv-
ity in the UV range [179]. The reduction of the size of a 
lateral flake of MXene has recently been shown to result 
in decreased absorbance values [180]. A remarkable light-
to-heat conversion efficiency (100%) was revealed, which 
could be advantageous in biomedical applications [181]. 
To measure the light-to-heat conversion efficiency of  Ti3C2 
MXene, a droplet-based light absorption and heat measure-
ment system can be used. In this system an aqueous solution 
droplet (volume 9.0 μL) containing MXene is hung at the 
tip of a PTFE pipet (one-end-sealed), followed by a single-
wavelength laser beam irradiation (473 or 785 nm), with 
specific power density (82 mW) and spot size (0.85 mm 
in diameter), right in the center of the droplet. The droplet 
temperature recorded by a precalibrated IR camera in real 
time. The total temperature profile of the droplet in response 
to photothermal heating and then natural cooling provides 
light-to-heat conversion efficiency [182, 183]. Moreover, the 
internal light-to-heat conversion efficiency of MXene, more 
specifically  Ti3C2, was measured to be 100%, demonstrating 
a flawless energy conversion [181]. Nevertheless, to further 
enhance MXenes applications, several optical-associated 
qualities such as plasmonic, luminescence efficiency, and 
nonlinear optical properties must be unraveled [178–181, 
184].

4.2.3  Thermal Properties

The studies on thermal conductivities in terms of thermal 
expansion coefficients of MXenes are still sparse, despite 
their importance for electrical and energy-related heat dissi-
pation devices [155]. Simulation studies indicated low ther-
mal expansion coefficients [37, 184, 185] and superior heat 

conductivities of MXene-based materials than phosphorene 
and  MoS2 monolayer [184, 186, 187]. It was observed that 
the thermal conductivities of oxygen–terminated compounds 
rise with the metal “M” atomic number [119, 184]. The edge 
green’s function of the semi-infinite  Mo2MC2O2 lattice is 
generated using the MLWFs, the imaginary component 
of which yields the local density of states (LDOS), from 
which the energy dispersion of the edge states is determined. 
The LDOS on the zigzag edge of  Mo2HfC2O2 is shown in 
Fig. 8a, where a pair of topological edge states join the bulk 
conduction and valence bands to produce a single Dirac cone 
at the M point.  Mo2TiC2O2 and  Mo2ZrC2O2 produce similar 
results [188]. Only  Ti3C2Tx thermal conductivity was meas-
ured in the laboratory; thus, conductivities of other MXene-
based compounds should be investigated. Furthermore, the 
studies on the relationship between particle size and ther-
mal conductivity that underlines the need for morphological 
control and optimization in MXenes synthesis need to be 
explored further.

4.2.4  Magnetic Properties

The MXenes can be magnetized; unlike MAX phases, sev-
eral investigations carried out to evaluate their magnetic 
characteristics are projected to have magnetic moments. F 
functional groups make  Ti3CNTx and  Ti4C3Tx non-magnetic 
[189], whereas OH and F groups make  Cr2CTx and  Cr2NTx 
ferromagnetic at ambient temperature [190], and  Mn2NTx 
is ferromagnetic regardless of surface terminations [191]. 
For  Cr2CF2 and  Cr2CFCl, the distance between MXene and 
substrate is 2.76 and 2.57 Å, respectively, showing only a 
weak van der Waals bonding. As seen in Fig. 8b,  Cr2CF2 
and  Cr2CFCl on SiC(0001) retain the compensated anti-
ferromagnetic coupling. The DOS of  Cr2CF2 with a sym-
metrical distribution implies that there is no spin polariza-
tion, whereas  Cr2CFCl retains the BMSAF characteristics. 
These findings reveal that imperfectly functionalized Janus 
 Cr2CXX’ MXenes retain BMSAF properties even when they 
interact with the substrate, which is significant for nanoelec-
tronic device applications [192, 193]. The reported magnetic 
moments are, however, simply computational predictions 
that have yet to be confirmed empirically. It can be due to a 
lack of information on surface chemistry [194] and limited 
synthesis of MXene compounds.
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4.2.5  Electrical Properties

Several functional groups, their stoichiometry, and ability of 
solution formation all can be used to adjust the properties of 
MXenes. MXenes-pressed discs had greater electric conduc-
tivities than reduced graphene oxide and carbon nanotubes 
[167, 181] and were similar to multi-layered graphene. Fur-
thermore, the number of layers in MXene and the presence 
of functional groups were found to improve resistivity val-
ues [195, 196]. As a result, the simulated conductivities are 
typically higher than those measured experimentally [197]. 
The defect concentration, delamination yield, d-spacing 

