Supporting Information for

Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode

Zhenzhen Wu^{1,†}, Meng Li^{1,†}, Yuhui Tian¹, Hao Chen¹, Shao-Jian Zhang², Chuang Sun³, Chengpeng Li⁴, Milton Kiefel⁴, Chao Lai³, Zhan Lin^{2, *}, Shanqing Zhang^{1, *}

¹Centre for Clean Environment and Energy, Griffith University, Gold Coast 4222, Australia

²Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China

³School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China

⁴Institute for Glycomics, Griffith University, Gold Coast 4222, Australia

[†]Zhenzhen Wu and Meng Li contributed equally to this work.

*Correspondence authors. E-mail: <u>zhanlin@gdut.edu.cn</u> (Z. Lin), <u>s.zhang@griffith.edu.au</u> (S.Q. Zhang)

Supplementary Figures and Tables

Fig. S1 The morphologies and of Zn anode after cycling at a capacity of 1 mAh cm⁻² and current density of 2 mA cm⁻² in ZnSO₄ electrolyte (**a-b**) and ZnSO₄-CHD electrolyte (**c-e**): **a** and **c** are after 15 cycles, **b** and **d** are after 200 h, **e** is after 1800 h. The bar is 10 μ m. Insertion is the magnified image with a scale bar of 1 μ m

Fig. S2 Morphology and element analysis of metal Zn anode after 200 cycles at 1 mAh cm⁻² and 2 mA cm⁻². SEM images of Zn anode in ZnSO₄-CHD electrolyte (**a**) and in ZnSO₄ electrolyte (**c**); Elements content of Zn surface by SEM-EDS method in ZnSO₄-CHD electrolyte (**b**) and in ZnSO₄ electrolyte (**d**)

Fig. S3 Top-view SEM images of Zn deposition on Cu foil at 2 mA cm⁻² for 1 h without (**a-b**) and with CHD additives (**c-d**) in ZnSO₄ aqueous solution.

Fig. S4 XRD patterns of bare copper foil and that after the Zn deposition for 2 hours at 1mA cm⁻², 2mAh cm⁻² with and without CHD additives

Fig. S5 The *in-situ* optical microscopy system to observe the Zn anode surface during the constant Zn plating process

Fig. S6 In-situ EC-GC profiles during plating for 1h at the current density of 10 mA cm⁻²

Fig. S7 The MD simulations at 298.15K and 2000ps of $ZnSO_4$ system electrolyte (**a-c**) and $ZnSO_4$ -CHD system electrolyte (**d-f**): The snapshot of representative Zn-solvation sheath in the ZnSO₄ system (**a**) and ZnSO₄-CHD system (**d**), the red, white, grey and blue sticks represent oxygen, hydrogen, zinc, and carbon atoms, respectively; The time versus temperature figure in the ZnSO₄ system (**b**) and ZnSO₄-CHD system (**e**); The time versus density figure in the ZnSO₄ system (**c**) and ZnSO₄-CHD system (**f**)

Fig. S8 The MD simulations at 298.15K and 100ps of Zn^{2+} -O (H₂O) in ZnSO₄ system electrolyte

Fig. S9 The number of hydrogen bonds around the molecular cluster of $[Zn(H_2O)_5(CHD)]^{2+}$ and $[Zn(H_2O)_6]^{2+}$ in the electrolyte from the MD simulation

Fig. S10 Measurements of contact angles after the droplet stable for 3 minutes. Contact angles of electrolytes with blank electrolyte (**a**), 0.02mg ml⁻¹ (**b**), 0.04mg ml⁻¹ (**c**), 0.1mg ml⁻¹ (**d**), 0.16mg ml⁻¹ (**e**), and 0.2 mg ml⁻¹ (**f**) CHD additive on Zinc electrode surface

Fig. S11 The XPS spectra of Zn foil in the pristine state and immersion in CHD-assisted electrolyte for 24 and 48 hours. (a) Zn 2p; (b) O 1s

Fig. S12 (a) Nanoscratch test of copper foil surface in $ZnSO_4$ -CHD and $ZnSO_4$ aqueous solution. (b) Tafel curves of Zn/Zn symmetric cells. (c) EIS curves of Zn/Zn symmetric cells before and after 1st cycle. The battery was tested at 1mAh cm⁻² and 2mA cm⁻²

Fig. S13 (a) EIS of stain steel-stain steel cell in the electrolyte with and without CHD additives. Insertion is the magnified curves of EIS at the high-frequency region. (b) linear sweep voltammetry (LSV) with and without CHD additives in Zn|Cu cells

Fig. S14 (a-b) Charge-discharge profiles of $Zn|V_2O_5$ full cell from 0.2 to 4 A g⁻¹ with (a) and without (b) CHD additives

Table S1 Comparison of cycling performance for the modified electrolytes with various additives in Zn|Zn symmetric cells

