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HIGHLIGHTS

• Concept of “Semi‑implantable Bioelectronics” is raised to cover the major advances and emphasize new insights into building external 
device.

• The principle and strategies of semi‑implantable device for cell applications are summarized to discuss the typical methodologies to 
access to intracellular environment by cell penetration and various efficient applications.

• The principle and strategies of semi‑implantable device for in vivo applications are highlighted to discuss the various types of trans‑
dermal devices, brain electrodes and microneedle devices for the applications.

ABSTRACT Developing techniques to effectively and 
real‑time monitor and regulate the interior environment of 
biological objects is significantly important for many bio‑
medical engineering and scientific applications, including 
drug delivery, electrophysiological recording and regula‑
tion of intracellular activities. Semi‑implantable bioelec‑
tronics is currently a hot spot in biomedical engineering 
research area, because it not only meets the increasing 
technical demands for precise detection or regulation of 
biological activities, but also provides a desirable platform 
for externally incorporating complex functionalities and 
electronic integration. Although there is less definition and summary to distinguish it from the well‑reviewed non‑invasive bioelectronics 
and fully implantable bioelectronics, semi‑implantable bioelectronics have emerged as highly unique technology to boost the development 
of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of “Semi‑implantable 
bioelectronics”, summarizing the principle and strategies of semi‑implantable device for cell applications and in vivo applications, dis‑
cussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applica‑
tions. This review is meaningful for understanding in‑depth the design principles, materials fabrication techniques, device integration 
processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of 
future minimally invasive bioelectronics.
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1 Introduction

In modern society, health monitoring and disease treatments 
are extensively concerned by human. To improve life quality, 
personalized healthcare emerges to optimize the diagnosis 
and treatment according treatment according to individual 
individual person’s unique state, which would improve the 
therapeutic efficacy and reduce the adverse effects. With the 
personalized preventive care or personalized drug therapy 
strategies, the efficacy and cost of healthcare can be well 
regulated to benefit the individual patient. To achieve this 
goal, real‑time, in situ detection and regulation of bioinfor‑
mation is of great importance to understand the life science 
and develop the new generation technologies of diagnosis 
and treatment. Precise acquisition of bioinformation, such as 
detection of the specific physiological biomarkers or indica‑
tors, facilitates to guide the optimization of diagnosis and 
treatment strategies for the specific patients. Chip‑based sen‑
sors have achieved promising progress in collecting infor‑
mation of body and extracellular fluid. These sensors are 
designed for the detection of DNA, RNA, peptides, proteins, 
ions, metabolites, and other bioactive molecules. For exam‑
ple, the gene chip and protein chip‑based sensors are power‑
ful to perform the genomes or proteomics analysis for body 
or extracellular samples in a simultaneous, efficient and 
accurate manner, and these chip sensors have been widely 
applied in disease diagnosis, drug screening, personalized 
medicine, environmental monitoring, bioinformatics, and 
other related fields. However, these biochips usually detect 
the samples by extraction of biofluid such as blood sampling, 
or from tissue by biopsy, which hampers the real‑time and 
in situ information detection.

The rapid developments of wearable and implantable 
electronics have also paved a promising way for the person‑
alized and precise medicine. Nowadays, flexible and stretch‑
able characteristics of electronics are emerging development 
trends, where non‑invasive and implantable electronics are 
often self‑adaptive and conformal to couple on the curved 
and deformable tissue surface, which is of great superiority 
compared to the conventional rigid planar electronics. With 
the advanced micro/nanofabrication technologies and versa‑
tile functional materials, the high‑throughput, multiplexed, 
high‑sensitivity, and miniaturized biosensors are developed 
and integrated into non‑invasive wearable or implantable 
devices to continuously monitor the physiological and 

biochemical signals. Meanwhile, the portable and minia‑
turized wearable or implantable bioelectronics provides 
promising strategies for personalized healthcare and precise 
therapy, which are both based on continuous monitoring and 
diagnosis. Remarkably, the real‑time closed‑loop regulation 
is the advanced characteristic and function of wearable non‑
invasive and implantable electronics.

Wearable device is often noninvasive and biocompat‑
ible to collect bioinformation from the body surface. The 
noninvasive electrophysiology recording systems for ECG, 
electrocorticogram (EEG), or EMG are successful cases of 
applications of wearable device, and these bioelectrical sig‑
nals can greatly facilitate the acquisition of information to 
directly reflect the health and function status of heart, brain, 
or muscle. In addition to medical devices, noninvasive wear‑
able recording systems (e.g., smart watch, smart band) are 
attractive hotspots in recent decade for the monitoring of 
biophysical and biochemical signals (ECG, pulse, blood 
pressure, bioactive molecules, and other metabolites) from 
living body. Meanwhile, commercial implantable devices, 
such as fully implantable glucose sensors, generally includ‑
ing sensor probe, electronics modules, data transmission 
module, and battery in an integrated device, can provide 
real‑time monitor of blood glucose level and support the 
extensive application for months. Heart pacemaker is 
another successful case of implantable device, which con‑
sists of pulse generator or electrode wires. By rhythmically 
stimulating the local cardiomyocytes, the heart pacemaker 
facilitates electrical signals to spread to the entire heart, 
which could regulate the functions of contraction and blood 
pumping, while the electrode wires also transmit the ECG 
of heart cavity to pack‑maker device for feedback control.

In spite of the early success of wearable device and 
implantable devices for health regulation by real‑time diag‑
nosis and close‑loop treatment, the functional scope of them 
is still suggested to inherit limitations. The wearable devices 
conventionally attached on the outer surface of skin can only 
measure the physiological signals on the body surface, such 
as ECG, pulse, or blood pressure. The sweat‑based biomarker 
detection relies on sufficient sweat samples, and the result 
accuracy is insufficient to reflect the actual states of analytes 
in blood or interstitial fluids, which is rarely able to actually 
achieve the disease‑related information in the body. On the 
other hand, the implantable devices can record the informa‑
tion deeply inside the body, while the power supply, volume, 
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and material safety of implantable devices are demanded to 
be developed for the successful and further application. In 
addition to the devices for human body monitoring, a large 
number of devices are designed to record the electrophysi‑
ological and biochemical signals of cells. Though the micro‑ 
or nanodevice can record the weak extracellular electrical 
signals or trace biomarkers of cells, the extracellular informa‑
tion is insufficient and inaccurate to reflect the physiological 
status of cells. For example, the electrophysiological devices 
can only record the extracellular potentials rather than intra‑
cellular ones, and signals distortion cannot be avoided due to 
passing through the cellular membrane. The electrochemical 
devices can only detect the metabolites in the extracellular 
microenvironment, and rarely able to accurately reflect the 
intracellular metabolism. Taking these limitations of non‑
invasive and implantable device into account, the forms of 
device between wearable and implantable device may be an 
effective complement for these potential shortcomings.

Here we raise the concept of “Semi‑implantable bioel‑
ectronics,” referring to functional or electronic devices that 
could access to the interior environment of biological objects 
such as cells, tissues, or animal/human bodies, while the 
connected bulk devices remained on the surface of the bio‑
logical objects. Compared with other bioelectronics, such 
as wearable bioelectronics or fully implantable bioelectron‑
ics, semi‑implantable bioelectronics establish a platform 
to precisely detect or regulate biological activities insides 
biological objects and perform externally incorporated 
functionalities by electronic integration. In the past decade, 
we witnessed the significant experimental and theoretical 
advances on various types of semi‑implantable bioelectron‑
ics, yet they have not been clearly defined and summarized 
to distinguish them from the well‑reviewed wearable bioel‑
ectronics and full‑implantable bioelectronics.

With the rapid technologies’ advances of bioelectron‑
ics, the semi‑implantable bioelectronics based on nanon‑
eedles for cell penetration have played important role in 
the recording and regulation of intracellular activity. Cell 
is separated from the outside environment by phospholipid 
bilayer, limiting the access of external to the rich informa‑
tion inside the cell. To investigate the intracellular activi‑
ties, it is necessary to reach the inside the cell through the 
phospholipid bilayer. Meanwhile, cell lipid bilayer is also a 
barrier for external tools to explore the intracellular biologi‑
cal and physiological events [1]. The conventional extracel‑
lular recording technology collects low‑quality biochemical 

and electrophysiological signals due to the barrier of cell 
membrane, and extracellular drug delivery suffers from low 
efficiency and large cell damage [2–7]. Consequently, it is 
urgently demanded to seek the safe and efficient intracel‑
lular operation or recording approaches. Due to the unique 
properties to pierce the cell membrane based on nanoneedle 
structures [8–14], semi‑implantable bioelectronics present 
effective cell penetration approaches for the biochemical and 
biophysical access, so that the high‑efficiency molecule/drug 
delivery and high‑quality intracellular electrophysiological/
biochemical sensing could be readily achieved [15–17].

The cell penetration efficacy of semi‑implantable devices 
is realized by spontaneous penetration [18–20] or artifi‑
cially assisted penetration, e.g., based on chemical coating 
[21–23], electroporation [24–26], mechanical force [27, 
28], or optoporation [29, 30]. Once the semi‑implantable 
device penetrates cell membrane, a large amount of intra‑
cellular sensing and regulating operations (e.g., electrical 
recording [31, 32], biochemical sensing [33–35], and drug 
delivery [36–38]) can be readily performed. For intracellular 
operation, the semi‑implantable devices have emerged as the 
powerful tools that have attracted a broad research interests.

In addition to the in cellular application, with the rapid 
technologies’ advances of biocompatible materials and 
flexible electronics, semi‑implantable electronic devices 
present promising prospect in real‑time and continu‑
ous monitoring of multiple physiological parameters in 
vivo, involving detection of basic electrophysiology and 
biochemical markers. Due to the semi‑implantable fea‑
ture, issues associated with skin barrier, signal integrity 
and power supply can be effectively addressed, while 
these limitations and restriction have been widely encoun‑
tered by conventional noninvasive device or fully implant‑
able devices. The investigation of semi‑implantable bio‑
electronic system can not only provide new opportunity 
to monitor the biomarkers of interstitial fluid (ISF) and 
record electrophysiology of subcutaneous tissues by the 
semi‑implantable sensors, but also deliver drugs and 
apply optical/electrical stimuli to the target tissues by the 
semi‑implantable stimulating probe/tubing. For example, 
the commercial continuous glucose monitoring devices 
are usually semi‑implanted into the body, remaining the 
measurement, data transmission, and power modules out‑
side the body [39–41]. Compared with wearable noninva‑
sive devices, the accuracy of glucose measurement based 
on this semi‑implantable strategy  is greatly improved. 
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Compared with fully implantable devices, the power 
durability and data transmission integrity are effectively 
ensured by integration with external module on body sur‑
face, so that frequent surgical operation could be avoided. 
Consequently, the semi‑implantable devices combine 
the advantages of wearable noninvasive and implantable 
devices, which are successful to achieve a wide variety 
of applications in vivo and meet the clinical applications. 
Based on the accurate measurement results  of semi‑
implantable strategy, close‑loop function (refers to the 
processing with a feedback component, which makes the 
detection more accurate through a feedback system) can 
be reliably perform for controlled drug delivery, which 
could prompt the semi‑implantable strategy into highly 
intelligent device. On the other hand, the electrophysi‑
ological signals in vivo using semi‑implantable devices 
mainly include electrocorticogram (EEG) and intracorti‑
cal signals without filtering by skull, so they could record 
more accurate signals than the noninvasive EEG [42–44]. 
To record the high‑throughput and high‑quality signals, a 
large number of semi‑implantable brain electrodes serve 
as utility tools for the electrical signal recording under 
the skull. In addition to the signal recording function, the 
regulating functions such as drug delivery and optical/
electrical stimulation are also developed and integrated 
in the semi‑implantable devices [45–47]. For the in vivo 
application, the semi‑implantable bioelectronics will be 
an optimal option taking the accuracy, practicability, and 
safety into account.

In this comprehensive review article, we will raise the 
concept of “Semi‑implantable Bioelectronics,” cover the 
major progresses with the most general applicability and 
emphasize new insights into the development of building 
external device that could access to the interior environ‑
ment of biological objects to precisely detect or regulate 
biological activities. To do so, we will first summarize the 
principle and strategies of semi‑implantable device for cell 
applications, discussing the typical methodologies to access 
to intracellular environment by cell penetration and their 
biosafety aspects, and various efficient applications includ‑
ing drug delivery, biochemical sensing and electrical record‑
ing insides cells. Then, we will highlight the principle and 
strategies of semi‑implantable device for in vivo applica‑
tions, discussing the various types of transdermal devices, 
brain electrodes and microneedle devices for the applica‑
tions including electrical recording, biochemical sensing, 

drug delivery, and stimulation in vivo. This summary of 
design principles, materials fabrication techniques, device 
integration processes, cell/tissue penetration methodologies, 
biosafety aspects, and applications strategies outlines the 
potential of Semi‑implantable Bioelectronics as a practical 
biomedical engineering solution.

