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Rigid polyurethane foam reinforced with cellulose 
whiskers: Synthesis and characterization 
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A novel nanocomposite of rigid polyurethane foam was prepared by the polymerization of a 
sucrose-based polyol, a glycerol-based polyol and polymeric methylene diphenyl diisocyanate in the 
presence of cellulose whiskers. The cell morphology of the resulting foams was examined by scanning 
electron microscopy which showed both the pure foam and the nanocomposite foam had 
homogeneous cell dispersion and uniform cell size of approximately 200 μm. Analysis of the foams by 
Fourier transform infrared (FT-IR) spectroscopy indicated that both samples exhibited signals 
attributed to the polyurethane including the NH stretching and bending vibrations at 3320 cm-1 and 
1530 cm-1, the OC=O vibration at 1730 cm-1 and the CO-NH vibration at 1600 cm-1. FT-IR analysis of 
the nanocomposite indicated that cellulose whiskers were crosslinked with the polyurethane matrix 
as the signal intensity of the OH stretch at 3500 cm-1 was significantly reduced in comparison to the 
spectral data acquired for a control sample prepared from the pure polyurethane foam mixed with 
cellulose whiskers. According to ASTM standard testing procedures, the tensile modulus, tensile 
strength and yield strength of the nanocomposite foam were found to be improved by 36.8%, 13.8% 
and 15.2%, and the compressive modulus and strength were enhanced by 179.9% and 143.4%, 
respectively. Dynamic mechanical analysis results testified the improvements of mechanical 
properties and showed a better thermal stability of the nanocomposite foam. 
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Cellulose is one of the most abundant renewable materials in 

nature, representing about 1.5�1012 tons of the total annual 
biomass production, and is considered a valuable bioresource 

for addressing society’s increasing demand for environmentally 

friendly and biocompatible products [1]. It is composed of 

assemblies of microfibrils where the polymeric chains of 

β-(1,4)-D-glucose molecules are stabilized by inter- and 

intra-molecular hydrogen bonding. Upon acid hydrolysis, 

transverse cleavage happens primarily along the amorphous 

region of microfibrils, and under certain conditions release 

cellulose whiskers. These nanocellulose structures typically 

have a diameter on the order of 10�20 nm and a length of 

100�300 nm when prepared from wood pulp or 1100�2000 nm 

long when derived from tunicates [2]. Cellulose whiskers 

exhibit a high bending strength of 10 GPa, and elastic modulus 

of 143 GPa [3,4], and changes in electrical, optical, and 

magnetic properties with respect to the typical micron sized 

cellulose fibers [5]. There has been a growing interest in 

cellulose whisker-based composites with both natural and 

synthetic polymers as the matrix, in part, because of the 

improvements in the mechanical and thermal properties of the 

resulting nanocomposites [3,6-10].  

Polyurethane (PU) is an important commercial polymer 

possessing a wide range of physical and chemical properties 

based on different combinations of starting materials [11]. Rigid 

PU foams are highly crosslinked polymers with a closed cell 
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structure which are typically made from polymeric methylene 

diphenyl diisocyanate and polyols with hydroxyl index (IOH) 

between 300 and 800 and viscosity below 300 Pa�s [12,13]. 
Rigid PU foams offer low density, thermal conductivity, and 

moisture permeability properties along with high strength to 

weight ratio performance attributes. These properties have 

made PU one of the most common polymeric foam used on a 

global basis [14], which is reflected in its multitude of 

applications including ship-building, automotive, furniture, 

footwear, and packaging [15]. However, for such applications, 

rigid PU foams still present some disadvantages, such as low 

thermal stability and low mechanical strength [16]. Therefore, a 

substantial effort has been directed towards developing high 

performance rigid PU foams. Glycerol and cellulose fiber 

modified water-blown soy polyol-based PU foams were 

reported to have increased density and rigidity [17,18]. Rigid 

PU foams reinforced with spherical TiO2, platelet nanoclay, 

rod-shaped carbon nanofibers [19], and pristine and 

organically-modified layered silicates [14,20] have been 

investigated and shown to provide a significant enhancement of 

thermal and mechanical properties. However, to date, little 

work has been done on developing rigid PU foam reinforced 

with cellulose whiskers. 