The modified electrolytes	Lifespan	Refs.
CHD + 2 M ZnSO ₄ in H ₂ O	2 mA cm ⁻² , 1 mAh cm ⁻² for 2200 h 5 mA cm ⁻² , 1 mAh cm ⁻² for 1000 h 10 mA cm ⁻² , 1 mAh cm ⁻² for 650 h	This work
$1\ M\ Zn(TFSI) + 20\ M\ LiTFSI\ in\ H_2O$	0.2 mA cm^{-2} , 0.035 mAh cm $^{-2}$ for 170 h	[S1]
3 M Zn(CF ₃ SO ₃) ₂ in H ₂ O	0.1 mA cm^{-2} , 0.1mAh cm^{-2} for 800 h	[S2]
Ti ₃ C ₂ TX MXene + 2 M ZnSO ₄ in H ₂ O	1 mA cm ⁻² , 1 mAh cm ⁻² for 500 h	[S3]
Glucose + 1 M ZnSO ₄ in H ₂ O	1 mA cm ⁻² , 1 mAh cm ⁻² for 2000 h	[S4]
DMSO + 1.6 M ZnCl ₂ in H ₂ O	0.5 mA cm^{-2} , 0.5 mAh cm^{-2} for 1000 h	[S5]
$\begin{array}{c} PAM+1 \ M \ ZnSO_4+0.5 \ M \ Na_2SO_4 \ in \\ H_2O \end{array}$	1 mA cm^{-2} , 1 mAh cm^{-2} for 180 h	[S6]
Diethyl ether + 3M Zn(CF ₃ SO ₃) ₂ in H ₂ O	$0.2~\mathrm{mA~cm^{-2}},0.2~\mathrm{mAh~cm^{-2}}$ for 250 h	[S7]
Zn(ClO ₄) ₂ *6H ₂ O in SN	$0.05~\mathrm{mA~cm^{-2}},0.5~\mathrm{mAh~cm^{-2}}$ for 800 h	[S8]
0.5 M ZnTFMS in DMF	1 mA cm ⁻² , 1 mAh cm ⁻² for 2800 h	

Table S2 Comparison of the electrochemical performance in $Zn | V_2 O_5$ full cells

V2O5 mass loading	Electrolyte	Specific capacity	Cycling stability	Refs.
<i>ca.</i> 5.0 mg cm ⁻²	$\begin{array}{c} CHD+2 \ M \ ZnSO_4 \ in \\ H_2O \end{array}$	300 mAh g ⁻¹ (200 mA g ⁻¹)	2000 cycles (2 A g ⁻¹)	This work
2.5 mg cm ⁻²	3 M Zn(CF ₃ SO ₃) ₂ in H ₂ O	381 mAh g ⁻¹ (60 mA g ⁻¹)	950 cycles (6 A g ⁻¹)	[S10]
N/A	3 M ZnSO ₄ in H ₂ O	224 mAh g ⁻¹ (100 mA g ⁻¹)	400 cycles (2 A g ⁻¹)	[S11]
N/A	21 MLiTFSI + 1 M Zn(CF ₃ SO ₃) ₂ in H ₂ O	238 mAh g ⁻¹ (50 mA g ⁻¹)	2000 cycles (2 A g ⁻¹)	[S12]
3.2 mg cm ⁻²	0.5 M Zn(TFSI)2 in AN	196 mAh g ⁻¹ (14.4 mA g ⁻¹)	120 cycles (14.4 mA g ⁻¹)	[S13]
5-7 mg cm ⁻²	1 M ZnSO ₄ in H ₂ O	260 mAh g ⁻¹ (2400 mA g ⁻¹)	1000 cycles (2400 mA g ⁻ 1)	[S14]
0.9-1.2 mg cm ⁻²	2 M ZnSO ₄ in H ₂ O	470 mAh g ⁻¹ (500 mA g ⁻¹)	1000 cycles (10 A g ⁻¹)	[S15]
1.0 mg cm ⁻²	$\begin{array}{l} Ti_{3}C_{2}TX \ MXene+2\\ M \ ZnSO_{4} \ in \ H_{2}O \end{array}$	390 mAh g ⁻¹ (200 mA g ⁻¹)	300 cycles (1 A g ⁻¹)	[S3]

Supplementary References

[S1] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543-549 (2018). <u>https://doi.org/10.1038/s41563-018-0063-z</u>

- [S2] N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn₂O₄ cathode in Zn (CF₃SO₃)₂ electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894-12901 (2016). <u>https://doi.org/10.1021/jacs.6b05958</u>
- [S3] C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti₃C₂T_X MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). <u>https://doi.org/10.1007/s40820-021-00612-8</u>
- [S4] P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 133(33), 18395-18403 (2021). https://doi.org/10.1002/anie.202105756
- [S5] L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404-21409 (2020). <u>https://doi.org/10.1021/jacs.0c09794</u>
- [S6] Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841-15847 (2019). https://doi.org/10.1002/ange.201907830
- [S7] W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275-281 (2019). <u>https://doi.org/10.1016/j.nanoen.2019.05.042</u>
- [S8] W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557-1574 (2020). <u>https://doi.org/10.1016/j.joule.2020.05.018</u>
- [S9] Y. Wang, N. Wang, X. Dong, B. Wang, Z. Guo et al., Zinc-organic battery with a wide operation-temperature window from -70 to 150 °C. Angew. Chem. Int. Ed. 59(34), 14577-14583 (2020). <u>https://doi.org/10.1002/ange.202005603</u>
- [S10] M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V₂O₅*nH₂O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. **30**(1), 1703725 (2018). <u>https://doi.org/10.1002/adma.201703725</u>
- [S11] J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang et al., Investigation of V₂O₅ as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457-4460 (2018). <u>https://doi.org/10.1039/C8CC02250J</u>
- [S12] P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V₂O₅ aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9(49), 42717-42722 (2017). <u>https://doi.org/10.1021/acsami.7b13110</u>
- [S13] P. Senguttuvan, S.D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V₂O₅ battery. Adv. Energy Mater. 6(24), 1600826 (2016). <u>https://doi.org/10.1002/aenm.201600826</u>
- [S14] D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). <u>https://doi.org/10.1038/nenergy.2016.119</u>

[S15] Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li⁺ intercalated V₂O₅·nH₂O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157-3162 (2018). <u>https://doi.org/10.1039/C8EE01651H</u>