between MXenes flakes, surface functional groups, and 
their lateral sizes produced by each etching procedure play 
a crucial role in determining the electrical conductivity of 
MXene. The measured electrical conductivities of  Ti3C2Tx 
ranged from 850 to 9880 S  cm−1 [171, 176, 195, 196]. In 
general, MXenes with lower HF concentrations and etching 
periods have fewer flaws and bigger lateral diameters, result-
ing in enhanced electronic conductivity [198]. The higher 
flake sizes resulted in enhanced conductivities than small-
sized MXenes [50]. Furthermore, relative humidity sensing 
material [199] may impact their conductivities. Thermal 
and alkaline treatments for surface modification of material 
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are a good way to improve electrical characteristics. The 
change and/or alteration of functional groups (particularly 
F) and intercalated molecules are responsible for the rise 
by two orders of magnitude [178]. In momentum space, 
band structure describes the relationship between elec-
tronic energy and electron wavevector. The electronic band 
structure is the most convenient way to describe the micro-
scopic action of electrons in a material. The band structures 
and density of states (DOS) in specific orientations of the 
Brillouin zone are depicted in Fig. 8c. The dispersion of the 
bands perpendicular to the basal planes (ML) is almost low, 
indicating that the electronic structures are essentially 2D. 
The conductivity is anisotropic due to the anisotropy of the 
band structures around and below the Fermi energy (EF). 
Because the electronic transport properties are determined 
by electrons near EF, Ti’s 3d electrons play a major role in 
electronic conduction. The form of the entire Fermi surface, 
which determines transport parameters such as conductivity, 
is visible in Fig. 8c. Four double-degenerate half-filled bands 
spanning EF in the band structure correspond to this. In 
reciprocal space, both FSs show a hexagonal electron pocket 
around the c* axis, surrounded by six cylindrical hole pock-
ets. The hole-like pockets in the FSs of the two layouts are 
very similar: Around H and K are cylindrical hole pockets 
[200]. Work functions of MXenes with various terminations 
are shown in Fig. 8d (for comparison, work functions of Sc 
and Pt are depicted by dashed lines) [201]. Band structure 
for  Cr2C MXene is shown in Fig. 8e. Herein, the weights 
of the Cr d are represented in black, and C p orbitals are 
represented in green [202]. The electrical characteristics of 
MXenes are connected to the composition of their ingre-
dients and the number of surface termination as per den-
sity functional theory (DFT) [203]. Surface terminations of 
carbides are crucial being semiconductors in the MXenes 
family; however, some carbonitrides with additional elec-
trons can increase band structure modification and transi-
tion to a metallic state.  Ti3C2(OH)2 and  Ti3C2F2 were ten-
tatively anticipated to have modest bandgaps between 0.05 
and 0.1 eV, respectively, until Yury Gogotsi and his team 
found MXenes [204]. Besides, mixed terminations such as 
–F, –OH, and –O populate the MXene’s surface at random, 
causing electronic state localization and altering their elec-
trical and other characteristics. As a result, from a theoretical 
standpoint, modifying the element composition along with 
surface termination of MXenes can be used to accomplish 
targeted control of electrical properties. The MXene films 

are multilayer stacked macroscopic nanosheets for which 
electrical characteristics are determined by the intercalation 
between layers. For example, cations from reagents [205] 
(tetramethylammonium ion  (TMA+), lithium-ion  (Li+) and 
ammonium ion  (NH4

+)) and organic molecules [206] (iso-
propylamine and dimethyl sulfoxide (DMSO)) when inter-
calated into the MXenes layer, led to the modification of 
their electrical characteristics. As a result, post-processing 
modifications can successfully alter the surface termination, 
elemental composition, and intercalation of MXene films, 
allowing for focused control of their electrical properties.