2  Semi‑Implantable Device for Cell 
Applications

2.1  Principle and Strategies

Cell is enclosed by a phospholipid bilayer called plasma 
membrane, which effectively insulates the internal from 
external microenvironment and maintains the homeosta‑
sis [1]. It is important to regulate the cell behavior for 
emerging biomedical research (e.g., gene editing), while 
these types of tools lead to attractive research hotspots 
to explore the interior of live cells through the plasma 
membrane [48–50]. In most cases, the cell membrane with 
thickness of ~ 6 nm is an insurmountable barrier due to 
the unique lipid bilayer structure, preventing most aque‑
ous compounds and probes from reaching the intracellular 
region. Therefore, cell membrane penetration methodolo‑
gies for intracellular operations are a focused mission in 
the scientific research and therapeutic applications (e.g., 
electrophysiological recording, biochemical detection, 
and molecular delivery). In the recent decades, a large 
amount of nanodevices emerge by advanced micro/nano‑
fabrication technology to facilitate accessing to the in‑
cell area in a semi‑implanted way [51–54]. Particularly, 
one‑dimensional nanostructures (e.g., nanowires, nanow‑
ires, nanotubes, nanopillars) enable penetration of the cell 
membrane by local high pressure of their sharp nanotips 
[55–58]. The functions of these nanoscale platforms for 
cell penetration can be based on nanoarray or individual 
functional nanostructure. Atomic force microscopy (AFM) 
or micromanipulators are common tool to assist single 
nanoprobe devices (e.g., nanowire) to record and regu‑
late the intracellular activities [59, 60]. It is meaningful 
to perform the high spatiotemporal resolution sensing and 
operating in single cells for exploring the cellular micro/
nano‑environment, detecting intracellular biochemical 
indicators, and revealing the intercellular differences at a 
subcellular/nanoscale resolution.
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However, the wide applications of single nanowire plat‑
forms are hindered due to low throughput, which is diffi‑
cult to synchronously perform the operation for numerous 
individual cells [61, 62]. To solve this limitation, vertical 
aligned nanowire arrays provide a unique platform for the 
large‑scale and high‑throughput of cells with even single‑
cell manipulation [63, 64]. Spontaneously, the cell‑nano‑
structure‑interface can form locally higher tension on cell 
membrane based on the cellular force at the sharp nanotips 
[65, 66]. In the practical applications, vertical nanowire 
devices can even penetrate the cell membrane based on 
their 3D sharp feature. However, this spontaneous pen‑
etration usually presents low‑efficiency, and consequently, 
chemical coating [21–23], electroporation [24–26], opto‑
poration [29, 30], or mechanical force [27, 28] are often 
introduced to assist the cell penetration. Nanowires that 
penetrate cell membrane can form a semi‑implanted pro‑
file into the cell, and various intracellular applications 
(e.g., electrophysiological recording [31, 32], biochemi‑
cal sensing [33–35], and molecule delivery [36–38]) can 
be versatilely carried out. For the electrophysiological and 
biochemical recordings, semi‑implantable nanoprobes 
can directly contact with cytosolic contents, which allows 
high‑sensitivity detection of the intracellular electrophysi‑
ological and biochemical signals. For the molecule deliv‑
ery, the various nanowires‑based semi‑implantable device 
can efficiently achieve synchronous delivery into a large 
amount of cell types [18, 67], which effectively avoids the 
endocytotic degradation of conventional molecule deliv‑
ery methodologies. To improve the practicability of these 
semi‑implantable nanodevice, it is of great significance to 
deeply explore the mechanism of cell–nanowires interac‑
tions [68–70].

2.2  Materials and Devices

2.2.1  Single Nanowire Platform

For the intracellular access, single nanowire‑equipped can‑
tilevers are employed for the probing intracellular environ‑
ment with high spatial resolution at single cell resolution, 
and nanoscale probes also greatly reduce the interference 
and damage of cell during membrane penetration. These 1D 
nanostructure‑based device is semi‑implantable into cells, 
with a tiny probe in diameter of 1–1000 nm assembled on 

a supporting pipette or cantilever. Due to the nanoscale 
size and semi‑implantable property, the nanoprobe allows 
the precise and long‑term positioning into cell, where the 
nanoprobes can be consisting of various materials, such 
as carbon nanotubes, silicon nanowires, and gold nanopil‑
lars. Due to the 3D operation demand, AFM is a common 
assembly platform for nanoprobe to guide the probe to the 
cell position and to complete cell penetration. Nawarathna 
et al. developed a heavy‑doped silicon nanoprobe, named as 
dielectrophoretic nanotweezer (DENT), to extract RNA and 
DNA from targeted cells [71–73]. The conductive silicon 
nanoprobe surface was insulated by a  SiO2 layer, and metal 
layer (Cr/Au) was then deposited on the passivation layer. To 
extract nucleic acid molecule, a 120 kHz AC, 5  VPP AV sine 
voltage are applied between the core and surface conductive 
layers for ~ 1 min, where a strong dielectrophoretic force was 
generated to adsorb nucleic acid molecules at the DENT 
nanotip (Fig. 1a). The nucleic acids can be extracted from 
the cytosol and transferred into the polymerase chain reac‑
tion (PCR) for amplification, and thus, the DENT‑integrated 
AFM probe allows nanoscale resolution positioning of tar‑
geted cells. Besides, the nanoprobe could maintain the good 
viability of the living cell with minimally destruction. The 
detection can be extended for specific collection of targeted 
mRNAs, where specific‑primers could be functionalized on 
the DENT for enrichment of mRNA.

For the investigation of intracellular electrophysiologi‑
cal signals, patch clamp is a powerful tool which enables 
recording of single ion channel behavior. However, the low 
throughput and complicated operation of patch clamp are 
main shortcoming during large‑scale synchronized study 
of individual cell. To overcome these drawbacks, Lieber 
et al. developed 3D nanoFETs by advanced silicon nanow‑
ire (SiNW) fabrication to record intracellular electrical 
signals of excitable cells. The essential component of 
the device contained kinked NWs to form a 3D nanoFET 
architecture [74], where the bend‑up kinked structure 
enabled cell membrane penetration with the assistants of 
phospholipid modification to facilitate membrane rupture 
(Fig. 1b). The 3D kinked nanoFET initially recorded the 
extracellular action potentials, and the extracellular sig‑
nals gradually changed into intracellular action potentials 
with amplitude of ∼80 mV, which have similar amplitudes 
with the gold‑standard signals (70–100 mV). Based on 
the similar principle, branched  SiO2 nanotube‑based 3D 
FET (Fig. 1c) was developed in 2012 by the same group 
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[75], which could also penetrate into cardiomyocytes by 
a phospholipid bilayer coating on the nanotube surface. 
After rupture of cell membrane, the cytosol could infuse 
and contact to the SiNW FET through the nanotube, so 
that intracellular action potentials can be subsequently 
recorded by the potential changes of the electrolyte gate.

Besides detection of cellular electrical signals, sin‑
gle nanoprobe‑based semi‑implantable device could also 
enable detection of biochemical molecules within cells. 
While glass micropipettes are common tools for the suction 
of cell membrane, the large rupture size on membrane of 
micropipettes‑based devices may damage the cells during 
penetration or detection. Singhal et al. invented nanoendo‑
scope for intracellular biochemical detection and regulation 
at the single organelle resolution (Fig. 1d) [59], employing 
ultra‑sharp multiwalled carbon nanotube possessing diam‑
eter of ~ 100 nm and length of 50–60 mm as the essential 

cell penetration substrate. Owing to the high spatial resolu‑
tion of the small nanotube structure, this nanoendoscope 
can either access to the intracellular environment of a single 
cell for biosensing, or even analyze the interior of sub‑cell 
organelles. Moreover, the hollow nanotube on the nanoen‑
doscope could serve as a nanochannel for intracellular drug 
delivery or extraction of cytosolic molecules. Since the sin‑
gle nanoprobe‑based semi‑implantable device match the size 
of single cell, it is a promising tool to perform intracellular 
probing and stimulation, although the operations need mul‑
tiple steps of alignment and micro‑manipulation.

2.2.2  Nanowire Array Platform

Nanowire array can serve as powerful semi‑implantable plat‑
form to treat multiple cells simultaneously. Due to the low 
throughput of single nanowire platform, nanowires aligned 
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in array could improve the throughput of interfacing with 
multiple cells. The cells could be cultured on top of nanow‑
ire array in vitro, where the nanowires could penetrate cell 
membrane with assistance of poration techniques, so that the 
cytosolic content could be accessed. Nanowires can be pre‑
pared by a large number of material types, where silicon is a 
common nanowire material for intracellular exploration with 
good biocompatibility and stability in microenvironment of 
biological cells [76–78]. Other materials, (e.g., GaP [79], 
InAs [80],  SiO2 [81, 82],  Al2O3 [83], ZnO [84],  SnO2 [85, 
86], carbon [87], diamond [88], and Pt [89, 90]) also present 
good biocompatibility to cells, and the advanced nanowire 
fabrication technology can now tune the structures, sizes, 
compositions, and physical/chemical properties of nanow‑
ires in well‑controlled manner. These characteristics enable 
the versatile functions of nanowire array for electronic, 

photonic, and magnetic applications besides biological cells 
[91–95].

For applications of intracellular molecule delivery, 
solid nanowire array‑based semi‑implantable devices are 
constructed to penetrate cell membrane and to mediate 
the transportation of biomolecules into cells in vitro by 
drug elution from nanowire surface [96, 97]. In recent 
work, a self‑powered nano‑electroporation system was 
established on the basis of a triboelectric nanogenerator 
(TENG), and this nanowire array‑based electroporation 
system can achieve intracellular delivery in vivo (Fig. 2a) 
[98]. TENG‑based nano‑electroporation system harvested 
energy by body movements and subsequently generated 
electric field on the nanowires, which would porate cell 
membrane to allow high‑efficiency of drug delivery into 
cells in vivo. In addition to solid nanowire arrays, hollow 
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American Chemical Society Publishing Group (2019) Wiley‑VCH Publishing Group and (2012) Nature Publishing Group
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nanowire arrays with unique nanochannels, which were 
called “nanostraws,” could directly bridge the external res‑
ervoir to intracellular environment and facilitate the deliv‑
ery into target cells [99, 100]. In our recent work, vertical 
nanostraw array was fabricated with branched nanospikes, 
which was employed to deliver biomolecules into captured 
circulating tumor cells (CTCs) for in situ regulation or re‑
program of the cells (Fig. 2b) [84]. The nanostraws could 
porate cell membrane with high efficiency by coupling with 
electroporation and thus, allow gene delivery into cells, 
and extract the intracellular cytosol from cells with mini‑
mally invasiveness.

For high‑quality electrical signal recording, nanoelec‑
trode arrays pave a new way for intracellular electrophysi‑
ological recording by minimally invasively penetrating cell 
membrane. Robinson et al. established vertical nanowire 
electrode array (VNEA) by advanced ‘top‑down’ nanofab‑
rication (Fig. 2c) [101], where each nanowire electrode 
with the diameter of ~ 150 nm consisted of a conductive Si 
core and an insulated  SiO2 shell, and the nanotip was sput‑
tered with a conductive Ti/Au layer. The VNEA formed 
a semi‑implanting patch to probe the intracellular action 
potential. With optimal nano‑electroporation condition, the 
VNEA could achieve synchronous intracellular electrical 
stimulating and recording of neurons. In these systems, the 
cell membrane penetration by nanowires is the key step 
for achieving semi‑implantable access to the intracellular 
environment.

2.3  Cell Penetration Methods

The cell‑nanowire interfaces are attractive research hot‑
spots to understand the interaction between nanowires and 
cells, and to optimize the efficiency of cell penetration, yet 
the mechanism of nanowire cell penetration is still not fully 
revealed. Spontaneous penetration theory has revealed that 
part of nanowires initially penetrates into cell due to the 
sharp physical geometry of nanowires, and the gravity or 
adhesion forces of cells generates locally higher tension 
to induce the membrane penetration [65, 66]. While many 
studies have proved the feasibility of spontaneous penetra‑
tion and semi‑implantable cellular access by nanowires 
[18–20], the efficiency of spontaneous penetration rate is 
observed to be low and limits the intracellular access. To 
improve penetration efficiency, other assisting strategies 

such as electroporation [83, 90], optoporation [29, 30], 
chemical coating [21], or mechanical forces [102] are 
developed to enhance cell penetration. Many works have 
demonstrated that lipid membranes can be permeated by 
the applications of external forces (e.g., force, electricity, 
and light) as well as by chemical agents to be coupled with 
vertical nanowires devices. Three main assisting strate‑
gies of coupling external forces for cell penetration pos‑
sess their own advantages and disadvantages. Electropo‑
ration coupling can lead to the induction of nanopores in 
cell membranes, but may disrupt cellular activity, and the 
resealing of nanopores can hamper long‑term recording. 
Optoporation coupling with vertical nanowires can pre‑
vent the defect of electrical interference, but exists the 
problem of low‑throughput regulation. The application of 
external mechanical forces with nanowires on cells appears 
to be a direct method to increase membrane penetration, 
but the penetration efficiency is relatively lower than the 
electroporation or optoporation methods. For example, 
Xie et al. developed nanopillar‑electroporation system by 
focused ion beam. Initially, no intracellular potentials can 
be recorded by culturing cardiomyocytes on the Pt nanopil‑
lars, demonstrating no spontaneous penetration (Fig. 3a). 
When low voltage electroporation was applied on the Pt 
nanopillars, nanopores were introduced in the plasma 
membrane, and high‑quality intracellular potentials were 
recorded for several minutes. Moreover, these nanopillar‑
electroporation system can be performed on the same cell 
repeatedly in continuous days. In addition to electropora‑
tion, phospholipid bilayer coating on nanowires is another 
assisting penetration method to improve membrane rupture 
by membrane fusion with coated nanowires [23, 103]. The 
chemical coating penetration strategies have previously 
been applied on single nanotubes or kinked nanowires 
devices to record intracellular potentials [75, 104, 105]. 
In recent work, Zhao et al. designed a U‑shaped nanowire 
FET arrays [106], where high‑quality intracellular poten‑
tials of neurons were recorded by inserting the nanowire 
FET into cells (Fig. 3b). Furthermore, optoporation is also 
proposed as effective method to improve nanowire cell pen‑
etration, where focused high‑power laser pulses at the cell‑
nanowire interface are introduced to porate cell membrane, 
allowing simultaneously recording of both extracellular 
and intracellular potentials from neurons and cardiomyo‑
cytes (Fig. 3c).



Nano‑Micro Lett.          (2022) 14:125  Page 9 of 55   125 

1 3

2.4  Cell Safety

Semi‑implantable nanowires‑based devices have been 
widely utilized as regulating tools for cells in a precisely 
spatial resolution and low‑perturbation manner. Initially, 
the main indicators to assess the perturbation of nanowires‑
device on cells are chronic cell viability and cell membrane 
integrity. The safety of semi‑implantable nanowire devices 
was evaluated by culturing different cell types with vari‑
ous nanowire materials in vitro. In one study, cell viability 
was examined by culturing mouse embryonic stem cells and 
HEK 293 T cells on SiNW arrays [107], where the cell via‑
bility was observed to be about ~ 78% after 3 days culturing 
on 90‑nm‑diameter and 6‑µm‑height NWs, where increase 
in NW diameter seemed to induce lower viability. Hӓllstrӧm 
et al. demonstrated neurons cultured on GaP nanowires pos‑
sessed higher viability than those cultured on planar sub‑
strates. In addition to the cell viability, more comprehensive 

cellular functionality involving cell adhesion, enzyme activ‑
ity, membrane protein expression, mRNA expression, the 
maturation pathway, etc., after cultured on short and thin 
NWs (e.g., ~ 100 nm diameter, < 3 µm height) was investi‑
gated (Fig. 4b) [108, 109], where the results demonstrated 
that the shorter nanowires minimally affect the basic cell 
viability and functionality.