In the present study, we summarized the benefits of 

preparing a rigid PU foam reinforced with 0.75 wt% cellulose 

whiskers especially with respect to improvements in the 

mechanical properties of the resulting foam. Scanning electron 

microscope was used to characterize the cell structure of both 

foams. FT-IR spectroscopy was performed to study the 

chemical structure of these materials. Tensile and compressive 

properties as well as thermal stability were compared between 

the control foam and nanocomposite foam. 

Material and methods  

Materials 
A commercial fully bleached softwood kraft pulp was used 

to prepare cellulose whiskers. Sulfuric acid (98 wt%), 

neopentane, dimethylformamide (DMF) were purchased from 

VWR. Polymeric methylene diphenyl diisocyanate (MDI) with 

an average functionality of 2.7 and NCO content of 31.5% 

(Rubinate M), sucrose-based polyol with a hydroxyl value of 

356 mg KOH/g polyol (Jeffol SD-361), glycerol-based polyol 

with a hydroxyl value of 246 mg KOH/g polyol (Jeffol FX 

31-240), dimethylcyclohexylamine (Jeff cat DMCHA), and 

1-methyl-4- (2-dimethylaminoethyl) piperazine (Jeff cat TR-52) 

were all kindly provided by Huntsman Polyurethanes. Silicone 

surfactant (DABCO DC 5604) was obtained from Air Products 

and Chemicals, Inc. All chemicals were used as received. 

Preparation of Cellulose Whiskers 

Cellulose whiskers were prepared following a published 

method utilizing sulfuric acid [21]. In brief, softwood kraft pulp 

was ground in a Wiley mill to pass through a 20-mesh screen. 

Sulfuric acid (64 wt%) and pulp in a ratio of 10 ml/g was 

reacted at 45ºC for 45 min with strong mechanical stirring. The 

reaction was then halted by adding 10-fold of deionized (DI) 

water. The sediment was centrifuged for 10 min at 12000 rpm 

and the precipitate was collected, re-dispersed, and 

re-centrifuged twice. The product was dialyzed against DI water 

for 3 days using the regenerated cellulose dialysis tubing with a 

12000�14000 molecular weight cut off until the pH of the 
solution reached 7. Sonication was performed to the neutral 

whiskers solution for 30 min while sitting in an ice bath. The 

colloidal suspension was centrifuged for 5 min at 5000 rpm and 

the cloudy supernatant whiskers were collected and kept at 5oC 

prior to use. 

Preparation of the Pure Polyurethane Foam 
and Nanocomposite Foam 

A rigid PU foam was prepared following a one-shot 

method [22]. This procedure involved mixing certain amount of 

polyols (Jeffol FX 31-240 and Jeffol SD-361), neopentane, 

catalysts (Jeff cat DMCHA and Jeff cat TR-52), and surfactant 

(DABCO DC 5604) at 600 rpm for 1 min as summarized in 

Table 1. Polymeric MDI was then added with stirring at 1500 

rpm for 20 s. After reacting for 3 min, sufficient polymerization 

and crosslinking had occurred to solidify the foam. For 

preparation of the nanocomposite foam, freeze dried cellulose 

whiskers (0.75 wt% of the total weight of polyols and 

Polymeric MDI) were first dispersed in DMF by sonication [6], 

and then polyols were added and mixed followed by removing 

DMF under reduced pressure. This mixture was employed in an 

analogous as described for the preparation of the control rigid 

PU foam. Both foams were cured at room temperature for 48 h 

before use [23].  

Characterizations 
The cell structures of the control and nanocomposite foam 

were examined under a field emission scanning electron 

microscope (LEO 1530 SEM). Samples were coated with gold 

palladium using EMS 350 sputter coating. SEM images were 

obtained using a 5 kV accelerating voltage. FT-IR spectra of 
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both foams were recorded between 4,000 and 600 cm-1 with a 

resolution of 4.00 cm-1 and 64 scans on a Magna 550 FT-IR 

spectrometer. Samples were prepared with KBr powder to 

obtain pellets with a 1 mm thickness.  