5  MXene‑Enabled Advanced Electrochemical 
Aptasensors for Cancer Diagnostics

MXene, a 2D nanomaterial with plausible electroconductive 
properties, has been identified as a viable molecule for the 
fabrication of electrochemical biosensors due to its simple 
manufacturing process. Aptamers, on the other hand, have 
proven to be a boon for manufacturing low-cost sensing 
devices due to their great selectivity and specificity, as well 
as their mass production ability. The advantageous electro-
conductive properties of MXene enabled with selective and 
specific aptamers against cancer-specific biomarkers can be 
potentially employed for early and efficient diagnostics of 
cancer which is the need of an hour. In this section, we have 
discussed the studies on MXene-enabled electrochemical 
aptasensors for the detection of cancer-specific biomarkers. 
For the synthesis of various types of MXene composite, 
Naguib et al. added the  Ti2C,  Ta4C3, TiNbC,  (V0.5,  Cr0.5)3C2, 
and  Ti3CNx, where x < 1 which expands the MXenes family 
[207]. In further work, Naguib et al. proved that MXenes can 
also be used as electrodes when intercalated with Li ions in 
lithium-ion batteries [208]. Aptamer-enabled MXene-based 
electrochemical biosensors have been used in recent studies 
to detect a variety of cancer biomarkers, as stated in Table 2. 
In a recent study, the breast cancer marker Mucin 1 was 
detected using a competitive electrochemical aptasensor fab-
ricated on a cDNA-ferrocene/MXene probe (MUC1). 
Herein, MXene  (Ti3C2) nanosheets with high specific sur-
face area and excellent electrical conductivity were chosen 
as aptamer-probe carriers. To make a cDNA-Fc/MXene 
probe, ferrocene-labeled complementary DNA (cDNA-Fc) 
was coupled to the surface of MXene followed by attachment 
of MUC1 aptamer on the electrode via Au-S bonds. A 
cDNA-Fc/MXene/Apt/Au/GCE aptasensor was made and 
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utilized to detect MUC1 through a competitive process that 
occurs between the cDNA-ferrocene/MXene probe and 
MUC1. The reduction in an electrical signal happens due to 
the detachment of the cDNA-Fc/MXene probe from the 
sensing electrode. This aptasensor has a broad linear range 
of 1.0–10 µM and a LOD of 0.33 pM, making it suitable for 
clinical diagnostics [209]. An electrochemiluminescent 
(ECL) aptasensor for detection of exosomes in breast cancer 
cells is described by Qiao et al. ECL emitters and reactants 
used in this study were  H2O2 and mercaptopropionic acid 
(MPA)-modified  Eu3+-doped CdS nanocrystals (MPA-CdS: 
Eu NCs), respectively. The CD63 aptamer recognizes  
and captures exosomes, which subsequently create a  
G-quadruplex/hemin DNAzyme that competently causes the 
breakdown of  H2O2, and thereby reduced the ECL  
signal in MPA-CdS: Eu NCs. The exosomes from breast 
cancer cells (MCF-7cells) can be found in concentrations 
ranging from 3.4 ×  105 to 1.7 ×  108 particles  mL−1. The LOD 
and signal-to-noise ratio was determined to be 

7.41 ×  104 particles  mL−1. Exosomes in the serum have been 
effectively detected using this aptasensors [210]. In a similar 
study, CD63 aptamer-modified poly(amidoamine) 
(PAMAM)-Au NP electrode interface which has a high bind-
ing affinity for CD63 protein on exosomes generated from 
OVCAR cells has been fabricated for detection of exosomes. 
Furthermore, the CD63-modified  Ti3C2 MXene was 
employed as a nanocarrier for several aptamers and was 
adsorbed to exosomes. The  Ti3C2 MXene is generated in situ 
and loads it efficiently, as well as magnifies the electrochem-
ical signal at a low potential, minimizing interference from 
the electrochemically active species. This aptasensor shows 
a linear range of 5 ×  102 particles µL−1 to 5 ×  105 parti-
cles µL−1, and the LOD was 229 particles µL−1. This elec-
trochemical aptasensor can detect exosomes from a variety 
of cancer cells, including OVCAR, HeLa, and BT474, and 
in serum samples with high specificity suggesting its clinical 
diagnostic potential early cancer detection [211]. The nano-
hybrid of  Ti3C2Tx MXene and phosphomolybdic acid 

Table 2  MXene-based electrochemical aptasensors for cancer diagnosis (sensitivity and detection limit)

S. no. Material Biomarker Sample Technique Linear range LOD References

1 MXenes-BPQDs@
Ru(dcbpy)3

2+-
PEIAbCD63

Exosomes, CD63 CV 1.1 ×  102 to 
1.1 ×  107 particles 
µL−1

37.0 particles µL−1 [166]

2 0D/2D  Ti3C2Tx@
FePcQD nano-
hybrid

miRNA-155 Serum EIS 0.01 fM to 10 pM 4.3 aM [167]

3 cDNA-Fc/MXene/
Apt/Au/GCE 
aptasensor

Mucin 1 Serum SWV 1.0 to 10 µM 0.33 pM [209]

4 MPA-CdS:Eu NC Exosomes, CD63 Serum EIS, ECL 3.4 ×  105 to 
1.7 ×  108

7.41 ×  104 particles 
 mL−1

[210]

5 Ti3C2 MXene 
(MXene)

Exosomes, CD63 Cancer cells and 
Serum

CV, EIS 5 ×  102 to 5 ×  105 
particles µL−1

229 particles µL−1 [211]

6 PPy@Ti3C2Tx/
PMo12

Osteopontin Serum EIS – 0.98 fg  mL−1 [212]

7 AuNPs/Ti3C2 
MXene

miRNA-155 EIS, CV 1.0 fM to 10 nM 0.35 fg [217]

8 MXenes-Apt2/
exosomes/Apt1/
PNIPAM-AuNPs/
GCE

Exosomes, CD63 Serum ECL 5.0 ×  102 to 
5.0 ×  106 particles 
µL−1

125 particles µL−1 [218]

9 MXene-MoS2-Thi-
AuNPs/GCE

miRNA-21 Serum CV, EIS, SWV – 26 fM [219]

