Supporting Information for

Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical

Conversion of CO₂ to Multi-Carbon Products

Xiaotong Li^{1, #}, Jianghao Wang^{1, #}, Xiangzhou Lv¹, Yue Yang¹, Yifei Xu¹, Qian Liu¹, Hao Bin Wu^{1, *}

¹ Institute for Composites Science Innovation (InCSI) and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

[#] Xiaotong Li and Jianghao Wang contributed equally to this work.

*Corresponding author. E-mail: <u>hbwu@zju.edu.cn (</u>Hao Bin Wu)

Supplementary Figures and Tables

Fig. S1 SEM images of UiO-66 with different sizes of (a) 100 nm, (b) 300 nm, and (c) 600 nm

Fig. S2 Photo of the H-cell setup used in this work

Fig. S3 Schematic of the synthetic process of UiO-66 modified Cu foil (X-UiO/Cu)

Fig. S4 SEM images of (a) UiO-66 nanoparticles and (b) mechanically polished Cu foil

Fig. S5 Cu LMM AES spectrum of 0.5-UiO/Cu-bare before CO₂RR

Fig. S6 (a) C 1s XPS spectrum, (b) O 1s XPS spectrum and (c) Zr 3d XPS spectrum of 0.5-UiO/Cu. (d) Zr 3d XPS spectrum of UiO-66 nanoparticles. All samples in Fig. S6 are characterized before CO₂RR

Fig. S7 (a) Linear fitting of capacitive currents and (b) the corresponding electrochemical double-layer capacitance (C_{dl}) (the slopes of the fitting curves in (a)) of X-UiO/Cu. The ECSA-corrected current density for H₂, C₁, and C₂₊ products as a function of potential on (c) Cu and (d) 0.5-UiO/Cu

Fig. S8 FEs of CO₂RR and HER products on Cu foil as a function of potential

Fig. S9 Formation rates of C2+ products (r_{C2+}) on Cu foil and 0.5-UiO/Cu as a function of potential

Fig. S10 Top-view SEM images of 0.5-UiO/Cu electrode after CV: (**a**) with and (**b**) without the surface coating layer. (**c**) Top-view SEM image of 0.5-UiO/Cu electrode after CA without the surface coating layer

Fig. S11 (a) C 1s spectrum and (b) O 1s spectrum of 0.5-UiO/Cu after CO₂RR at -1.05 V vs. RHE for 1 h

Fig. S12 Schematic of possible evolution process of UiO-66 coating on X-UiO/Cu electrode under CO₂RR

Fig. S13 The *in situ* surface-enhanced Raman spectra recorded between (**a**) 100-700 cm⁻¹ and (**b**) 1700-2400 cm⁻¹ on Cu foil at OPC, after CV, and at the selected potential range of -0.2 V to -1.2 V vs. RHE with a potential interval of 0.2 V for 10 min

Sample	C _{dl} (μF cm ⁻²)	$R_{ m f}$	ECSA	ECSA-corrected j _{C2+}
Cu	35.37	1	1	1.99
0.1-UiO/Cu	187.39	5.3	5.3	1.76
0.25-UiO/Cu	198.41	5.61	5.61	3.35
0.5-UiO/Cu	245.9	6.95	6.95	3.82
1-UiO/Cu	325.32	9.2	9.2	2.90
2-UiO/Cu	408.26	11.54	11.54	2.45

Table S1 The C_{dl} , R_f , ECSA, and ECSA-corrected j_{C2+} of Cu and X-UiO/Cu

Table 52 Companyon of CO ₂ KK performance on 0.5-010/Cu with state-or-me-art Cu-based cataryst evaluated in ri-type c	Table S2 Comparison of CO ₂ RR	performance on 0.5-UiO/Cu w	ith state-of-the-art Cu-based cat	alyst evaluated in H-type cell
---	---	-----------------------------	-----------------------------------	--------------------------------