Physical Testing 

Tensile tests were performed on the Instron Corporation 

tensile testing machine 5566 according to ASTM D 638-08 

using type IV specimen with dimension: thickness = 4 mm, 

width = 6 mm, gage length = 25 mm. The crosshead speed was 

5 mm/min. Compression tests were carried out with a 17-71 

TMI Monitor/ Compression tester according to ASTM C 

365M-05 on cylindrical specimens with dimension: diameter = 

30 mm, height = 15 mm. The crosshead speed was 6 mm/min. 

For each tensile and compressive data point, five specimens 

were tested, and the average value (ave.) was taken along with 

the standard deviation (S.D.). 

Thermal Mechanical Analysis 

Dynamic mechanical analysis (DMA) was carried out with 

a Q800 TA Instrument in tension clamps to determine the 

thermo mechanical response of the foams. The specimen was a 

rectangular strip with dimensions of 10×6×5 mm3. 

Measurements were performed at 1 Hz frequency. A 

temperature scan mode was used from room temperature up to 

180ºC with a heating rate of 2ºC/min. The main relaxation 

temperatures associated with Tg were determined from the 

temperature position of the maximum in tan δ. 

Results and Discussion 

Two sensitive and important factors to make rigid PU 

nanocomposite foams are the presence of water and the 

dispersion of cellulose whiskers in the polymer matrix. As 

water can act as a chemical blowing agent due to the released 

carbon dioxide when reacting with isocyanates, its content in 

cellulose whiskers needs to be controlled. Hence, for this study 

cellulose whiskers were acquired by freeze drying. We chose 

neopentane as a physical blowing agent because of its general 

availability and reported benefits to the physical properties of 

the resulting foam [24]. Preliminary explorations demonstrated 

that using a well mixed suspension of cellulose whiskers in 

DMF resulted in improved dispersion of the whiskers in the 

polymer matrix. Based on the formulation described in Table 1, 

the reaction of polyols and polymeric MDI yielded the control 

foam with a density of 537.5�5.1 kg/m3. Repeating the same 

experiment in the presence of 0.75 wt% cellulose whiskers 

provided a nanocomposite PU foam with a density of 535.9�3.3 
g/m3. 

Scanning electron microscope images of the control foam 

and nanocomposite foam reinforced with 0.75 wt% cellulose 

whiskers (see Fig.1) showed that the closed cells had 

homogeneous dispersion in the PU foams and the cell sizes 

were approximately 200 μm for both samples. Cellulose 

whiskers did not alter the closed cell structure presumably 

because they can act as nucleation sites to promote the 

formation of fine cell structures [20]. 

FT-IR spectroscopy was utilized to study the chemical 

structures of the control and nanocomposite foams (see Fig. 2). 

The presence of urethane linkages can be readily observed due 

to the NH stretching and bending vibration absorptions at 

3320cm-1 and 1530 cm-1, OC=O vibration at 1730 cm-1, and 

CO-NH vibration at 1600 cm-1. Methyl group at 2930 cm-1, 

O-CO at 1230 cm-1, and C-O at 1090 cm-1 are from the 

polyether polyol and a small contribution of cellulose whiskers 

Table 1. Formulation of the control rigid polyurethane foam. 

Chemicals wt%

Sucrose based polyols 27.90

Glycerol based polyol 16.70

Polymeric MDI 40.60

Dimethylcyclohexylamine 1.30

1-methyl-4-(2-dimethylaminoethyl) piperazine 0.90

neopentane 11.20

Silicone surfactant 1.40

 

FIG. 1. SEM images of the control foam (a) and the nanocomposite foam (b) 

(Scale bar: 200μm).  
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[3]. In order to investigate the interactions between the cellulose 

whiskers and the PU matrix with the nanocomposite, a 

spectrum of the control foam which was mechanically mixed 

with 0.75 wt% cellulose whiskers was recorded. Compared to 

the mixture of pure PU and cellulose whiskers, the 

nanocomposite foam shows a reduction in the intensity of the 

signal centered at 3500 cm-1 which is due to the cellulose O-H 

stretching vibration and N-H stretching vibration. The 

decreased signal intensity at 3500 cm-1 for the nanocomposite 

when normalized to the peak of the carbonyl group at 1730 cm-1 

was attributed to the crosslinking of cellulose hydroxyl groups 

with isocyanate units during polyurethane synthesis. 