10 CoFe2O4@Ag-HB5 
cytosensor

HER2 positive cells Blood sample CV, EIS 102 to  106 cells 
 mL−1

47 cells  mL−1 [220]

11 eCoCu-ZIF@CD-
based cytosensor

PTK7B16-F10 cells EIS, CV 1.0 ×  102 to 
1.0 ×  105 cells 
 mL−1

33 cells  mL−1 [221]
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(PMo12) embedded with polypyrrole (denoted as PPy@
Ti3C2Tx/PMo12) was synthesized by Zhou et al. Further it 
was attached to osteopontin (OPN) aptamer to build an 
impedimetric aptasensor for the detection of osteopontin. 
The fabricated sensor PPy@Ti3C2Tx/PMo12 hybrid is 
endowed with outstanding stability, great biocompatibility, 
and a significant binding affinity for OPN aptamer. Thus, 
compared to previously developed bicomponent aptasensors, 
the PPy@Ti3C2Tx/PMo12 hybrid demonstrated improved 
electrochemical sensing. The aptasensor based on PPy@
Ti3C2Tx/PMo12 had a detection limit of 0.98 fg  mL−1, as 
well as high selectivity and stability, better repeatability, 
reasonable regenerability, and can be used to detect OPN in 
human serum samples [212]. The direct laser patterning of 
various coplanar of MXene on the paper device and multiple 
devices with series and parallel connections can be fabri-
cated using hydrofluoric acid (HF)-etched and clay-like 
 Ti3C2 MXene slurries in just 17 s using additive manufactur-
ing technique (Fig. 9a) [213]. The fabrication steps of on-
chip MXene solid-state micro-supercapacitors (MSCs) by 
employing a spray-coating method for deposition of highly 

conductive  Ti3C2Tx (L-Ti3C2Tx) flakes on a glass substrate 
were demonstrated by Peng et al. (Fig. 9b). MXene-based 
composite meets the requirement of the bandgap value 
which should be between 1.55 and 3.0 eV (Fig. 9c) [214]. 
They used four steps which include spray coating of small-
size  Ti3C2Tx flakes (s-Ti3C2Tx) on top as an electroactive 
layer, interdigital pattern carved by direct laser cutting of a 
specific center area (8 × 6  mm2) on the stacked MXene film, 
and a PVA/H2SO4 gel electrolyte was carefully dropped onto 
the interdigital pattern area, respectively [215]. Employing 
this process would enable the sensor fabrication with ease 
and in a cost-effective manner. Fang et al. used black phos-
phorous quantum dots (BPQDs) and MXenes as a signal 
amplifier for fabrication of ECL and photothermal dual-
mode aptasensor for detection of the cancer-associated exo-
some. Herein, BPQDs catalyze the oxidation of 
Ru(dcbpy)3

2+ and be utilized as a co-reactant. The self-
enhanced Ru(dcbpy)3

2+@BPQDs ECL system generates a 
strong ECL signal by shortening electron transfer distance 
and minimizing energy loss. MXenes provide large specific 
surface area and excellent conductivity and act as a 
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supporter to enhance the number of Ru(dcbpy)3
2+ and 

BPQDs immobilized, which improved the ECL signal. They 
studied the cyclic voltammetry (CV) behaviors of ECL bio-
sensor over electrodes in 5 mM [Fe(CN)6]3−/4− including 
0.1 M KCl. As shown in Fig. 9d(I), bare GCE displayed a 
pair of well-defined redox peak currents (curve a); however, 
when  SiO2 nano urchins (NUs) were placed over the elec-
trode, the redox peak current diminished (curve b), which 
was linked to  SiO2 NUs with weak conductivity and hence 
blocking electron transport. The redox peak currents dra-
matically increased when ILs were coated onto the electrode 
due to the promotion impact of ILs for electronic transmis-
sion (curve c). The redox peak currents reduced dramatically 
(curve d) after Apt was incubated on the electrode, which 
was attributed to the aptamer with negatively charged phos-
phate backbone inhibiting the diffusion of the redox probe 
[Fe(CN)6]3−/4− to the electrode surface. In exosomes modi-
fied electrodes, the redox peak currents are reduced much 
further (curve e). In contrast to (curve f), when MXenes-
BPQDs@Ru(dcbpy)3