In addition to the safety evaluation, the cell behaviors on 
nanowire devices have also been explored. Based on the 
morphology observation and biological active molecule 
analysis, it is found that Si nanowire arrays improve the 
cell attachment, while cell migration and spreading are 
also restrained (Fig. 4a) [110]. Similar results have also 
been observed in other study, where nanopillars tightly 
fixed the cells and restrict cell mobility (Fig. 4c) [111]. 
Besides, Persson et al. found that the longer nanowires 
(e.g., ~ 7 µm height) could negatively impact cells, by 
inducing high stress and high respiration rates for cells, 
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leading to reactive oxygen species elevation and gene dam‑
age (Fig. 4d) [112].

2.5  Applications

Efficient cell penetration by semi‑implantable nanowire 
devices enables a large amount of biomedical research 
and practical applications, including electrophysiological 
recording, biochemical sensing, and biochemical detec‑
tion. Nanowire penetration facilitates the bridging between 
intracellular and extracellular microenvironment, enables 
the transportation of exterior cargo into the cytosol, and 
achieves the detection of intracellular information with 
excellent spatiotemporal resolution.

2.5.1  Molecule Delivery

Conventional molecule delivery relies on cell endocytosis‑
based pathways, yet the cargo degradation, low delivery 
efficiency, and cell cytotoxicity are main issues during this 
delivery process. In contrast to traditional delivery, semi‑
implantable nanowire device could mediate intracellular 
delivery with a broad delivery substance for various cell 
types. To minimalize the disturbance to cells and improve 
transfection efficiency, semi‑implantable nanowire devices 
can be designed with ultra‑small nanoscale feature, so that 
the nanostructures protruding into cells cause minimal 
effects to the cells [99, 113, 114]. Intracellular molecule 
delivery into individual targeted cells is greatly significant 
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for diagnostics and therapeutics toward the personalized 
medicine in biomedical field. The bulk electroporation 
techniques have been conventionally employed for cell 
transfection in the past decade, yet the low‑resolution and 
requirement of high voltage supply resulting in unstable 
molecule delivery for bulk electroporation. In contrast to 
conventional bulk electroporation, nano‑electroporation 
could provide highly localized and precise electropora‑
tion on cells and thus, significantly improve poration effi‑
ciency and cell viability (Fig. 5a) [115, 116]. In theory, 
the nanowire‑electroporation effect usually occurs at the 
tip of cell‑nano‑interface, where low voltage is sufficient to 
reach the critical condition for cell membrane perforation 

due to good coupling of cell membrane with nanostruc‑
ture. For example, nanofountain probe (NFP) technology 
could precisely perform gentle electroporation and intra‑
cellular delivery on cells, which mediated transfection of 
HeLa cells with fluorescent molecules with high transfec‑
tion efficiency (> 95%) and high viability (> 92%).

Although the single nanowire devices can successfully 
achieve high efficiency of intracellular delivery into single 
cell, the low‑throughput feature of single nanoprobe platform 
due to complicated and time‑consuming operations greatly 
imped their practical applications. To increase the delivery 
throughput, nanowire arrays devices are widely employed 
for intracellular drug delivery with high efficiency and 
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tion of dextran Alexa Fluor 488 into target HeLa cells with NFP tip and fluorescence images of the transfected HeLa cells [115]. b, c The tight 
contact between the nanostraw‑plasma membrane interface allowed high‑efficient transfection of pRFP [83]. Reproduced with permission from 
Refs. [83, 115], copyright (2013) American Chemical Society Publishing Group and (2013) American Chemical Society Publishing Group
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viability [117–120], which reduces the complexity of device 
architecture and operations [121]. Xie et al. developed  Al2O3 
nanostraw‑electroporation system to achieve high efficiency 
of transfection with high cell viability (Fig. 5b, c) [83]. The 
nanostraws are fabricated on a polycarbonate template fol‑
lowed by  Cl2 etching and  O2 plasma, where the diameter of 
nanostraws can be tunable based on different templates and 
fabrication conditions. In addition, the tight seal between the 
cell membrane and nanostraws can induce enhanced elec‑
tric field on the nanostraw‑cell interface, which dramatically 
reduced the amplitude of electroporation voltage for porating 
cell. It is worth noting that the delivery efficiency will be 
affected by cell types, such as cells lines (e.g., CHO, HEK 
293), and hard‑transfected cells including human‑induced 
pluripotent stem cell‑derived cardiomyocytes (hiPSC‑CMs), 
human embryonic stem cells (HSCs), and mouse primary 
neuron cells (MNs). [67]. Transfection efficiency of primary 
cells could reach ~ 60% to 85%, which indicates the wide 
applicability for transfecting various cell types. Besides, 
diverse biomolecules (e.g., DNA, mRNA, and proteins) can 
be precisely delivered into cells by the nanostraw platform 
with controllable dose, where the intracellular is also spa‑
tially and temporally controllable. By regulating the deliv‑
ery dose of mRNA or DNA, the intracellular expression of 
different proteins can be well controlled over time, which 
paves a new way to improve the practicability of delivery 
by multimodal gene regulation.

2.5.2  Biochemical Sensing

Biochemical markers can indicate the cell state, yet the 
measurement of biomarkers based on secreted biomarkers 
in extracellular medium cannot effectively reflect the corre‑
sponding intracellular information. Consequently, end‑point 
cell lysis is usually carried out for the detection of intracel‑
lular biomolecules. Meanwhile, imaging analysis methods 
(e.g., fluorescent dyes or functional nanoparticles) have 
been employed for dynamic tracking of intracellular activity 
[122, 123], yet label‑based technologies have limited spa‑
tiotemporal resolution, phototoxicity, and chemical adverse 
effects. To perform dynamic and biocompatible recording, 
semi‑implantable nanowires are developed as intracellular 
biosensing tools, aiming at the precise measurement of intra‑
cellular biomarkers based on their unique cell penetration 
capacity [33]. Compared with the conventional cell lysis, 

the nanodevices can directly detect biomarkers in a quantita‑
tive and sensitive way without large analytical instruments 
[124, 125]. Moreover, the semi‑implantable nanodevices 
enable the repeatable extraction from intracellular content 
and achieve the high‑throughput parallel sensing.

Nanopipettes are typical semi‑implantable tools which 
are fabricated with a submicron or nanoscale opening tip to 
provide a transport channel for intracellular operations. To 
precisely extract contents from targeted cells, nanopipettes 
were integrated on a scanning ion conductance microscope 
(SICM). An SICM integrated electrochemical to syringe is 
designed for the RNA and organelles extraction (Fig. 6a) 
[126]. In principle, ion current at the SICM nanopipette tip 
was kept positive to prevent the aqueous solution entrance 
when approaching cell. After the nanopipette penetrate the 
cell, the potential inside the nanopipette will be negative, 
and the cytosol can be collected. The collected mRNA and 
organelles can be analyzed by amplifying or sequencing. 
Furthermore, a double‑barrel SICM probe was employed 
(Fig. 6b) [127], where barrel with aqueous was used for mor‑
phological mapping, and barrel with organic solution was 
used as the electrochemical syringe for the high‑resolution 
imaging.

Semi‑implantable devices can be applied for extracellular 
electrochemical detection by monitoring the redox currents 
of vesicle content secreted by cells. In one study, carbon‑
fiber microelectrodes with conical nanotips are employed to 
detect catecholamine of individual nanoscale vesicles from 
intracellular microenvironment (Fig. 6c) [128]. The nanotip 
minimalized the damage to the cell during the intracellular 
detection. After the penetration, the limiting current drops 
to a low level, which indicates good sealing between the cell 
and nanoelectrodes. Besides, the limiting current recovers to 
95% of initial one after electrode withdrawal from the cell, 
implying the good stability after semi‑implantable operation. 
Recently, dielectrophoretic nanotweezers (DENT) were pro‑
posed as a powerful tool to extract mRNA from intracellular 
microenvironment. Using minimally invasive nanotweezers, 
the precise and spatial sample extraction can be performed 
from living cells (Fig. 6d) [129]. DENT usually consists 
of 10–20 nm nanoelectrodes for trapping of DNA, protein, 
mitochondrion by dielectrophoretic. This attractive DENT 
provides the precise single‑molecule or organelle manipula‑
tion to understand the living cells.

Melosh et al. developed a nanostraw‑electroporation sys‑
tem defined as nanostraw extraction (NEX) for subcellular 
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content analysis [130]. NEX device is based on a porous 
polymer membrane with hollow nanostraw array. Indium 
tin oxide (ITO) substrate and a Pt electrode were assembled 
for the electroporation (Fig. 6e). After the electrical pulses 
are applied, the nanopore will appear on the cell membrane, 
and the intracellular content such as mRNA or protein can be 
extracted. The main extraction process depends on the diffu‑
sion of intracellular content to the external reservoir, while 
the positive electrical pulses from ITO improve the negative 
charged contents moving toward the lower reservoir. Based 
on this nanostraw‑extraction strategy, the extraction can be 
repeated on the same set of cells with high cell viability 
(> 95%). Moreover, gene analysis in extracted cytoplasmic 
substance extracted by the NEX platform was analyzed in 
detail, where 41 mRNA molecules were accurately detected 
in a quantitative manner. Further, the NEX can also effi‑
ciently collect proteins such as lactate dehydrogenase B 
(LDHB), where the quantitative analysis of extracted LDHB 
suggested the good repeatability and consistency of NEX for 
protein extraction and downstream analysis.

2.5.3  Electrophysiological Recording

Neuroscience and cardiology are both the research focus 
in biomedical field. In vitro cell models (e.g., neurons, 
cardiomyocytes) are widely adopted for studies, since 
in vivo experiments are more inconvenient to perform. 
Though extracellular electrophysiology is well developed 
for current neuroscience, intracellular electrophysiology 
is concerned as more attractive way to explore the activi‑
ties of neural network or brain [131–134]. Patch clamp, as 
the gold standard electrophysiological invasive devices, 
provides recording of high‑quality action potential by 
forming a coupling interface with intracellular environ‑
ment through suction of cell membrane. However, this 
invasive working mode is difficult to perform for long‑term 
and high‑throughput recording. The glass micropipettes 
of patch clamp are relatively large for single cells, which 
induces larger damage to the cells. Multielectrode arrays, 
a noninvasive device, can chronically record the extracel‑
lular signals from multiple cells in network, which possess 
high cell viability. However, signal quality of extracellular 
recording is limited due to the weak coupling of electrode 
with cells, rarely able to reflect the detail information of 
action potential. Compared with invasive devices and 

noninvasive devices, semi‑implanted electronics could 
provide intracellular recording with a high‑quality and 
long‑term profile, which seldom affect cell viability and 
became applicable for the recording of vast excitable 
cells for the neuroscience and cardiology. To overcome 
these limitations, nanoscale devices have emerged for 
high‑throughput recording of intracellular electrical sig‑
nals in a minimally invasive manner to the cells. Nano‑
electrode platforms could provide intracellular recording 
with a high‑quality and long‑term profile, which became 
applicable for the recording of vast excitable cells for the 
neuroscience and cardiology. For example, carbon‑based 
nanoelectrodes were developed and utilized by Schrlau 
et al. for the minimally invasive intracellular recording 
(Fig. 7a) [135], where carbon nanopipettes (CNPs) were 
integrated in the pulled glass capillaries to monitor the 
HT‑22 neurons using a patch clamp current amplifier 
mode. Moreover, CNPs possess multifunctional proper‑
ties such as intracellular chemical injection and electrical 
measurement without damage. In addition to passive nano‑
electrodes, active nanostructure of 3D FET nanobioprobes 
were successfully applied as semi‑implantable device for 
intracellular electrophysiological investigation. Based on 
the previous research of kinked‑SiNW [74], free‑standing 
3D nanoFET was fabricated by Qing et al. (Fig. 7b) [105], 
which can facilitate the large‑scale and precise positioning 
recording on cardiomyocytes. In contrast to the free‑stand‑
ing patch clamp, the 3D nanoFET can record the action 
potential from the cardiomyocytes with high consistency. 
The semi‑implantable nanowire device guides a promising 
direction to establish a biocompatible and high‑coupling 
cell‑nanointerface for the investigation of intracellular 
information.

The pioneering work on nanowires‑based semi‑implant‑
able devices for excitable cells recording demonstrates 
the feasibility of high‑throughput intracellular recording 
by patterned nanowire array [90, 101]. Abbott et al. inte‑
grated Pt/SiO2 nanowire arrays with complementary metal‑
oxide–semiconductor (CMOS) device for high‑resolution 
and high‑throughput intracellular recording for in vitro 
cells (Fig. 7c) [82]. The nanoelectrodes array worked in 
pixel unit, which was coupled on amplifier and stimulator 
modules to record or stimulate the cells. By electroporation 
of stimulation module, 5 mV amplitude intracellular signals 
are recorded. Owing to the high‑resolution pixel integrated 
circuit, electrophysiological activities of cell network can 
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be visually monitored. In recent study, intracellular record‑
ing of thousands of neurons was performed simultaneously 
by the same group (Fig. 7d) [32]. The device contains two 
working mode, the pseudo current‑clamp mode and pseudo 
voltage‑clamp mode. In pseudo voltage‑clamp mode, the ion 

channel currents can reflect the drug effects, while intracel‑
lular action potentials and postsynaptic potentials of neu‑
rons can be recorded in pseudo current‑clamp mode. Pixel 
nanoelectrodes can map the excitatory and inhibitory syn‑
aptic activities from a large number of neurons in long‑term 
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manner. This high‑throughput and high‑resolution intracel‑
lular recording can provide a unique visualized platform for 
the large‑scale neural networks.

