Supporting Information for

Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites

Liyuan Jin¹, Wenjing Cao¹, Pei Wang¹, Na Song¹, and Peng Ding^{1, *}

¹Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China

*Corresponding author. E-mail: dingpeng@shu.edu.cn (Peng Ding)

Supplementary Figures and Tables

Fig. S1 SEM images of (**a**) spherical-like graphene powder without ultrasonic dispersion and (**b**) Graphene sheets obtained after ultrasonic dispersion

Fig. S2 (a) TEM and (b) AFM images of MXene nanosheets. (c) TEM and (d) AFM images of graphene nanosheets

Nano-Micro Letters

Fig. S3 XRD patterns of Ti_3AlC_2 MAX, $Ti_3C_2T_x$ MXene and graphene nanosheets

Fig. S4 FTIR spectra of Ti_3AlC_2 MAX, $Ti_3C_2T_x$ MXene, graphene, PEG, NFC, MG/NFC and MGPP100

Fig. S5 (a) FTIR spectra of PU foam, PDA, and PU@PDA. Water contact angle (WCA) images of (b) PU and (c) PU@PDA

Nano-Micro Letters

Fig. S6 SEM images of MGP composite foams with (**a**) PVA solution and (**b**) NFC solution and their corresponding magnification images

Fig. S7 Cross-section SEM images of (**a**) MGP100 composite foams and (**b**) MGP100-3 composite foams and their corresponding magnification images

Fig. S8 SEM images of (**a**) PU, (**b**) PU@PDA, (**c**) MGP100 composite foams and (**d**) melamine foam (MF), (**e**) MF@PDA, (**f**) MG/ MF@PDA composite foams

Fig. S9 (a) Through-plane thermal diffusivity of MGPP composites. (b) TCE of MGPP composites compared with MGPP0

Fig. S10 TGA analysis of MGPP composites

Fig. S11 (a) Topography and (b) SThM and their corresponding 3D images of MGPP0. The scan size is 5 \times 5 μm

Fig. S12 (a) Optical image, (b) infrared thermal image, and (c) surface temperature variation curve of the thermal conductive MGPP samples

Fig. S13 (a) DSC curve of PEG. (b) Enthalpy efficiency of MGPP composites

Fig. S14 The maximum tan δ for the MGPP composites

Nano-Micro Letters

Fig. S15 The enlarged strain-stress curve at the range of 0-0.05% strain

Sample	T _m (°C)	T _c (°C)	$\Delta H_m (J g^{-1})$	$\Delta H_c (J g^{-1})$
PEG	61.83	31.06	191.61	192.58
MGPP0	62.07	34.97	189.43	191.25
MGPP25	62.39	36.09	186.94	189.97
MGPP50	62.29	35.44	181.46	188.21
MGPP75	62.41	35.89	179.07	183.56
MGPP100	61.88	36.19	174.72	177.90
MGPP100-2	61.71	37.06	133.74	133.63
MGPP100-3	61.56	37.51	129.32	130.25

Table	S1	DSC	data
		$\nu \nu \nu$	ance

Samples	T _{mo} (°C)	T _{me} (°C)	T _{co} (°C)	T (°C)
PEG	56.66	65.46	37.38	24.57
MGPP0	58.68	68.11	40.44	24.41
MGPP25	58.12	66.57	39.93	28.67
MGPP50	58.18	66.41	37.09	27.25
MGPP75	58.29	66.69	38.13	27.96
MGPP100	58.32	66.71	39.37	29.53
MGPP100-2	58.31	66.51	38.34	29.29
MGPP100-3	58.04	64.08	38.76	30.85

Table S2 DSC data

Where $\Delta H_{\rm m}$ is the melting enthalpy, $T_{\rm m}$ is the melting temperature, $\Delta H_{\rm c}$ is the crystallization enthalpy, and $T_{\rm c}$ is the crystallization temperature. The subscript "o" indicates the starting point, "p" indicates the peak point, and "e" indicates the endpoint.

Movie S1 The rapid shape recovery of MGPP100-3 composite spline.

Movie S2 The slow shape recovery of MGPP100-3 composite spline.

Both Movie S1 and S2 are processed at 10× speed.