2+-PEI-AbCD63 (curve f) was depos-
ited onto the electrode, the redox peak currents increased 
dramatically, indicating that MXenes and BPQDs have a 
synergistic promotion effect for electron transfer (Fig. 9d(I)). 
Additionally, both BPQDs and MXenes have a good photo-
thermal effect, which was deftly exploited as athermal con-
verter device in the development of a photothermal biosen-
sor for exosome characterization. The developed 
dual-modality MXenes-BPQDs probe aptasensor in this 
study not only enhanced the signal while detection but also 
provided an effective and reliable approach for exosome 
detection in cancer patients [166]. A label-free, ultrasensi-
tive, and multiplexed microfluidic paper-based electrochemi-
cal aptasensor for simultaneous detection of carcinoembry-
onic antigen (CEA) and neuron-specific enolase (NSE) was 
developed by Wang et al. which shows LOD 2 pg  mL−1 for 
CEA and 10 pg  mL−1 for NSE. The degree of decreased 
peak currents in DPV responses, which was attributable to 
the formation of aptamer antigen complex on the electrode 
surface, was used to detect the two analytes. The currents 
steadily reduced when CEA (3 A) and NSE increased, as 
shown in Fig. 9d(II). In the ranges of 0.01 ~ 500 ng  mL−1 for 
CEA (R2 = 0.989) and 0.05 ~ 500  ng   mL−1 for NSE 
(R2 = 0.944), the calibration plots revealed a satisfactory lin-
ear detection relationship between peak currents and analyte 
concentrations [216]. Recently, iron phthalocyanine quan-
tum dots (FePcQDs) decorated MXene nanosheets (denoted 

as  Ti3C2Tx@FePcQDs) and employed as promising nanocar-
rier of complementary DNA (cDNA) toward miRNA-155. 
This construct was used as a novel ultrasensitive impedimet-
ric autosensing system for the detection of microRNA-155 
(miRNA-155). The  Ti3C2Tx@FePcQDs-based aptasensor 
demonstrated ultrahigh sensitivity with LOD (limit of detec-
tion) of 4.3 aM (S/N = 3) within the miRNA-155 concentra-
tion range of 0.01 fM to 10 pM. for miRNA-155 detection; 
the suggested impedimetric autosensing system outper-
formed other published miRNA-155 aptasensors in terms of 
ease of fabrication, lack of labels, fast reaction time, and 
better sensing performance for detecting miRNA-155. This 
technique for determining cancer-associated miRNAs holds 
a lot of potential for early cancer biomarker detection [166]. 
Electrochemical impedance spectroscopy (EIS) Nyquist 
plots of miRNA-155 detection techniques employing an 
electrochemical aptasensor based on a  Ti3C2Tx@FePcQDs 
nanohybrid in 5.0 mM [Fe(CN)6]3−/4− in 0.01 M PBS are 
shown in Fig. 9d(III) [167]. The experimental parameters 
specifically the use of   Ti3C2Tx@ FePcQD nanohybrid, 
cDNA concentration, and miRNA-155 binding time onto the 
 Ti3C2Tx@FePcQDs-based aptasensor were tuned to produce 
excellent sensing performance for miRNA-155 detection. 
EIS was used for the entire fabrication and detecting process. 
The  Rct values generated by each step for miRNA-155 detec-
tion ( fM) utilizing aptasensors based on the  Ti3C2Tx@FeP-
cQD nanohybrid with varied usages (0.1, 0.5, 1.0, and 
2.0 mg   mL−1) under the same conditions are shown in 
Fig. 9d(IV). The results showed that as the concentration of 
the  Ti3C2Tx@FePcQDs dispersion grew from 0.1 to 
1 mg  mL−1, the Rct values originating from the detection of 
miRNA-155 increased. When the  Ti3C2Tx@FePcQDs dis-
persion concentration was more than 1 mg  mL−1, the Rct 
value for detecting miRNA-155 dropped dramatically [167]. 