2.6  Limitation and Future Trends for Cellular 
Applications

Semi‑implantable devices can achieve the precise manipula‑
tion or sensing in cells by the specialized nanointerface. The 
nanowire arrays significantly enhance the throughput of sin‑
gle‑cell regulation. By various powerful assisting strategies, 
the efficiency of penetrate can be significantly improved 
while the cell viability can maintain at a high level. Though 
these semi‑implantable nanowire devices present versatile 
performance for cell applications, limitations still exist and 
need to be improved in the future: (I) Reducing nanofab‑
rication difficulty. For nanofabrication, the advanced and 
complicate instruments should be applied which hampers 
the low‑cost, high‑efficiency, and large‑scale production. (II) 
Improving the penetration success ratio. The cell penetration 
is improved by the semi‑implantable platform, yet the ratio is 
still low. More strategies should be developed for the higher 
penetration probability. (III) Designing the multifunctional 
semi‑implantable device. In most cases, the semi‑implant‑
able nanodevices possess single function, which lack the 
recording of high‑content intracellular synchronous infor‑
mation. With the rapid development of semi‑implantable 
nanodevice, the intracellular research will be more deeply 
and widely prompted in the near future.

3  Semi‑implantable Device for In Vivo 
Applications

3.1  Principle and Strategies

Thousands of complex life activities widely spread in human 
or animal body, while the understanding of the real‑time 
mechanism of these activities requires detection and analy‑
sis in vivo. The advantage of recording biological informa‑
tion in the tissue feature with noninvasion and convenience, 
yet the recording accuracy and timeliness are compromised 
due to the barriers of skin or skull. To overcome these 
barriers, semi‑implantable devices that integrated with 

penetrating probes could serve as promising tool to bypass 
biological barriers to assess the in vivo tissue. The in vivo 
semi‑implantable devices are generally consisted of the 
transdermal sensor and external control circuit system for 
in vivo signal sensing and external interventional modulat‑
ing. To maximally avoid tissue damage or caused pain of 
the living animal or human body after probe insertion or 
implantation, these implanted probes are developed toward 
miniaturization and flexibility. Moreover, the coating of the 
probe surface with biocompatible coating materials could 
reduce the adverse inflammation or fibrosis effects caused 
by the implanted probes, while the bulk external circuit sys‑
tems remained on the body surface could be further flex‑
ibly designed for practical applications. Dependent on the 
applications and target tissues, the sensing probes or inter‑
ventional modules of these functional devices are generally 
implanted into the transdermal tissue, soft tissue, or brain 
tissue by assist of the tiny sharp tip‑feature of their probes, 
or by externally assisting metal needles which guide the 
probes to the target site in vivo. To ensure the effective and 
safe application in vivo, the designs and developments of 
semi‑implantable devices should take the following issues 
into account: (1) Minimal invasion; (2) Biocompatibility; 
(3) Accuracy and sensitivity of detection; (4) Long‑term, 
real‑time and in situ applications. Based on the above design 
principles, the development of in vivo semi‑implantable bio‑
electronic devices have achieved reasonable progress dur‑
ing the past decades, particularly with transdermal devices, 
microneedles devices and brain electrodes as typical suc‑
cessful examples. For examples, transdermal devices and 
microneedles devices are designed to penetrate skin layer 
so that the probes could electrochemically sense or regulate 
the in vivo tissue environments, which have been emerg‑
ing as new generation tools for the diagnosis and treatments 
of diseases such as diabetes. In addition, brain electrodes, 
which are designed to record or stimulate electrical signals 
in brain tissues by placement of implanted electrode in the 
target brain area, have also shown great potentials not only 
on the treatments of diseases such as Parkinson’s disease 
(PD), Alzheimer’s disease (AD), and so on, but also have 
been demonstrated as powerful tools to monitor and map the 
electrical activities of brain that could facilitate understand‑
ing of brain in nature.
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3.2  Devices and Applications

3.2.1  Transdermal Device

For biomedical diagnosis, many indicators in blood reflect 
the health status. For example, the blood glucose level 
reflects the health of pancreas, cholesterol and triglycerides 
level presents the health of cardiovascular, and protein level 
indicates the health of other organs. Moreover, the metabo‑
lism monitoring of drug concentration in vivo is of critical 
important in clinical therapeutics. A large amount of point‑
of‑care test (POCT)‑based blood monitoring has been widely 
employed in clinical practice. If the blood analysis can be 
detected in situ, the pain of frequent blood drawing can be 
relieved. Significantly, in situ detection can achieve the 
real‑time monitoring to understand the dynamic changes of 
diseases. While biomarkers that are generally rich in blood 
could directly reflect the health status, the access to blood 
vessel with external probe or devices possesses undesirable 
risks of arterial or venous bleeding or infections. Therefore, 
the applications of implanted sensors that directly access to 
the blood vessels have not been widely explored. Instead, 
transdermal device that could access to the tissue in epider‑
mis or dermis has been developed to detect biomarkers in the 

interstitial fluids, which could somehow reflect the states of 
biomarkers in the blood vessels. For example, the concen‑
tration of glucose in interstitial fluids has been found to be 
positively correlated with the concentration of glucose in the 
blood, although the change of glucose concentration in the 
interstitial fluids existed a 5–10 min‑delay compared to the 
glucose change in blood. In addition, many types of small 
molecules, such as reactive oxygen species, lactic acids, 
uric acids, and nitric oxides, have been demonstrated to be 
detected from interstitial fluids as biomarkers for diseases. 
Transdermal devices are effective tools to detect or regu‑
late biochemical activities in the subcutaneous tissue, with 
typical examples of continuous glucose monitoring (CGM), 
glucose microdialysis probes, CGM‑based close‑loop insu‑
lin delivery system, and hemodialysis circulation system. 
To date, the CGM based on enzyme‑based electrochemical 
detection of glucose concentrations is one of the most suc‑
cessful technologies of transdermal devices and has been 
commercialized for clinical applications. CGM as trans‑
dermal sensors possesses enzyme‑based glucose electrode 
inserted through the skin to detect glucose concentration in 
the interstitial fluidic environment. Enzyme‑based CGM bio‑
sensors are sensitive and selective to glucose due to the spe‑
cific glucose oxidase (GOx) that could catalyze glucose into 
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hydrogen peroxide production. At present, the CGM tech‑
nologies of three companies, Dexcom [39], Abbott, and Met‑
ronic [136], can achieve continuous measurement of blood 
glucose changes in ISF [40]. In contrast to self‑monitoring of 
blood glucose (SMBG), CGM can continuously track blood 
glucose trends in long term. In principle, the glucose detec‑
tion can be amperometrically performed by measuring the 
oxygen consumption or hydrogen peroxide production [137, 
138]. Under the catalysis by GOx, the glucose was oxidated 
to gluconic acid which the oxygen was reduced to hydrogen 
peroxide, so the glucose concentration can be quantified by 
amperometric signal from the produced hydrogen peroxide 
(~ + 0.6 V vs Ag/AgCl) or the consumed oxygen (~ ‑0.6 V vs 
Ag/AgCl). Based on the specific enzyme catalytic reaction, 
the electrochemical biosensor is one of the most popular 
and utilized platform for clinical CGM device (Fig. 8a) [41, 
139]. The performance of glucose biosensors is related to 
electrode design, enzyme coating status, and biocompatible 
membrane. However, the performance of these biosensors is 
limited by lack of oxygen or interference of hydrogen perox‑
ide detection by other electroactive endogenous components 
such as ascorbic acid, uric acid, and acetaminophen [140]. 
To solve these limitations, anti‑biofouling permselective 
membranes (e.g., Nafion, polycarbonate) are employed to 
reduce the glucose and electroactive interference diffusion 
around the enzymatic biosensor, which is effective to relieve 
the  O2 deficiency and electroactive interferences [141–144]. 
To eliminate the  O2 deficiency, the glucose dehydrogenases 
(GDHs) was employed in glucose sensors, which can work 
without  O2 supply with various cofactors, such as flavin ade‑
nine dinucleotide (FAD), pyrroloquinoline quinone (PQQ), 
or nicotinamide adenine dinucleotide (phosphate) [NAD(P)] 
[145, 146]. Though the GDH is independent of  O2 concen‑
tration, the FAD/PQQ‑GDH can overestimate the glucose 
concentration due to catalyzing the other biomarkers such as 
maltose, while the oxidization of NAD(P)H produces other 
polymerized oxidation products to foul the electrode and 
increase the overpotential [147–151].

Since the glucose concentration in ISF is correlated with 
that in blood, the ISF glucose could be continuously moni‑
tored by the transdermal probe [152–155]. The implanted 
electrodes‑type sensors have been widely employed to 
accurately reflect the blood glucose level in real time due to 
their advantages of timeliness and portability as wearable 
medical system. The in vivo continuous blood glucose moni‑
toring was first proposed in 1982 [156], and the implanted 

electrodes‑based CGM system was approved and commer‑
cialized by Food and Drug Administration (FDA) in 1999 
[157]. Though ISF‑based CGM system still lacks accuracy 
compared with the blood glucose meter, they have been 
successfully demonstrated to achieve the glycemic control 
and reduce the hypoglycemic events [158–160]. Most of the 
commercially available CGMs transdermally measure ISF 
glucose to reflect the blood glucose level in a given interval 
of 5–15 min. The transdermal electrode is inserted into a 
defined area of human body by the assistance of metal nee‑
dles pushed by a mechanical device. The current change on 
electrodes in response to glucose levels is received by the 
external sensor attached on skin, and the CGM transmitter 
sends the glycemic data to receiver by wireless communi‑
cation. Due to the blood glucose dynamic balance between 
the vessel and ISF, the calibration algorithm is established 
based on the plenty of clinical data from CGM to calibrate 
the blood glucose delay of ISF. Generally, the blood glucose 
delay in ISF is 5–10 min. Compared with intermittent cap‑
illary blood glucose measurement, CGM can perform the 
continuous glycemic measurements using semi‑implantable 
enzyme‑tipped electrodes, and these transdermal sensors can 
stay in vivo for 1–2 weeks before taking them out for calibra‑
tion [161–164].

However, issues of system reliability, noise interference, 
and frequent calibrations hinder the marketing, until the 
new Libre CGM system emerges to be approved by FDA 
[165–168]. Traditional sensors of CGM generate the large 
noise during 1–3 days of initial implantation, while the rea‑
sons are still unclarified [168–170]. Consequently, the FDA 
had approved traditional CGMs can be employed for 1 to 2 
weeks after implantation, while SMBG (finger‑prick blood 
test strip) should be applied for frequent recalibrations (i.e., 
4 time on initial day and once every 12 h later) [165, 171]. 
The inaccuracy from noise issue prolongs around 30% to 
50% approved period of CGM products, while the frequent 
recalibration operations lower humanization and are pain‑
ful for the users, resulting in the unreliable blood glucose 
measurements [172–174]. To reduce the noise and improve 
the accuracy, the various materials are used as an antifoul‑
ing coating on glucose sensors. Hu et al. polymerized zwit‑
terionic sulfobetaine methacrylate monomers on the GOx‑
coated sensor with bromination. It is demonstrated that the 
antifouling coating can diminish 99% nonspecific protein 
adsorption, maintain long‑term high sensitivity, and improve 
the inaccuracy, compared to the commercial glucose sensors 



Nano‑Micro Lett.          (2022) 14:125  Page 19 of 55   125 

1 3

[175]. Another antifouling polymer‑coated glucose sensor 
was fabricated by a zwitterionic poly(sulfobetaine‑3,4‑eth‑
ylenedioxythiophene) (PSBEDOT) by one‑step electropoly‑
merization. By this antifouling polymer coating, the sensor 
presents a high linearity (R2 = 0.9874) from 0.1 to 0.5 mM. 
In contrast to antifouling properties of PEDOT–GOx coat‑
ing, PSBEDOT–GOx showed better antifouling properties 
for blood plasma and fibrinogen proteins [176].

In recent work, Xie et al. developed a high‑performance 
poly(MPC) from 64 types of zwitterionic polymers by 
combinatorial chemical approaches as an antifouling coat‑
ing on the Medtronic CGM to relieve the inflammation and 
potential signal noise [177]. Using the biocompatible poly‑
mer, the CGM performance was significantly improved 
with lower signal noise. To verify the practical applica‑
tions, the polymer‑coated sensors were assessed by mice 
and non‑human primates, and the sensors can measure 
the accurate blood glucose without recalibration. Moreo‑
ver, the immune responses were proved to be inhibited 
by this polymer by histology and inflammation‑associated 
protease, and gene expression of inflammation biomark‑
ers. Significantly, the polymer coating will be promising 
approach to enable CGM as a standalone device. In addi‑
tion to continuously record glucose fluctuation in real time, 
the regulation of glucose levels in vivo could be achieved 
by the insulin pump. Insulin pump is an intelligent system 
that biomimics the secretion of human pancreas. Via the 
artificial intelligence control, the insulin pump simulates 
the regulation of basic insulin in the body by a tunable 
pulse subcutaneous infusion. Insulin pump system typi‑
cally includes artificial intelligence control system with 
microelectronic chips, battery‑powered mechanical pump 
system, drug reservoir, connected infusion tubings, and 
subcutaneous infusion catheter. One end of the infusion 
tube can be implanted under the skin of the patient. In 
the operating state, the pump mechanical system receives 
commands from the control system to drive the piston of 
reservoir, which will eventually work as a pancreas to pro‑
vide the insulin.

The crucial significance of CGM function is associated 
with insulin pump to be a smart system. To automatically 
and accurately regulate the daily blood glucose of diabetics, 
CGM‑based close‑loop insulin pump is established as an 
artificial pancreas (Fig. 8b), which is an advanced in vivo 
medical system with a semi‑implantable device for routine 
glycemic regulation of diabetics [178–182]. CGM works as 

a sensor during the glycemic monitoring, while insulin pump 
serves as an actuator. Self‑inserted Teflon or steel catheter 
is connected with the insulin reservoir of pump by a long 
tubing. With the development of manufacturing technology, 
the volume of CGM‑based close‑loop insulin pump system 
has been dramatically reduced and facilitates to carry, learn, 
and operate, where the dose adjustment is more accurate and 
stable. Consequently, it has been widely applied in clinical 
practice. At present, the technology of insulin pump is more 
advanced in that it can precisely simulate the physiological 
secretion of insulin. Briefly, the insulin pump can be regu‑
lated by artificial intelligence to simulate the basal insulin 
secretion in the body by an tunable pulsed subcutaneous 
infusion. Generally, the closed‑loop insulin system usually 
delivers the insulin directed by a control algorithm accord‑
ing to the real‑time ISF glucose concentration from matched 
CGM system [161, 178, 183].