Tensile stress-strain curves of the control PU foam and 

nanocomposite foam are shown in Fig. 3. The tensile properties 

are given in terms of tensile modulus, yield strength and tensile 

strength as summarized in Table 2. Polyurethane foam 

reinforced with 0.75 wt% cellulose whiskers has the same 

density as the control foam; however, it exhibited an increase in 

tensile modulus, yield strength and tensile strength by 36.8%, 

15.2% and 13.8%, respectively. 

Compressive stress-strain curves of the control foam and 

nanocomposite foam are shown in Fig. 4. The compressive 

properties in terms of compressive modulus and strength are 

summarized in Table 3. It is observed that with the same density, 

the modulus and strength of the nanocomposites are 

dramatically improved by 179.9% and 143.4%, respectively. 

This substantial improvement in the compressive properties is 

accomplished at a much lower content of cellulose whiskers 

than rigid PU foams reinforced with other inorganic nano 

particles up to 5 wt% [19]. 

There are several factors that can contribute to the 

mechanical improvements, especially the compressive 

properties. Cellulose whiskers have an intrinsic high bending 

strength of 10 GPa, high elastic modulus of 143 GPa and high 

aspect ratio [3,4,20], and those properties can undoubtedly 

enhance the mechanical properties of cellulose whisker/rigid 

polyurethane nanocomposite foam. The high specific surface 

area of cellulose whiskers may also contribute because of the 

chemical crosslinking between the cellulose whisker hydroxyl 

groups and the isocyanate groups. Finally, the improvement of 

mechanical properties of nanocomposites can also be attributed, 

in part, to the creation of multiple crack sites and/or branching 

due to the presence of nanoparticles into the polymer which 

 
FIG. 2. FT-IR spectra of the control foam (a), the nanocomposite foam reinforced 

with 0.75 wt% cellulose whiskers (b), and a mixture of the control foam and 

0.75 wt% cellulose whiskers (c).  

Table 2. Tensile properties of the control foam and the nanocomposite foam. 

Whisker (wt%) 
Tensile modulus (MPa)  Yield strength (MPa)  Tensile strength (MPa) 

Ave.�S.D. Gain (%)  Ave.�S.D. Gain (%)  Ave.�S.D. Gain (%) 
0 4.37�0.41 -  0.316�0.031 -  0.485�0.043 - 

0.75 5.98�0.37 36.8  0.364�0.025 15.2  0.552�0.015 13.8 

 
FIG. 4. Compressive stress-strain curves of the control foam and the 

nanocomposite foam. 

 

FIG. 3. Tensile stress-strain curves of the control foam and the nanocomposite 

foam. 
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delays the fracture processes in nanocomposites [19]. 

DMA is a thermal analysis technique that measures the 

properties of materials as they are deformed under periodic 

stress. Storage modulus, loss modulus and tan δ can be directly 

given by the test while a variety of other fundamental material 

parameters can be defined from them such as glass transition 

temperature Tg. In Fig.5 sumamrizes the typical DMA curves of 

storage modulus and tan δ within a temperature range from 

25ºC to 180ºC. An abrupt diminution of the storage modulus, 

which relates to the mechanical failure of the material, can be 

observed. The appearance of a tan δ peak which is so-called 

sample damping is associated with the material transition and is 

used historically in literature to define Tg [25]. The modulus 

value of the nanocomposite foam is significantly higher than 

the control foam at temperatures below Tg. These results 

support the suggestion that the high mechanical strength of 

cellulose whiskers and the crosslinking introduced by whiskers 

improves the mechanical properties of the rigid PU 

nanocomposite foam. It can also be observed that Tg values of 

the nanocomposite foam is a little higher than the control foam, 

which means a comparative or better thermal stability is 

achieved by the reinforcement of polyurethane with cellulose 

whiskers. 

Conclusions 

In summary, a rigid polyurethane nanocomposite foam 

reinforced with 0.75 wt% cellulose whiskers was prepared with 

homogeneous closed cell dispersion and uniform cell size. The 

improved mechanical properties and thermal stability of the 

nanocomposite foam provide a new and promising application 

of cellulose whiskers with an important synthetic polymer. 

Ongoing studies will further define the benefits of cellulose 

whiskers with synthetic and natural-based polyurethane foams. 
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