An electrochemical aptasensor employing an AuNPs/
Ti3C2 nanocomposite for sensitive detection of miRNA-155 
using Exonuclease III (Exo III)-assisted cascade has been 
developed by Yang et al. AuNPs utilize AuS chemical bonds 
to immobilize capture DNA (C-DNA) on which methyl-
ene blue (MB) was tagged at the 3′ end of the C-DNA. 
MiRNA-155 double-stranded structure by complementary 
base pairing with C-DNA upon which Exo III catalyzes 
digestion of the double-stranded C-DNA. This led to the 
electrochemical signal to “switch off.” The developed sen-
sor exhibits a linear range of 1.0 fM to 10 nM and LOD of 
0.35 fg. (S/N = 3). In addition, the developed sensor has 
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good stability, repeatability, and specificity [217]. Owing 
to the MXenes properties such as large surface area, excel-
lent conductivity, and catalytic properties, Zhang et al. 
developed sensitive electrogenerated chemiluminescence 
(ECL) biosensor for the detection of the exosome. They 
used aptamer-modified 2D  Ti3C2 MXenes nanosheets as the 
ECL nanoprobe. An aptamer against EpCAM protein was 
modified on the surface of the electrode for the capture of 
the exosome. This ECL nanoprobe showed much-improved 
luminol ECL signals. The detection limit of this aptasensor 
was 125 particles  L−1, which is more than 100 times lower 
than the detection limit of a standard ELISA approach. The 
exosomes in the serum were successfully detected using 
this ECL biosensor and hence can be implemented in clini-
cal diagnostics [218]. Liu et al. combined a 2D bimetallic 
CoCu-zeolite imidazole framework (CoCu-ZIF) with 0D 
 Ti3C2Tx MXene-derived carbon dots (CDs) and termed it 
CoCuZIF@CDs. It showed a unique heterogeneous archi-
tecture and possesses a sensitive layer for attachment of 
B16-F10 cell-targeted aptamer strands, hence detecting 
B16-F10 cells in the biological sample. The characteriza-
tion showed that CDs were uniformly embedded into CoCu-
ZIF NSs with appropriate stacking interaction. This led to 
enhanced fluorescence performance of 0D/2D CoCu-ZIF@
CD nanohybrids. The developed electrochemical aptasensor 
can be used for cell imaging and detection of living B16-F10 
cells. The CoCu-ZIF@CD-based cytosensor exhibits LOD 
of 33 cells  mL−1 and linear range of detection from 1.0 ×  102 
to 1.0 ×  105 cells  mL−1. In comparison, the CoCu-ZIF@
CD-based cytosensor displayed better performance when 
compared to CoCu-ZIF and CD-based cytosensors. The cell 
imaging properties, outstanding selectivity, high stability, 
and good repeatability of developed CoCu-ZIF@CD-based 
aptasensor can be exploited for early diagnosis of other 
analytes too by anchoring other probe molecules, hence 
expanding its applications in biosensing and biomedical 
domains [66]. A label-free determination of microRNA-21 
(miR-21) was successfully demonstrated using an MXene-
MoS2 heterostructure-based electrochemical biosensor con-
jugated with catalytic hairpin assembly (CHA) amplifica-
tion. The large specific area and better electroconductivity 
offered by this unique micro-nanoheterostructure enhance 
the sensing performance. This MXene-MoS2 heterostruc-
ture triggers more target recycling reactions when compared 
to traditional CHA amplification approaches. Besides, the 
anchored thionine and gold nanoparticles (AuNPs) over the 

surface of MXene-MoS2 heterostructure further empowered 
the sensor performance in terms of probe capture fixation 
and label-free detection of miR-21. In the detection pro-
cess, several electronegative double-stranded DNA was 
generated which hindered the electron transfer resulting in 
a decrease of a signal. This sensor showed a broad linear 
range from 100 fM to 100 nM and LOD of about 26 fM. 
However, this sensor is stable, reproducible, and selective 
for miR-21 detection and also provides satisfactory and 
reproducible results. However, the sensing performance 
of this aptasensor for the detection of miR-21 is found to 
be either comparable or lower than previous methods even 
though it showed a promising performance under clinical 
conditions [219]. In recent research work, Vajhadin et al. 
developed an aptasensor for electrochemical detection of 
tumor cells by using HER-2 biomarker. For the develop-
ment of an aptasensor, the MXene nanosheets of around 
2 nm thickness and 1.5 μm lateral size were fabricated over 
gold electrodes. An HB5 aptamer that shows high selectiv-
ity for HER-2-positive cancer cells was then immobilized 
on the MXene layers. To minimize biofouling of electrode 
with blood matrix,  CoFe2O4@Ag magnetic nanohybrids 
bonded to the HB5 were used for magnetic separation of 
HER-2-positive cancer cells. The magnetically captured 
cells formed sandwich-like structures with MXene-func-
tionalized electrodes which effectively blocks electron 
transfer and allows quantitative cell detection when current 
signal changes. This label-free MXene-based aptasensor 
exhibited a wide linear range of  102–106 cells  mL−1 and a 
LOD of 47 cells  mL−1. Additionally, it provides decent sen-
sitivity and selectivity against HER2-positive cells detec-
tion in blood samples. Therefore, this  CoFe2O4@Ag mag-
netic nanohybrids and MXenes-based aptacytosensor hold 
promise to screen cancer progression cost-effectively [220]. 
The MXene-based 2D material when used in combination 
with aptamer as biorecognition element for the fabrication 
of electrochemical aptasensor has enhanced the sensitivity 
of detection of cancer-associated biomarkers many folds 
with a linear range of detection as revealed by several stud-
ies discussed in this section. However, this field is still in 
its nascent stage and needs to be explored further in terms 
of clinical validation of aptasensors in hospitals. Validation 
of these aptasensors in large cohorts under clinical settings 
would have the potential to revolutionize the field of cancer 
diagnostics and needs further attention. The challenges and 
future perspectives in this regard are discussed in Sect. 6.
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6  Current Challenges and Prospects