In addition to enzymatic electrochemical glucose biosen‑
sor, semi‑implantable microdialysis technique is an alterna‑
tive way to collect the dialysate from blood [184–186] or ISF 
[187–189], which could be further analyzed by an external glu‑
cose sensor (Fig. 8c). The microdialysis probe is coated with 
a semipermeable membrane and inserted into the tissue, and 
the glucose in collected dialysate could continuously perfuse 
to the measuring module of glucose sensor. Compared with the 
ISF microdialysis, the intravenous microdialysis possesses the 
advantages that can accurately measure glucose [190] directly 
from the blood, yet the intravenous nature is more invasive. 
Microdialysis technique has a readout lag (~ 5 min) due to 
time‑consuming dialysate transportation to the glucose sen‑
sor. While microdialysis could potentially enable multiplexed 
detections by directly extracting fluids compared to implanted 
electrodes, the various peripheral devices (e.g., pump, tubing, 
and sensor) more significantly affect the physical activities 
of users than form of implanted electrodes, which limits its 
applications to the clinical diagnosis [191–194]. In addition, 
though microdialysis‑based glucose derives the ISF or blood 
sample to measure the glucose concentration ex vivo, this 
method is unstable due to the foreign body response (FBR) 
with the disadvantages of longer analytical time for glucose 
measuring [140, 195, 196].

In addition to the CGM‑insulin pump system that mimics 
the natural pancreas, hemodialysis monitor is another widely 
used transdermal device system that could mimic the kid‑
ney to remove the waste and purify the blood [197–199]. By 
this way, the hemodialysis system could regulate the blood 
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physiological environment. When the transdermal tubings are 
fixed on the patient’s body (Fig. 8d), the blood is continu‑
ously treated in the hemodialysis machine consisting of key 
water system and dialyzer. The water system mainly contains 
dialysate and heparin pump to refresh the blood and prevent 
clotting, while the dialyzer is employed to filter the creatinine, 
urea and water from the blood. For the safety consideration, 
the newest dialysis machines are continuously monitor an 
group of safety–related parameters, such as blood and dialysate 
flow rate, blood pressure, dialysis solution conductivity, pH, 
and temperature to eliminate the potential risk of blood leak‑
age or air formation.

3.2.2  Microneedle Device

Commercial medical transdermal devices (e.g., CGM, glu‑
cose microdialysis probes, close‑loop insulin delivery sys‑
tem, and hemodialysis circulation system) can efficiently 
achieve the sensing, delivery, or sampling from the in vivo 
environment. However, the large needles or implanted 

probes induce uncomfortable experience or potential medi‑
cal risk due to the nerve or blood contact. Microneedles 
technology has emerged as a novel form of transdermal 
devices with 500–800 μm‑length needles in an array, which 
could subcutaneously penetrate skin layer in a painless and 
minimally invasive way. The short microneedles were inten‑
tionally intended to penetrate the stratum corneum, which is 
the outermost layer of the skin, but without reaching to the 
nerve endings or blood capillaries in the dermis layer, ena‑
bling penetration of skin in a painless manner. Moreover, 
the microneedle technique reduces the operational complex‑
ity of well‑trained medical personnel, which makes it a con‑
venient tool for non‑professional personnel. Furthermore, 
the minimal invasive and in situ feature effectively avoids 
the blood extraction and reduces the possibility of undesired 
problems as blood infections, sample contamination and so 
on, which pave a convenient and alternative path for trans‑
dermal applications. Combined with the well‑established 
portable detection or delivering system, the detection tasks 
could be performed by the patients without the concerns 
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or risks of tissue damages or infections caused by metal 
needles.

Transdermal deliveries of drugs, vaccines or diagnostic 
agents are important application of microneedle technique 
in the past decade. The strategies of medicine deliveries are 
generally determined by the physical forms of microneedles. 
Traditional forms of delivery‑purpose microneedles are sum‑
marized in Fig. 9a [200]. Solid microneedles can be used to 
create micron‑scale pores in the skin surface, following by 
drug formulations applied to the skin or tip‑coated drugs 
remaining in the skin for slow diffusion. Water‑soluble or 
swellable microneedles encapsulate the medicines within the 
tips, thereby releasing them slowly along with the tips dis‑
solving or degrading in the skin. Hollow microneedles can 
be used for delivery liquid formulations in precise dose. In 
recent years, emerging porous microneedles were proved to 
be another solution for transdermal controlled release, with 
relatively facile fabrication, as shown in Fig. 9b [201–203]. 
Specific physical forms were developed for unique appli‑
cations as well, such as integrating soluble microneedle 
tips and bubble structure into a separatable microneedles 
(Fig. 9c) [204] and grooved microneedles inspired by snake 
fangs (Fig. 9d) [205] for efficient transdermal and liquid‑
formulations delivery.

In addition to traditional photolithography and etching 
methods, researchers have developed a number of strategies 
to fabricate and optimize the structures of microneedles, 
including hot embossing, magnetorheological lithography 
(Fig. 9e) and 3D printing (Fig. 9f). Hot embossing is a com‑
mon method for fabricating microstructures into shapes, 
which can make solid microneedles, is low‑cost and easy 
to handle, but has high requirements for molds [206, 207]. 
Magnetorheological lithography can effectively fabricate 
microneedles without the use of molds, which is efficient 
and more flexible, but has limited material options [208, 
209]. 3D printing is a relatively new fabrication with high 
design flexibility, high efficiency, and greatly reduced manu‑
facturing difficulty, but also has the disadvantage of limited 
material options [210–213].

In recent years, water‑soluble or biodegradable micronee‑
dles became the most studied category due to the conveni‑
ence in preparation and the versatility in treating diseases. 
Sullivan et al. developed dissolving microneedle patches 
encapsulating inactivated influenza virus vaccine that tar‑
geting delivery to skin’s antigen‑presenting cells, provid‑
ing facilitated vaccination and improved immunogenicity 

on mice model compared to conventional intramuscular 
injection (Fig. 10a) [214]. Wang et al. introduced nonabla‑
tive fractional laser (NAFL) treatment on local skin before 
inserting the influenza vaccine‑packaged, biodegradable 
microneedles, achieving lesion‑free cutaneous vaccina‑
tion and broadened cross‑protective immunity owing to the 
NAFL‑mediated adjuvanticity [215]. Subcutaneous insulin 
delivery via biodegradable microneedles is another hot‑
spot (Fig. 10b) [216, 217] as they can provide the essential 
continuous delivery for protein drugs. For instance, Seong 
et al. developed swellable PS‑PAA microneedles with high 
percentage of effective insulin dose loaded in the swol‑
len polymer network, leading to prolonged release insulin 
rather than a burst release (Fig. 10c) [218]. Moreover, Yu 
and co‑workers designed and fabricated gelatin/calcium sul‑
fate and gelatin/hydroxyapatite composite microneedles for 
insulin delivery, which presented longer hypoglycemic effect 
than subcutaneous injection route in diabetic rats model 
(Fig. 10d) [219, 220]. Localized therapy for avoiding sys‑
temic side effects is another advantage of microneedle‑based 
drug delivery. Xie et al. utilized dissolvable microneedle to 
transdermally deliver selective CGRP antagonist peptide for 
curing localized neuropathic pain on rats model in a painless 
and irritation‑free manner, without disturbing the normal 
nociception and motor function (Fig. 10e) [221]. This advan‑
tage also provides a promising dosage form for antineoplas‑
tic drugs with systemic toxicity and side effects. Su’s team 
reported a safe subcutaneous delivery of lipid‑coated cispl‑
atin nanoparticles via dissolving microneedles, resulting in 
remarkable reduction in tumor volume and weight within a 
xenograft tumor animal model, and non‑organ toxicity was 
detected in the meantime (Fig. 10f) [222]. On the other hand, 
capillaries in subcutaneous tissues can allow fast diffusion 
of small‑molecule drugs from the dermis into the systemic 
circulation, offering new opportunities for self‑administrable 
cardiovascular diseases therapeutics. Li and co‑workers suc‑
cessfully developed biodegradable microneedles for combi‑
native delivery of sodium nitroprusside (SNP) for treating 
hypertensive emergencies and sodium thiosulfate for sup‑
pressing side effects induced by SNP, on the spontaneous 
hypertensive model (Fig. 10g) [223].

Based on micro‑nano fabrication technology, micronee‑
dles are feasible to combine with other advanced tech‑
nologies for achieving more complex functionalities, e.g., 
on‑demand drug release. Wei et  al. integrated conduc‑
tive microneedles electrodes with electroporation device 
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for in vivo DNA and siRNA delivery under safe voltage, 
achieving efficient and localized delivery of plasmid DNA 
(in healthy muscle tissue) and siRNA (into tumor) in mice 
model (Fig. 11a) [224]. Chen’s team encapsulated photother‑
mal conversion nanomaterial  (LaB6) and chemotherapy drug 

molecules in polycaprolactone microneedles with low melt‑
ing point (~ 60 °C) to establish a near‑infrared (NIR)‑light‑
triggered transdermal controlled‑release system [225–227]. 
Benefitting from the simultaneous photothermal therapy 
and chemotherapy to superficial tumors, this microneedle 
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system demonstrated good synergistic effect that eradicated 
4T1 tumors within 1 week on mice model, without recur‑
rence and significant weight loss (Fig. 11b) [228]. Gu’s team 
integrated carefully designed glucose‑responsive vesicles or 
matrix with insulin loaded into swellable microneedles for 
establishing closed‑loop insulin delivery systems [229, 230]. 
The essential glucose‑sensing composites such as glucose 
oxidase and phenylboronic acid can sensitively respond 
to hyperglycemic conditions and lead to the dissociation 
of glucose‑responsive components, then releasing insulin 
into systemic circulation via subcutaneous vascular and 
lymph capillary networks. These systems demonstrated the 
effectiveness of blood glucose regulation on both insulin‑
deficient diabetic mice and minipigs models (Fig. 11c, d).

Being as a powerful transdermal drug delivery plat‑
form, microneedles technique provided exciting novel 
possibilities for the development of integrated diagnosis 
& treatment system, by combining with wearable bio‑
sensing system. Representative research on closed‑loop 
diabetes monitoring and therapy was reported by Kim’s 
team [231]. The stretchable skin‑mounted system pre‑
sented in Fig. 12a was mainly composed of a multi‑layer 
sweat‑based glucose‑sensing patch and an electro‑thermal 
triggered therapeutic microneedle patch. The glucose‑
sensing module includes a core electrochemical glucose 
sensor and other humidity, temperature, pH and strain sen‑
sors for glucose level correction and hypoglycemic states 
prediction, all based on graphene (GP)‑hybrid materials. 
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For delivery metformin into ISF, the microneedles with 
dissolvable PVP body and phase‑change material (PCM) 
coating were warmed by the electro‑resistive heater, 
leading to the melting of PCM (transition temperature 
41–42 °C) and the dissolving of PVP, thereby releasing 
loaded drugs. On the diabetic mice model, the measured 
over‑threshold sweat glucose level triggered the heating 
of microneedle patch to regulate the blood glucose, form‑
ing a feedback‑controlled drug delivery system. In their 
later work, a similar but upgraded system with more effi‑
cient sweat glucose monitoring and two‑stage metformin 
controlled release was developed [232]. The innovative 
microneedles were made by dissolvable hyaluronic acid 
hydrogel coated with PCM, and loaded metformin was 
encapsulated in two types of phase‑change nanoparticles 
(PCN1 and PCN2, melting transition temperature at 38 
and 43 °C, respectively) (Fig. 12b). This realized precise 
and multistage drug release in response to the monitored 
glucose level.

On the other hand, microneedles themselves can be 
developed in to wearable biosensing devices. In fact, 
microneedle‑based biosensing technique has achieved 
optimistic progress in recent years. Fabricating micronee‑
dles from conductive or semi‑conductive materials as 

transdermal sensing electrodes matrix, and performing 
sensing via three‑electrode electrochemistry or bioim‑
pedance measurement, is the fundamental principles of 
microneedle‑based biosensing (Fig. 12c). Typically, to 
guarantee the sensing specificity, microneedle tips are 
modified with certain enzymes or antibodies for targeting 
the analytes. Similarly, micro‑nano‑materials/structures 
are widely used at the tips for enhancing the specific sur‑
face area and surface conductance, thereby enhancing the 
sensitivity of microneedle electrodes. Aside from solid 
microneedles, hollow microneedles can also provide a 
technical strategy for biosensing, that utilize micro‑chan‑
nels inside microneedle tips to transfer interstitial fluid 
(ISF) from the dermis or the endothelium for in vitro 
analyzing or on‑device monitoring via fully integrated 
microneedle biosensors.

The strength of microneedle biosensing is its minimal 
invasiveness and convenience in in situ monitoring of subcu‑
taneous bio‑signals, while the submicron scale microneedle 
tips are a double‑edged sword that limited its application. 
First, processing, modifying and integrating tiny micronee‑
dles into biosensors challenge the preparation technique, 
especially for quantity production required by practical 
application. Second, small microneedle electrodes imply 
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limited surface area that results in weak sensing signals, 
which typically requires integrating micro‑nano‑materials/
structures at microneedle tips to enhance the specific surface 
area. It leads to complicated fabricating process and frag‑
ile surface structures of microneedle electrodes. Third, the 
length of microneedle electrodes confines the sensing depth 
to dermis, lacking the detecting ability in deeper tissue or 
inside blood vessels at present.

Although there are multiple limitations, microneedle‑
based biosensing is still well suited for continuous physi‑
ological signals monitoring and in vivo biomarkers detect‑
ing, particularly in continuous glucose monitoring (CGM) 
[233–235]. Instead of pain and inconvenience caused by 
frequent finger‑stick measurements, or inflammation risks 
induced by long metallic probe (several millimeters) of 
commercial CGM devices, microneedle CGM sensors can 

provide noninvasive or minimally invasive experience for 
diabetic patients. Invernale et al. demonstrated a representa‑
tive design of electrochemical working electrode for glucose 
sensing, utilizing conductive polymer PEDOT to immobilize 
glucose‑specific enzyme GOx on Pt coated stainless steel 
microneedles (Fig. 13a, b) [236]. High linearity that almost 
covered the most physiological glucose range of diabetic 
patients (0–432 mg  dL−1) and good biosafety were dem‑
onstrated in vitro. Another more integrated glucose sensor 
was developed based on silicon microneedles by Yoon et al.
[237]. An entire piece of microneedles arrays was functional 
zoned into three subareas: the working electrode (WE), the 
counter electrode (CE) and the reference electrode (RE), 
via shadow‑mask‑assisted sputtering (Fig.  13c–f). Iron 
catalyst, multiwalled carbon nanotubes (MWCNT), and Pt 
nanoparticle were subsequently modified on the WE and 
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the CE, resulting in good linearity and sensitivity (17.73 ± 3 
µA  mM−1  cm−2) as an enzyme‑free glucose sensor. Besides 
the direct electrochemical sensing by modified microneedle 
electrodes, Jina and co‑workers developed a hollow‑silicon‑
microneedle‑arrays‑based CGM system prototype [238, 239] 
and achieved good accuracy (overall mean absolute relative 
difference of 15%) from ten patients with insulin‑dependent 
diabetes for up to 72 h [239]. The glucose in ISF diffused via 
microneedles’ lumens into the PBS filled sensing chamber, 
where electrochemical module with GOx‑coated working 
electrode functioned.