Since the discovery of MXene in 2011, MXenes are widely 
used in different fields including diagnostic and therapeu-
tic. Although MXene is used widely, some lacunae need 
to be fulfilled to harvest its full potential. Although their 
70 + MXene are known, the number is growing rapidly. 
There is the possibility to explore many more compounds 
which are waiting to be included in the MXene family. The 
synthesis of new MAX phases and other layered carbide and 
nitride precursors is a hot research direction. The prediction 
of the various electronic, magnetic, thermal, and chemi-
cal properties to get the tunable size, ordered structures, 
strong surface terminations, and high yielding is needed. 
This motive can be achieved using computational strategies 
which can further increase the feasibility of MXene synthe-
sis. With advanced knowledge, the ion dynamics between 
the sheets of MXene can be controlled or altered to obtain 
the desired electronic conductivity of the MXene. This can 
be utilized to fabricate sensors with higher conductivity 
and lowest resistance to obtain low LOD. Understanding 
the electrical properties of the MXene can pave new paths in 
the research field. Very recently, the ionic gel-based highly 
durable electronic skins were fabricated utilizing ionic gel 
and MXenes embedded into the polymer matrix. The elec-
tronic skin showed excellent mechanical properties, super 
adhesion, high sensitivity to strain and pressure and could 
tolerate harsh environment. Owing to the various excellent 
properties, the fabricated skin can be applied for the mul-
tifunctional sensing purposes [193]. Similarly, for serving 
the healthcare monitoring purpose, the strain sensor was 
fabricated. The sensor was based on the carbon nanotubes 
and MXenes into polydimethylsiloxane matrix. The sen-
sor was found to be highly stable, durable, and moreover 
washable, and could be used for the real-time monitoring of 
the electrocardiogram (ECG) and joints movements [39]. 
These types of wearable sensor need to be explored more 
and utilized for the healthcare monitoring purposes. The 
conventional synthetic approach of MXene from the MAX 
phase includes the use of fluoride-containing compounds. 
The fluoride-containing compounds pose safety hazards and 
also limit the yield of MXene as it can alter the synthesis of 
MXene from the Al-containing MAX phase. The fluoride-
free approach using hydrochloric acid was also used for the 
electrochemical etching of the MXene from the MAX phase, 

but the over-etching and scaling up remain the challenge. 
The search for new etching methods has become a frequent 
topic of research among scientists working in the area of 
synthesis, so major developments can be expected soon. 
The main challenge is to develop a sensitive, easy-to-use, 
cost-effective Point-of-Care-Test (POCT) to eradicate the 
false-negative and false-positive results.

Certain points limit the use of MXene practically. Firstly, 
strong acids are used for the exfoliation as the MAX phase 
layers have strong interactions. The use of these strong acids 
restricts the use of MXenes in various fields, especially 
in green chemistry. The other harsh chemicals and use of 
sophisticated instruments for the synthesis are also a limit-
ing point. This point raises the demand for the new etching 
methods and experimental conditions which use alternative 
chemicals. Despite the excellent features, several issues limit 
the practical applications of MXenes. The majority of the 
problems arise due to the synthesis process that requires the 
use of toxic chemicals and harsh experimental conditions. 
Hence, new experimental routes and conditions should be 
explored to synthesize novel MXenes with unique properties. 
In this regard, recently MXene quantum dots were synthe-
sized using watermelon peel extract. The synthesized mate-
rial was utilized for the biocompatible sensing purposes and 
also integrated with the smart phone. The more similar work 
in this field is expected in future for the sensing of various 
analytes and fabrication of wearable sensor [51]. The use of 
M in the MAX phase is only limited to some elements Ti, 
V, Nb, Mo, Ta, Hf. However, many more elements can be 
used as M in MAX which needs to explore. Instead of metal 
carbides, metal nitrides can also be used. Till now, there are 
no more studies available on the different morphology of 
the MXenes; only the sheet is broadly studied even though 
other morphology like tube spheres also exists. The complex 
structure of MXenes during synthesis is still a challenge for 
researchers [221]. For understanding MXene better, due to 
its multivariate structure, further studies are needed. Com-
putational approaches can pave the way for designing new 
MXenes structures. MXenes family can be further expanded 
by designing and discovering new heterostructures. The 
search for new etching methods has become a frequent topic 
of research among scientists working in the area of synthesis, 
so major developments can be expected soon. The various 
work has been already done on the MXenes, but still, there 
is a long way to go. Researchers are working on the greener 
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synthesis of MXenes for replacing the harsh chemical. By 
exploring the various properties of MXenes like supercon-
ductivity, thermal transport, biocompatibility, etc., it can be 
exploited to the various multidisciplinary fields. The MXenes 
displayed tunable magnetic and electric properties and used 
as an excellent modifier in electrochemical studies and 
hence showed adaptable applications in various fields such 
as energy storage, nanomedicine, diagnosis [198]. MXene-
enabled aptasensors have shown considerable promise for the 
early detection of cancer biomarkers. Aptamers have gained 
much attention in the last few decades and are explored for 
diagnostic and even therapeutic purposes. The ease of syn-
thesis, low cost, and stability, make aptamer preferable can-
didate over other BREs. Aptamers also have many pitfalls 
including difficult multianalyte detection, cross-reactivity, 
poor precision, etc. The limiting factor in the designing of 
aptamers is the library design. It usually depends on the oli-
gonucleotide’s quality and length, its structural stability, spe-
cific binding sequences. The quality of the oligonucleotides 
depends on the nucleotide’s ratio and the level of complexity 
of an aptamer library. More and more research in the field 
to make aptamer preferable, cost-effective has improved its 
demand. More research is in demand for better integration 
and detection of cancer biomarkers. Advanced bioinformatics 
techniques and genetic algorithm-based methods are required 
for studying multiple cancer cells and studying the binding 
affinities of biomarkers with specific aptamers. Major chal-
lenges which need to be addressed include the methods to 
screen aptamer rapidly with high specificity, maintaining 
stability in the biological environment, reducing the toxic-
ity of nanomaterials used in conjugation with aptamers. The 
MXene and aptamer-based devices can be commercialized 
as POCT devices. Current approaches for the diagnosis of 
various diseases have been using a lateral flow-based system 
either in the form of electrical or optical-based devices. The 
major challenge is device miniaturizations and multiplex-
ing. POCT devices should be affordable, sensitive, specific, 
user-friendly, robust and can always be performed outside a 
laboratory or hospital by a non-technical person or by a lay-
man as per ASSURED criteria. Other than cost-cutting, the 
POC test devices should give a signal in a lesser sample vol-
ume (microliter). The device that can differentiate between 
different biomolecules and can be used for multiplex analyte 
sensing is the need of the hour. MXene enabled electrochemi-
cal aptasensors to have the potential to fulfill the criteria for 
effective POCT devices for early disease diagnostic.

There is an enormous interest in AI-integrated POCT 
devices to improve treatment efficacy and health care. A 
convolutional neural network (CNN) is one of the impor-
tant AI-based tools that can be integrated with devices 
for the prediction of disease in resource-limited settings. 
These devices can also be interlinked with the top-class 
portable healthcare interfaces such as smartphones, smart-
watches, and other wearable devices. These devices can 
also be used to monitor the healthy as well as the patient’s 
conditions. By integrating these devices with the IoT and 
IoMT devices, the past and present records of the indi-
vidual’s health condition can be assessed by medical prac-
titioners for better disease prognosis and decision making 
[222, 223]. These devices can be used to forecast clinical 
conditions digitally. This will be a rapid, cost-effective, 
intelligent approach to deal with the disease condition 
even in resource-limited settings. The detailed insight of 
MXene-enabled healthcare diagnostics coupled with IoT 
and IoMT and smartphones and their futuristic applica-
tion are illustrated in Fig. 10. With the interdisciplinary 
amalgamation of various fields such as material chem-
istry, biomedical engineering, computational chemistry, 
the MXene enabled electrochemical aptasensor to have 
the potential to tackle the challenges associated with the 
fabrication and development of POCT devices for early 
cancer diagnostics.

7  Concluding Remarks

Despite the various advancements in the field of oncology, 
cancer still poses an enormous risk and challenges to tackle. 
There are several challenging factors which are needed to be 
addressed and resolved. This review emphasizes of MXene, 
MXene-based materials, and their conjugation with aptam-
ers for the fabrication of electrochemical aptasensor for can-
cer diagnostics with a focus on the current trends, important 
hurdles, and their future insights. The role of nanotechnol-
ogy in dealing with deadly diseases such as cancer is impor-
tant. Many portable biomedical devices for imagining, sens-
ing, and other purposes were successfully developed using 
nanomaterials. MXene is a new class of nanomaterial emerg-
ing at a high rate. MXene is significantly used for diagnostic 
and other biomedical purposes. Many advancements have 
been made globally by many investigators to explore the 
properties of MXene. On the other hand, aptasensors as 
POCT have achieved significant attention in the past few 
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decades. The aptamers have remarkable advantages over the 
conventional biorecognition elements. The aptasensors are 
economical, stable, sensitive, selective, and show negligible 
batch-to-batch variation. This review focused on MXene-
enabled electrochemical aptasensors for the detection of can-
cer biomarkers. However, the validation of these aptasensors 
in a larger patient cohort using a real sample is still needed. 
Further, challenges associated with device miniaturization, 
multiplexing, and its integration with IoT-enabled smart-
phones need to be resolved by using an amalgamation of 
interdisciplinary fields to optimize the POCT sensing sys-
tems. The development of MXene-enabled electrochemi-
cal aptasensor for the real-time, cost-effective, and early 
diagnosis of cancer still has a long way to go. Nevertheless, 
there are many hurdles in the commercial utilization of the 
MXene-based aptasensors; however, further research in this 
field will prepare the base for the commercialization of the 
MXene-based aptasensors for cancer diagnostics.
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