A similar hollow microneedle biosensing proof‑of‑con‑
cept demonstration was developed for protein detecting by 
Miller et al. [240]. Hollow microneedles fabricated by two 

photon polymerization were integrated with fluidic chan‑
nels and electrochemical electrodes arrays (Fig. 14a), tar‑
geting for myoglobin/troponin detection in ISF. However, 
this ISF transfer strategy leads to relative long sensing lag 
time (several min to more than 10 min), which confines its 
application in detecting large molecules that diffuse slow or 
therapeutic serum levels that vary fast. Ranamukhaarach‑
chi et al. firstly integrated a hollow‑microneedle‑optofluidic 
biosensor for rapid in vitro vancomycin (VAN) sensing 
[241]. The microneedle lumen immobilized with high‑
density peptides for VAN recognition acting as the reactive 
chamber led to low sample volume needed (0.6 nL) and fast 
responding (< 5 min), while the integrated optofluidic mod‑
ule provided high sensitivity (0.41 AU/decade) and low LoD 
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(84 nM) for VAN quantifying (Fig. 14b–d). Unfortunately, 
these prototypes are not fully integrated since the neces‑
sary modules including ICs and power supplies remain as 
great engineering challenges to volume and cost control. 
One clever solution is to directly collect serum samples from 
superficial vessels via relative long hollow microneedle for 
non‑electronic analyzing (Fig. 14e–f) [242]. By applying the 
one‑touch‑activated blood multidiagnostic system (OBMS) 
on the superficial vessels, approximately 30 μL blood could 
be extracted into the sample chamber through biocompatible 
ultra‑sharp nickel microneedle [242, 243]. Blood cells were 
then filtered when the blood flew through the polysulfone 
membrane. The remaining serum diffused to reaction zones 
for colorimetric assay. This system was applied on a rab‑
bit ear artery and successfully measured the serum levels 
of glucose and cholesterol level within 3 min. It provided 

a powerful platform for diagnosing various biomarker by 
simply redesigning the paper‑based sensor. Similar strategy 
was employed on glucose detection in ISF [244].

Apart from the glucose and protein sensing, researchers 
start to employ hypodermic‑microneedle‑based approaches 
for other important physiological biomarkers (pH,  K+, NO, 
ROS, alcohol, etc.) monitoring instead of conventional 
routines. For instance, Miller and co‑workers modified the 
myoglobin/troponin sensing setup (Fig. 15a) into a potas‑
sium‑ions  (K+) monitoring platform, by utilizing pyrolyzed 
carbon as ion selective electrode (the WE) for  K+ detect‑
ing [245]. More recently, an all‑solid‑state potentiometric 
microneedles patch for potassium‑selective detection was 
reported by Parrilla et al. [246] Multi‑layer coating includ‑
ing potassium‑selective membrane‑modified microneedle 
WE directly monitored the  K+ concentration variation in 
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chicken or porcine skin ex vivo. Scientists also incorporate 
microneedle biosensors with medical imaging instrument 
into a powerful dual‑diagnostic system [247]. As presented 
in Fig. 15b, a, hemin/PEDOT/polydopamine‑modified PCL 
microneedle‑based electrochemical sensor for highly sensi‑
tive NO detecting was mounted on the probe of an endomi‑
croscope, and the probe was applied into the colon of the 
mice in vivo. Optical images of polyp regions and distinctive 
increase in cancer‑specific NO signal were obtained simul‑
taneously. Alcohol monitoring from ISF is also reported 
recently by Wang’s team [248]. Alcohol oxidase immobi‑
lized Pt wire, Pt and Ag wire electrodes were inserted into 
the lumens of the hollow microneedles for electrochemi‑
cal sensing (Fig. 15c), providing a convenient strategy for 
functioned microneedle electrodes fabrication. Ex vivo 
mice skin model analysis demonstrated the efficaciousness 
of this transdermal alcohol monitor. In addition, to protect 
the fragile micro‑nano‑sensing structures on microneedle 
electrodes from mechanical damage in transdermal process, 
Xie’s team developed a strategy by spray coating dissolvable 
polymer (PVP) on the microneedle electrodes for in vivo 
biosensing of reactive oxygen species (ROS) [249, 250]. 
In this electrochemical sensing platform, PVP protective 
layer was coated on the microneedle WE that fragile rGO/
Pt nanoparticles composites deposited. It provided suffi‑
cient mechanical strength to protect the nanostructures on 
microneedles from damage and dissolved rapidly (< 5 min) 
in IFS, thereby expose the microneedle surface to function 
correctly (Fig. 15d, e).

Although fully integrated microneedle‑based biosensing 
and transdermal formation releasing system for in vivo diag‑
nosis and treatment is still being developed, we can expect 
its appearance and clinical application in the coming future 
with optimism [235, 251, 252].

3.2.3  Brain Electrodes

Neuroscience becomes the recent research hotspot that 
mainly reveals the biophysical mechanism in brain, and elec‑
trophysiological study is performed to bridge the relation‑
ship between physiological activities and electrical responses 
of neurons. Understanding how single neurons commu‑
nicate and contribute with each other in the large neuron 
network is still a big challenge in neuroscience [253–255]. 
Conventionally, the action potential or ion channel current 

of signal neuron recorded by single electrode (e.g., patch‑
clamp) is the gold standard to explore the neurophysiology 
[256–260]. The patch‑clamp technique forms a high imped‑
ance seal between glass micropipette and cell membrane 
by vacuum. Neuron and brain slice are basic neural models 
for in vitro patch‑clamp recording. With the development 
of patch clamp technique, the in vivo patch‑clamp record‑
ing is also applied in the neuroscience study [261–265]. In 
contrast to in vitro recording, the advanced in vivo patch‑
clamp recording paves a new path for neuroscience of liv‑
ing organism. In vivo patch‑clamp recording is commonly 
performed under a microscope to find and record the labeled 
neurons in the brain. To simplify the pre‑labeling of neuron, 
Kitamura et al. developed a novel shadow patching method 
to visualize the neuron as a negative image by prefusing 
fluorescent dye in the extracellular environment (Fig. 16a, 
left) [261], and the recorded action potentials present the 
similar quality with the pre‑labeled one [266]. Moreover, 
the plasmid DNA and fluorescent dye was also successful 
to be delivered into the neuron by electroporation of the 
same platform, which facilitates the signal recording, bio‑
marker labeling, and genetic manipulating of single neuron 
in intact brain. Although the in vivo patch‑clamp is a pow‑
erful tool to study the electrophysiology of single neurons, 
the manipulating skills are strictly required. To achieve the 
user‑friendly operations, an automatic in vivo patch clamp‑
ing system (Fig. 16a, right) was established to accurately 
position the cell by analyzing the cell‑induced electrode 
impedance changes in algorithm with good performance 
of yield, throughput and signal quality [262]. Although the 
intracellular recording of single neuron is fundamental to 
understand the neurophysiology, the single‑electrode system 
with complicated components is difficult to scale to a high‑
throughput system, and the invasive manners hamper the 
development of long‑term recording.

For chronic neurophysiology study, electroencepha‑
lograph (EEG) recording featured with noninvasive and 
high‑throughput properties is widely applied to record local 
electrical activities of brain, which is collected from the mul‑
tiple electrodes on the scalp [42–44, 270, 271]. However, the 
spatial resolution is limited due to the electrode size, and 
the quality of EEG recording is also affected by the dura 
and skull [272–274]. To improve the spatiotemporal reso‑
lution of recording, the extracellular microelectrode arrays 
(MEAs) are designed to record the neuronal action potentials 
from local neuron network. In contrast to EEG recording, the 
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semi‑implantable MEA extracellular recording can not only 
distinguish signals (e.g., spike) from individual single neu‑
rons in local neural circuit, but stimulate single neurons in 
the deep brain as well. Significantly, the high spatial resolu‑
tion MEA can map and explore the working mode of neuron 
network [275–277].

Microwire MEAs are the first semi‑implantable brain 
electrodes to study the brain for decades (Fig.  16b) 
[278–283]. Microwires are manually made of insulated 
material coated stainless steel, tungsten, platinum, gold, 
iridium or nichrome wires with exposed conductive record‑
ing tips. Conventionally, the microwires are categorized into 
tetrodes and stereotrodes with throughput from several to 
over hundred electrodes, which are collected in a guide tube 
or aligned along the socket, respectively. The conductive tip 
end will be penetrated into the brain, and the other ends of 
microwire is soldered to a connector for signal recording 

[267, 284]. Much effort was made to long‑term single neu‑
ron recording from the mammalian by microwires. To fur‑
ther improve recording sites in the brain, multiple boards can 
be stacked up to form a high‑throughput microwire MEAs. 
Nicolelis et al. implants 96–704 microwires in monkeys, 
recording 421 single neurons for one month and 58 neurons 
for 18 months after implantation [284]. Due to less damage 
to the neurons, the microwire MEAs are qualified for the 
chronic, large‑scale electrophysiological recording of mam‑
malian [285–287]. However, the soft microwires are difficult 
to control during implanting into the curved brain surface.

With the development of micro‑electromechanical sys‑
tem (MEMS) technologies, the complicated silicon‑based 
MEAs emerge by efficient and standard microfabrication 
techniques. Utah electrode array (UEA) is similar with the 
stacked microwire MEAs, and its conventional configuration 
contains 10‑by‑10 needle shank with the exposed conductive 
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silicon tips, which is originally developed at the University 
of Utah (Fig. 16c) [288, 289]. UEA is fabricated on a 3‑mm 
silicon substrate, which make it a robust semi‑implantable 
device in mammalian research [268, 290, 291]. Moreover, 
the successful human trials are usually based on this type 
of MEAs using brain–machine interface [292, 293]. Com‑
pared with the stacked microwires, UEA has a higher spatial 
resolution at the same brain depth, and the pitch between 
neighbor shanks is standard. To further improve spatial 
resolution in‑depth, Utah slanted electrode array (USEA) 
is developed to detect the neuron signals at different depth 
[294, 295]. However, the spatial resolution in‑depth is still 
limited due to intrinsic structure of UEA or USEA. To real‑
ize the recording from various depth of brain, Michigan 
electrodes (Fig. 16d) with single or multiple shanks are 
effective complement and development for functions of 
microwires and Utah electrodes, and Michigan fine neural 
probe was defined and released by deep reactive ion etching 
(DRIE) on silicon‑on‑insulator (SOI) wafers [296, 297]. In 
contrast to tip recording sites of other two MEAs, Michigan 
electrodes have multiple recording sites along each shank 
for simultaneously exploring the neuronal activities at dif‑
ferent brain layers, which greatly improve the depth spatial 
resolution [269, 298, 299]. Besides, Michigan electrode can 
be easily assembled as UEA by stacking the multiple‑shank 
electrodes for three‑dimensional high spatial resolution 
recording, while the recording brain depth (e.g., cortical or 
intracortical) is adjusted by the shank length [300].

Based on the high spatial resolution and controllable 
fabrication of Michigan‑style electrodes, other functional 
components can be integrated into the same device. In neu‑
roscience, neuronal regulation is another important approach 
to reveal neurons’ functionality and interaction in complex 
networks [309, 310]. Electrical stimulation is preferred to 
activate neurons due to the sensing electrodes can be mul‑
tiplexed as a stimulating one, reducing the fabrication and 
integration complication of devices. However, the electrical 
stimulation has the disadvantages of lower spatial resolu‑
tion and non‑specificity [311]. To solve the limitation of 
electrical stimulation, optogenetics provide an advanced 
neuronal regulation strategy using specific wavelength 
optical stimulus at the neurons which are introduced the 
photosensitive proteins, and this novel optical simulation 
strategy can improve the neuron network analysis by the 
high spatiotemporal stimulation. According to this princi‑
ple, the high‑density microscale optical and optoelectronic 

components trend to be integrated on the Michigan‑style 
probe by advanced MEMS technologies. To control distinct 
cells and field oscillations in animals, Wu et al. fabricated 
the neuron‑size microscale light‑emitting diodes (μLEDs) 
and recording electrodes on the same neural probe shank 
(Fig. 17a, left), demonstrating the versatile and precise opti‑
cal simulation by this optogenetic tools [301]. To meet the 
freely moving animal applications, the wireless optogenet‑
ics was developed by Kim et al. [302], and the neural probe 
involved electrophysiological measurement (Pt microelec‑
trode), optical measurement (Si microscale inorganic photo‑
detector), optical stimulation (GaN inorganic light‑emitting 
diodes), and temperature sensing (Pt serpentine resistor) on 
a microneedle substrate for injection into the brain (Fig. 17a, 
right). In addition to the MEMS μLED integrated device, the 
optical waveguide integrated probe is another optogenetic 
tool to deliver the external coupled optical source to the 
neural probe [312–314]. The waveguide can be fabricated by 
polymers such as SU‑8 or dielectrics, and the path and stim‑
ulation sites of waveguide microscale pattern can be freely 
defined by photolithography [312, 315–317]. In addition to 
the electrical and optical stimulation, the chemical stimula‑
tion is also an alternative mean to regulate neurons in brain, 
so the microfluidic channels (Fig. 17b, top) were integrated 
on the neural probe shank to achieve simultaneous electrical 
recording and drug delivery in deep brain [47, 318–322]. 
Although the Michigan‑style electrodes have high‑density 
recording sites, the interconnection lines of passive probe 
arrays significantly limit the number of electrodes on each 
shank. Owing to complementary metal–oxide–semiconduc‑
tor (CMOS) devices are addressable by multiplexing circuits 
via a small number of interconnection line. Therefore, the 
number and spatial resolution of recording sites (Fig. 17b, 
bottom) can be sharply improved by these active devices 
[274, 303, 323–325].

The silicon or metal‑based electrodes are popular and 
utility tools for the neuronal signal recording; however, 
they also suffer from the mechanical mismatch with the 
soft brain tissue, leading to the chronic immune responses. 
To improve the neural probe and brain tissue interface, the 
flexible electrode arrays (FEA) are designed by the materi‑
als, (e.g., polyimide (PI), parylene, or SU‑8) or configura‑
tions (e.g., ultrathin mesh) with the low Young’s modulus 
and bending stiffness, achieving a high‑quality and biocom‑
patible coupling with brain tissue. For example, Kim et al. 
fabricated FEA on ultrathin polyimide substrate supported 
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by bioresorbable substrates of silk (Fig. 17c, left), dem‑
onstrating 2.5‑μm mesh PI‑based FEA enabled conformal 
contact with soft curvilinear brain tissue. All the electrodes 
record the high‑quality electrocorticogram (ECoG) with‑
out implantation immune response for 3–4 weeks [304]. 
To overcome the constraint of passive electrode intercon‑
nection line, Viventi et al. developed a ultrathin and flex‑
ible silicon nanomembrane transistors with thousands of 
recording sites [305], and this FEA device can be either 
placed on the brain or folded and inserted into interhemi‑
spheric fissure (Fig. 17c, right). FEA paves a utility tool 
for long‑term continuous monitoring and coupling tightly 
with uneven brain surface, remaining precise delivery dif‑
ficult in deep brain. To overcome this challenge, syringe 
injectable electronics was propose by Liu et al. [326]. The 
mesh FEA was delivered via 100 μm needle to achieve the 
tight integration in distinct regions of the brain with high 
device yield (> 90%) and low chronic immune responses 
in five weeks (Fig. 17d, left). For stable long‑term chronic 
brain mapping, the mesh FEA was further designed with a 
lower bending stiffness close to one of neural tissue, and 
the injectable in vivo recording lasted for at least 8 months 
(Fig. 17d, right) [306]. To enrich the functions of FEA, 
the optical waveguide, recording electrodes, and micro‑
fluidic channels were integrated by fiber drawing process, 
and this device simplified the multiple optogenetic steps 
to single step (Fig. 17e) [308]. Via same drawing process, 
high‑throughput and multifunctional fiber probes simultane‑
ously carried out the optical stimulation, drug delivery and 
neural recording and drug delivery in freely moving mice 
with high‑resolution study.

Bioresorbable materials are introduced in the semi‑
implantable device to enable the reliable implantation and 
good biocompatibility. Bioresorbable material‑based elec‑
trodes provide another biocompatible strategy in neurosci‑
ence study. The key of these electrodes is the application 
of bioresorbable materials used as the thin substrate film 
or coating components, which can seamlessly biodegrade 
in the tissues over time [327–329]. Bioresorbable polymer 
coating (e.g., polyvinyl alcohol and poly(lactic‑co‑glycolic 
acid)) has been demonstrated to reduce glial scarring during 
the insertion of semi‑implantable devices [327]. Bioresorb‑
able silk coatings are an effective temporary stiffening agent 
for the soft polymer‑based probes which are difficult to be 
implanted into the brain, and silk will gradually in the brain 
tissue [330].

In addition to organic materials, inorganic materials such 
as monocrystalline Si nanomembranes are demonstrated to 
fabricate a bioresorbable array [331]. These Si nanomem‑
branes are hydrolyzed into biocompatible products (e.g., 
silicic acid) when immersed in the biofluidic environment. 
The 300‑nm‑thick phosphorous‑doped Si nanomembrane 
dissolves with the rate of 11 nm/day in 37 °C and pH 7.4 
artificial cerebrospinal fluid, while the rates of 100‑nm‑
thick passivated  SiO2 layer and 30‑µm‑thick PLGA are both 
8.2 nm/day, respectively. Significantly, in vivo biocompat‑
ibility bioassays verified these bioresorbable devices activate 
small‑scale microglials. Those study proves the bioresorb‑
able semi‑implantable devices serve as the brain explora‑
tion tools in comfortable and biocompatible manner based 
on the highly precise microfabrication technologies. To 
lower the stiffness of electrodes, the low‑modulus conduc‑
tive polymers are adopted in the neuro‑device fabrication 
to provide a good mechanical match for brain tissue [332]. 
Poly(3,4‑ethylenedioxythiophene) (PEDOT) is a common 
conductive polymer, which can replace the gold, platinum, 
iridium, and tungsten materials as recording and stimula‑
tion electrodes. The PEDOT/poly (styrene sulfonate) (PSS) 
recording electrodes are widely reported in many studies, 
while the PEDOT/paratoluene sulfonate (pTS) is preferred 
material as the stimulation electrode. PEDOT/pTS‑coated 
platinum electrodes exhibit a lower impedance and larger 
charge injection capacity than those of bare ones [333]. Due 
to the higher surface area, these conductive polymer‑based 
electrodes present a higher charge transfer capacity for the 
in vivo models [334]. To future clinical applications, these 
conductive polymer‑based semi‑implantable devices require 
more rigorous validation in nonhuman primate models to 
ensure the chronic stability and biocompatibility [335].

3.3  Applications

For the fundamental neuroscience research, electrical 
recording is a powerful technology to analyze the activi‑
ties of neural networks, which are related to physiological 
and biological mechanisms. MEAs are commonly employed 
semi‑implantable devices for high‑throughput and long‑
term electrophysiological recording. The traditional MEAs 
consist of multichannel individual passive sensors; how‑
ever, their interconnectors occupy large space, which sig‑
nificantly limited the high spatial resolution for the in vivo 
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neuroscience studies. Viventi et  al. employed a silicon 
nanomembrane‑based transistor array for the ECoG record‑
ing to overcome this limitation [305]. Based on architecture 
of the flexible transistor array, the thousands of integrated 
sensors can be operated by fewer wires in a multiplex way. 
The in vivo activities of brain cortex, such as sleep, visual 
stimulus, and seizure, were recorded and mapped by 360 
electrodes. From the feline seizure model, it can be found the 
typical feature of seizures is spiral waves which propagate in 
the cortex, and the high spatial resolution devices can visu‑
ally display in the form of high spatiotemporal resolution 
pseudo‑color movies (Fig. 18a).

For brain electrodes, fully implantable electronics facili‑
tate the maximum free movement of the subject without 
the influence of external structures; while semi‑implantable 
electronics focus more on the fidelity of signal transmission. 
Since fully implantable electronics need to meet the require‑
ments of wireless transmission, and the current development 
of fully implantable electronics, the wireless transmission 
requirements of fully implantable electronics are far from the 
expected goal, especially the EEG signal and its complex and 
cranial will seriously affect the transmission of the signal. In 
addition to the high‑throughput property of devices, long‑term 
chronic electrical recording is also required in neural electro‑
physiological study. For the stable in vivo neuroscience inves‑
tigation, the semi‑implantable device can achieve the single 
cell spatiotemporal resolution; however, the motion damage 
and chronic inflammation will affect the function and per‑
formance of implanted probes during long‑term monitoring. 
Fu et al. fabricated a flexible mesh electronic device, which 
was biocompatible with neuron‑like stiffness to support the 
high‑quality neuron signal recordings from mouse brains for 
34 weeks (Fig. 18b) [306]. The neuron‑like device can record 
the robust single‑neuron signals from freely behaving mice, 
which paves a promising way to investigate the cognition 
and neurodegenerative in vivo models. Therefore, under the 
premise of requiring signal fidelity, the current semi‑implant‑
able electronics are more widely used in the field of brain 
electrodes.

To integrated high‑throughput and long‑term properties of 
neural activity recording, the fully integrated silicon probe was 
developed for the high‑density recording. The Michigan‑style 
shank integrated 960 complementary metal–oxide–semicon‑
ductor (CMOS) recording sites (Fig. 18c), which can perform 
the hundreds of neuron for each semi‑implantable device 
[303]. Employing only two shanks, at least 700 individual 

neurons were recorded from five brain regions in a freely 
moving mouse. Moreover, more than 100 neurons were sta‑
bly chronic recordings over 150 days by a semi‑implantable 
COMS device in the mouse brain. Significantly, the functional‑
ized small devices allowed the simultaneous and large‑scale 
recording from different brain regions of awake animals. 
Combing the high‑throughput and long‑term performance, 
this advanced brain electrodes open up future study of large‑
scale ECoG recording in both local field potentials and spikes.

3.3.1  Biochemical Sensing

Due to the existence of skull structure, it is not suitable for 
the detection of brain biochemical indexes with common 
transdermal detection. Discoveries in optical sensing [45, 
336, 337] and electrochemical sensing [338–341] are of 
great importance to the development of neuroscience.

Most of the initial optical sensing was based on single‑
electrode sensing of fluorescent proteins. This single‑
electrode optical biochemical sensor provides a solution 
for in vivo research in neuroscience and lays the founda‑
tion for the development of modern precision electrodes. 
For example, GRABNE single‑electrode sensor detects 
optogenetically and behaviorally triggered NE release in 
live mice, live zebrafish, and free‑ranging mice (Fig. 19a) 
[342]. As shown in Fig. 19b, the ultra‑sensitive protein 
calcium sensor GCaMP6 reliably detects individual action 
potentials in neuronal cytosol and directionally regulated 
synaptic calcium transients in individual dendritic spines 
[343]. Thus, the optical sensor provides a new avenue to 
the organization and dynamics of neural circuits at multi‑
ple temporal and spatial scales. With the development of 
single‑electrode imaging, two‑photon imaging [344] and 
high‑precision and multifunctional [337, 345, 346] imag‑
ing are maturing. The easy detection characteristics of these 
versatile, high‑precision optical sensors make it possible to 
monitor neural activity in vivo in real time. Acetylcholine, 
which is involved in a variety of neural activities but has 
always been difficult to detect, was successfully detected 
in vivo by a semi‑implanted fluorescent, two‑photon imag‑
ing device (Fig. 19c). As shown in Fig. 19d, the behavior 
of acute GABA release can be monitored, and the amount 
of instantaneous change in dopamine can be measured. In 
terms of application prospects, wavelength division multi‑
plexing sensing of optical sensors will be applied to more 
scenarios. A calcium‑sensitive near‑infrared probe (NIR 
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GECO1) combined with other optogenetic indicators and 
actuators has been reported to open up new prospects for 
multicolor  Ca2+ imaging (Fig. 19e). In the future, it will 
be a trend to use wireless, passive, multiplexed implantable 

optical sensors to monitor and modulate neural activities 
in freely moving animals. The important progress in brain 
sensing was also extended to the development of electro‑
chemical (EC) sensors.
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Similar to common electrochemical transdermal sens‑
ing, electrochemical sensing in brain relies on working 
electrode and electroanalytical techniques. Micro‑/nano‑
electrode modified by aptamer has become a main way 
to detect biochemical substances in brain. For example, 
it was reported an electrochemical aptamer‑based in vivo 
cocaine sensor capable of measuring cocaine directly from 
discrete brain locations. Besides, aptamer functionalized 
neural recording electrodes successfully probe electro‑
chemical aptamer‑based sensor and spontaneous neural 
activity in the brain (Fig. 20a). Another electrochemical 
aptamer‑based sensor supporting continuous, real‑time, 
multi‑hours measurements detected four drugs in the 

bloodstream of even awake, ambulatory rat (Fig. 20b, 
c). This electrochemical aptamer‑based sensor achieved 
high temporal resolution and precise molecular meas‑
urements at clinically relevant detection limits, provid‑
ing an important approach to the study of physiology and 
pharmacokinetics. A recent paper describes a transparent, 
ultra‑flexible, and active multielectrode array, for simul‑
taneous optogenetics and electrochemical sensing. With 
the increasing of multifunctional semi‑implantable sensors 
in brain biochemical detection, wireless multifunctional 
devices are booming. A wireless miniaturized microelec‑
trode system for real‑time optogenetic stimulation and 
dopamine detection in the deep brain of freely behaving 
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mice was developed [347]. Such semi‑implantable bio‑
chemical sensors provide important potential for neurosci‑
ence studies when combined with fluorescent and aptamer 
for mapping of biochemically active species.

3.3.2  Drug Delivery

Advances in the field of nano‑ and microfluidics have cre‑
ated opportunities to develop drug delivery platforms in a 
semi‑implantable form. The advanced microfluidic systems 
allow precise temporal control of variety drugs, long‑term 

independent infusion with minimal tissue damage and are 
designed to allow free movement of research animals. In 
recent years, drug delivery systems are often used in com‑
bination with multifunctional platforms such as photo‑mod‑
ulation and signal recording, and drug delivery channels 
have evolved and improved from single to multiple chan‑
nels depending on the application requirements. As shown 
in Fig. 21a, different stimuli are applied at the cellular level 
to study and modulate neural circuits in vivo, which only a 
single microfluidic channel is used for drug delivery. In the 
example shown in Fig. 21b, neural electrodes with multi‑
ple functions are also capable of delivering multiple drugs. 
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sorted neurons at 5 different concentrations of pilocarpine by microfluidic channels [47]. c The expression of opsin gene in wild‑type (WT) mice 
was detected after the viral vector carrying opsin gene was injected into WT mice by dual channel microfluidic probe [350]. d Wireless delivery 
of red dye to the phantom brain in the rat model by single channel optofluidic system [351]. e Wireless, selective control of drug delivery in a 
group of concurrently behaving mice [352]. Reproduced with permission from Refs. [349–352], copyright (2019) Nature Publishing Group, 
(2015) The Royal Society of Chemistry Publishing Group, (2017) Nature Publishing Group, (2018) Wiley‑VCH Publishing Group and (2019) 
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These in vivo results demonstrate that these electrodes with 
multifunctional delivery capabilities will be an effective 
tool for investigating the fundamental mechanisms behind 
brain disorders that modulate neural circuits by delivering 
neurotransmitters through a single implant. Multifunctional 
electrodes like the aforementioned one, which contain mul‑
tiple drug delivery channels, can deliver not only common 
neurological drugs but also vector viruses carrying special 
genes (Fig. 21c). These flexible electrodes, which have mul‑
tiple functions such as drug delivery, optical pathways, and 
signal recording, have achieved high fidelity (similar to the 
transmembrane potential and contains high‑resolution details 
to explore ion channel properties) multimodal interrogation 
of brain circuits while minimizing tissue damage. But for 
accurate drug testing to be done in a free‑moving, awake 
animal, smarter and easier drug delivery systems will be 
needed. Examples of wirelessly implantable drug‑deliverable 
electrodes are shown in Fig. 21d‑e. Figure 21d shows this 
wireless electrode can analyze dose response relationships 
for a single drug, or test the effects of several various drugs 
in a rodent brain. The main difference is the drug‑fillable and 
flow‑adjustable feature. The technique has the capability to 
target specific neuronal populations in freely moving animals. 
For the more demanding requirements of wireless, prolonged, 
repeated and precise drug delivery, the multichannel, wire‑
less, controlled drug delivery shown in Fig. 21e provides a 
reliable solution. This scheme demonstrates the optofluidic 
device is an ability to selectively control specific mice via a 
Bluetooth application for smartphones, revealing the basis of 
neuropsychiatric disorders by observing changes in behavior 
and intracerebral features of the mice.

3.3.3  Stimulation

Modulating the activities of neural networks plays an essen‑
tial role in neuroscience. Electrical and optical stimulation 
are common approaches to regulate the activities of neu‑
rons. Brain stimulation electrodes that are not permanently 
implanted inside the brain can be classified as semi‑implant‑
able devices because of their non‑permanent use and because 
they can be controlled by an external device. To address the 
disadvantages of low spatial resolution and non‑specificity, 
brain stimulation electrodes can be combined with optoge‑
netics and advanced MEMS technology to activate neurons. 
It is of interest that deep brain stimulation (DBS) is used 

to treat neurological disorders such as Alzheimer’s disease 
(AD), Parkinson’s disease, or depression. Currently, the 
main focus is on the versatility of semi‑implantable devices 
to achieve closed‑loop recording and treatment with DBS. 
Due to the excitability and conductivity of neurons, the elec‑
trical stimulation is generally applied to regulate them. The 
electrical stimulation electrodes are usually integrated in the 
electrical recording devices to check electrophysiological 
properties of neurons. These multifunctional semi‑implant‑
able devices can provide a simultaneous stimulation and 
recording tools for long‑term monitoring and evaluation of 
single‑neuron activities [306]. The emergence of optogenet‑
ics modified the gene of neurons into photosensitive ones 
which facilitates the optoelectronic regulation and greatly 
propels the neural regulation [353–355]. In contrast to the 
conventional electrical stimulation, optical stimulation can 
dramatically reduce the interference while signal recording 
is simultaneously performed. In the early research, the LEDs 
were physically attached on the brain recording probe with 
low resolution [356]. Recently, more efforts are focused 
on the integration of microLEDs on the neural probe with 
advanced microfabrication for the high‑resolution optoge‑
netic modulating and recording [301]. In recent study, the 
gamma frequency ontogenetic stimulation has been proved 
a hopeful DBS for AD treatment. It is demonstrated that 
40 Hz optogenetic stimulation reduce the amyloid‑β levels, 
and the microglia cells are activated to help clear amyloid‑β.

To perform the optical stimulation, some studies have 
employed the thin optical fibers and waveguides with record‑
ing probes. For example, this optical fibers‑microwire hybrid 
probes can achieve the simultaneous recording of single‑
neuron responses to the optical modulation. To further 
improve the resolution of optical modulation, the tip sizes 
of optical fibers were reduced to 5–20 µm to form an inte‑
grated optoelectrical interface [46, 357]. Another group has 
developed small and good flexible multifunctional probe by 
optical waveguides and recording electrodes, and this poly‑
mer‑based multifunctional probes can be applied for opto‑
electronic operation on neural activity in the mouse brain 
[307, 308]. In one study, transparent and conductive zinc 
oxide pillars‑based brain probe simultaneously performed 
the signal recording and optical regulation of optogenetic 
modified neurons in cortical regions. Based on this semi‑
implantable device technology, dynamics of light‑perturbed 
brain circuit of transgenic mice and effects on behavior can 
be in‑depth investigated [358].
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In addition to the electrical and optogenetic stimulation, 
neural activities can also be modulated by chemical stimula‑
tion. For this purpose, the microfluidic channels were inte‑
grated onto the brain probes by deep reactive ion etching, 
and these channels were connected the exterior delivery of 
various neuroactive biochemical. In a study, the multiplex 
delivery microchannels were designed for simultaneous 
infusions of a stimulating chemical, a saline buffer solution, 
and label chemical into a local mouse brain for modulating 
neural activities and staining neurons at the target area. As 
a result, the neural activities were enhanced by the infusion 
of pilocarpine, while significantly inhibited by infusion of 
tetrodotoxin [47]. Moreover, the delivery function integrated 
neural probes were demonstrated to establish the in vivo dis‑
ease model. By injection of baclofen, the seizure models can 
be built and specific neural signal patterns can be recorded 
simultaneously [47].

3.4  Biosafety

The biosafety indicators of semi‑implantable devices are 
particularly concerned in both clinical practice and bio‑
medical studies, mainly including inflammation, irritation, 
and fibrosis evaluation. Inflammation is a common defense 
mechanism in the body to eliminate harmful stimuli and 
activate the healing, when the immune system finds the 
pathogens, damaged cells, or irritants. However, inflam‑
mation sometimes can last longer than necessary, causing 
unexpected harm to the body. The effects of acute inflam‑
mation can be summarized as pain, redness, immobility, 
swelling, or heat signs, which only apply to inflammations 
of the skin. Irritation is defined as an inflammation or pain‑
ful response status, which results in allergy or cell dam‑
age. For example, once the stimuli or agents induces the 
skin irritation, the skin may turn red. Fibrosis is another 
biosafety indicator, which is the formation of excess fibrous 
tissues or scar tissue, due to the injury or long‑term inflam‑
mation. The formation of fibrosis has many potential causes 
such as injuries, burns, radiation, diseases, or treatment of 
diseases. The negative effects of fibrosis make the tissues 
harden or swell, which significantly affects the normal func‑
tion of tissues.

Subcutaneously implanted electrodes or probes (e.g., 
CGM sensors) generally damage cells or stimulate skin, 
which will induce the inflammation. The early implantation 

has been proved to cause of sensor noise rather than the 
fibrosis [359]. The foreign‑body response and wound injury 
will not lead to significant inflammation with insertion and 
immediate removal of the guide needles [177]. However, the 
implanted position is usually selected at fat region of abdo‑
men, where the friction or touch will frequently occur during 
the sleeping or movements, so the long‑term implantation of 
electrodes will result in subcutaneous inflammation, which 
will disturb the accurately blood glucose measurements. 
Besides, the tubing of insulin pump is easily blocked due to 
the similar reason, resulting in the dangerous hyperglyce‑
mia. For the brain electrode implantation, the foreign body 
response also leads to the wrapping of glia cells [359]. Gen‑
erally, glia cells have been recognized as an encapsulating 
barrier and directly affect the communication between the 
implanted electrode and targeted neurons. Consequently, the 
glia will significantly influence the stimulation efficacy and 
the long‑term performance of implanted devices. Due to the 
above reasons, the CGM sensors can only be implanted for 
2 weeks to clean the probes, while the insulin pumps can last 
for 1 week to avoid the blockage. The brain electrode can 
continuously maintain the high‑quality electrophysiologi‑
cal signals for several months, while the most of micronee‑
dles sensing and regulating system only present short‑term 
applications.

3.5  Limitation and Future Trends for In Vivo 
Applications

Semi‑implantable devices (e.g., CGM‑based insulin pump 
systems, microneedles, brain electrodes) possess advantages 
of high sensitivity and rapid response for recording and reg‑
ulating compared with the wearable devices. The electrically 
controllable property is convenient and reliable for the data 
transmission between the device and computer. In contrast 
to the fully implantable devices for in vivo application, the 
semi‑implantable devices are safe without residues and con‑
venient for power supply. For the in vitro cell application, 
the semi‑implantable devices (e.g., nanoelectrode array, 
nanoFET, nanowire, and nanostraw) are efficient to penetrate 
the cell membrane in spontaneous or artificially assisted 
way. Due to the superiority of semi‑implantable devices, 
the high‑quality intracellular biophysical and biochemical 
signals can be recorded accurately, while the intracellular 
drug delivery can be precisely operated.
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On the other hand, semi‑implantable devices have obvious 
defects, such as limitation of long‑term implanted, space for 
the in vitro intracellular environment, and imaging effect. 
Compared with the wearable devices, the long‑term fixa‑
tion on the human body causes inconvenient and uncomfort‑
able feeling. Most of semi‑implantable devices cannot be 
chronically implanted, which is easy to induce the inaccurate 
measurement or cause inflammation. Moreover, requirement 
of multiparameter simultaneous detection is difficult to be 
satisfied due to high standard for in vivo clinical practice and 
limit space for the in vitro intracellular environment. Fur‑
thermore, the detection sensitivity and selectivity of devices 
need to be improved. Spatial resolution and imaging effect 
is still at a low quality.

4  Summary and Perspective

Semi‑implantable bioelectronic devices are desired to exten‑
sively promote the personalized and precise healthcare. 
They present the potential to serve as powerful tool for the 
biomedical clinical practice with the characteristics of high 
sensitivity, high selectivity, good biocompatibility, etc. With 
advances of micro/nanofabrication technologies, chemical/
material preparations, and intelligent control algorithms/sys‑
tems, the high‑performance semi‑implantable bioelectronic 
devices can sense and regulate the trace fluctuations (e.g., 
biophysical signals and biochemical markers) of physiologi‑
cal status. Microfluidics is another prospective technology 
for drug delivery and signal monitoring in combination with 
nanoelectrodes. The combination of electrical stimulation 
and nanoelectronics can modulate cellular activity and 
expression for precise stimulation and simultaneous moni‑
toring. For personalized and precise healthcare, the universal 
semi‑implantable bioelectronic platforms are compatible for 
various individuals, while the closed‑loop regulation strate‑
gies can also be self‑adaptive for individual requirements by 
artificial intelligence algorithms. For the in vitro cell appli‑
cations, semi‑implantable bioelectronics shows the superi‑
orities of intracellular accurate signal recording and precise 
manipulations in a minimally invasive way, which collected 
high‑quality intracellular bioinformation and achieve the 
efficient intracellular delivery.

In the recent decades, semi‑implantable bioelectronic 
devices have unprecedented development in a variety of 
biomedical fields. To propel the wide practical applications 

of these semi‑implantable bioelectronic devices, a large 
amount of current challenges and bottlenecks should be 
positively addressed for the future wide research and devel‑
opment. Here, we prospect the six future research trends 
for semi‑implantable bioelectronic: (i) multifunctionality, 
(ii) microminiaturization, (iii) biocompatibility, (iv) intel‑
ligentization, (v) reliability, and (vi) commercial practi‑
cality. Multifunctionality is future trend in developing the 
semi‑implantable bioelectronics. Multifunctional devices 
will not only perform the multiplex biochemical and bio‑
physical signal recording, but conduct the electrical, optical, 
chemical regulating as well in vivo and in vitro. To explore 
the diversity and complexity of biological living from cell 
and tissue to living body, from extracellular environment 
and intracellular environment, the multifunctionalized semi‑
implantable bioelectronic devices are powerful tools to carry 
out the multiplexed signal collections for the multi‑modality 
investigation.

Even if the current devices are miniaturized into a port‑
able size, microminiaturization of the next‑generation semi‑
implantable bioelectronic devices further helps the users 
ignore the existence of them. The microminiaturization 
with invisible properties should be developed with improved 
humanized design by integrating microminiaturized devices 
into daily necessities without uncomfortable implanting/
carrying feelings. Meanwhile, the microminiaturization of 
semi‑implantable devices for cells will greatly improve the 
chronic intracellular investigation with minimal damage.

For the long‑term applications in vivo or in vitro, biocom‑
patibility is one of key properties in the semi‑implantable 
devices. For the in vivo studies, the materials of should be 
strictly screened to relieve the foreign body response, and 
the suppressive negative effect of semi‑implantable devices 
will prolong the working life and reduce the recalibration 
frequency. For the in vitro studies, the biocompatible semi‑
implantable devices will enter into the cell and monitor 
the intracellular environment by a spontaneous and gentle 
endocytosis rather than artificial operations, which effec‑
tively maintain the cell viability and integrity of plasma 
membrane.

Though these semi‑implantable devices can automatically 
perform regulation on biological subjects based on the col‑
lecting information, development into highly intelligent 
and close‑loop system is still further required for person‑
alized and precise healthcare. By integrating the artificial 
intelligence algorithms, the semi‑implantable bioelectronic 



Nano‑Micro Lett.          (2022) 14:125  Page 41 of 55   125 

1 3

platforms are compatible and universal for various indi‑
viduals. The closed‑loop regulation strategies can also be 
supportive for individual requirements based on the precise 
deep learning or self‑adaptive algorithms embedded into the 
control system of device.

Reliability of semi‑implantable bioelectronic device is 
also essential aspect for the practical applications. The accu‑
racy and precision of the measurement play a crucial role in 
the practical use, particularly in rigorous clinical trials. The 
fundamental performance, such as selectivity, sensitivity, 
long‑term stability, and noise suppression, of semi‑implant‑
able bioelectronic devices should be further tested to assure 
an accurate measurement and regulation to exclude the 
interferences (e.g., non‑targeted biochemical or biophysical 
signals, background noise). Reliability of devices should be 
also based on the further development toward biocompatibil‑
ity and high‑performance, while taking the maintenance of 
multifunctionality and device miniaturization into account.

With the advanced properties of semi‑implantable bioel‑
ectronic device, the commercial practicality is leap develop‑
ment from laboratory to industry, or even from bench to the 
clinic. The inaccuracy or uncomfortable experiences of com‑
mercial semi‑implantable bioelectronic devices will induce 
the distrust on its practical applications, which will rapidly 
cause the failure of commercial products. The translation 
from the prototype of semi‑implantable electronic device to 
the commercial practical device suffers from the extremely 
high requirements and enormous challenges. However, for 
the future advances of biomedical practical application, 
these challenges of semi‑implantable bioelectronics are 
meaningful to be achieved. The versatile semi‑implantable 
bioelectronics will eventually provide the profound benefit 
of mankind from daily life to personalized healthcare.
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