Refs.	catalyst	cell type	electrolyte	Ewe/(RHE)	FE of C ₂₊	ECSA- collected jC ₂₊ (mA cm ⁻²)	geometric area normalized jC ₂₊ (mA cm ⁻²)	r _{C2+} : Formation rate of C2+ (μmol s ⁻¹ m ⁻²)	stability (h)
This work	0.5-UiO/Cu	H-cell	0.1 M KHCO ₃	-1.05	74.17%	-3.822	-26.57	228.08	32
ACS Catal. 2021, 11, 2473-2482	Cu@N _x C	home-made H-cell	0.1 M KHCO ₃	-1.1	76.8%	-5	-14.9	128.69	2.7
Joule. 2021 5, 429-440	Cu-DS	H-cell	0.1 M KHCO3	-1.08	78%	N/A	-23.4	186.56	30
Small. 2021, 2102293	Cu@Ag-2	Flow-cell	1 M KOH	-1.1	67.6%	N/A	-22.7	193.53	14
Nano Res. 2021									
doi.org/10.1007/s12274-	Cu-s	H-cell	0.1 M KHCO ₃	-1.1	55.8%	N/A	-26.69	230.52	8
021-3532-7									
Electrochim Acta. 2021,	n-Cu	H-cell	0.1 M KHCO ₂	-13	57.2%	N/A	-22.65	195 69	10
388, 138552	p Cu	II con	0.1 10 101003	1.5	37.270	1.1.1	22.05	195.09	10
Green Chem. 2020, 22,	CuO-	H-cell	0.1 M KHCO3	-1.1	50%	N/A	-3.77	32.56	9
6540-6546	CeO ₂ /CB		•••••••		/ -				-
Angew. Chem. Int. Ed. 2021, 60, 7426-7435	5-Ag/Cu ₂ O	H-cell	0.1 M KHCO ₃	-0.98	65%	-0.41	-6.09	51.25	12
Angew. Chem. Int. Ed.	Cu/CuSiOa	H_cell	0.1 M KHCO	_1 1	60 64%	N/A	_12.25	105 80	6
2021, 60, 15344-15347		II-cell	0.1 W KHCO ₃	-1.1	00.0470	$\mathbf{N}\mathbf{A}$	-12.25	105.00	0
ACS Appl. Nano Mater. 2020, 3, 257-263	Cu GNC-VL	H-cell	0.5 M KHCO ₃	-0.87	70.5%	N/A	-7.33	63.33	12
Chem. Mater. 2020, 32, 3304-3311	Cu ₃ N	H-cell	0.1 M CsHCO ₃	-1	68%	-0.714	-12.58	102.15	3.33
ACS Energy Lett. 2021, 6, 437-444	CuBr-DDT	H-cell	0.1 M KCl	-1.25	72%	-8.75	-9.02	76.90	15
ACS Catal. 2020, 10, 4103-4111	Cu/PANI	H-cell	0.1 M KHCO ₃	-1.2	66%	-5.17	-14.9	127.91	20

Some data in **Table S2** is collected from figures in the corresponding literature, which may be less precise.

trail/at%	С	0	Cu	Zr
UiO/Cu NPs	67.89	27.47	0.83	3.80
UiO/Cu-CV NPs	49.71	41.86	1.04	7.39
UiO/Cu-CA NPs	33.71	49.26	2.72	14.32

Table S3 EDS results of 0.5-UiO/Cu NPs, 0.5-UiO/Cu-CV NPs, and 0.5-UiO/Cu-CA NPs

Table S4 FEs of H₂ and various CO₂RR products as well as the geometric current density on Cu foil as a function of potential

E _{we} (RHE)	j (mA cm ⁻²)	H_2	СО	CH ₄	НСООН	C2H4	C ₂ H ₅ OH	СН3СООН	C ₃ H ₇ OH	СН ₃ СНО
-0.85	1.92	60.01	7.12	0	27	0	0	0	0	0
-0.90	2.45	60.5 ± 2.91	8.69 ± 1.03	0.18 ± 0.18	27.84 ± 3.66	0	0	0	0	0
-0.95	3.29	45.49 ± 2.97	10.86 ± 1.62	2.46 ± 0.44	26.85 ± 2.72	4.3±1.13	0	0	0	0
-1	5.53	35.14±1.99	10.72 ± 0.89	11.4 ± 2.85	23.17±2.44	11.88 ± 1.53	1.06 ± 1.83	0.14 ± 0.25	0	0
-1.05	9.63	23.3±2.52	5.52 ± 0.38	$22.01{\pm}1.44$	15.73±2.22	15.5 ± 1.57	4.66±1.72	0.41 ± 0.36	0	0
-1.1	19.67	20.72 ± 4.04	2.52±0.06	32.59 ± 0.83	$10.79{\pm}1.48$	16.72±2.19	3.99±0.49	1.09 ± 0.40	$1.56{\pm}1.08$	1.57 ± 2.22

Table S5 FEs of H₂ and various CO₂RR products as well as the geometric current density on 0.5-UiO/Cu electrode as a function of potential

Ewe (RHE)	j (mA cm ⁻²)	\mathbf{H}_2	СО	CH ₄	нсоон	CH ₃ OH	C ₂ H ₄	C ₂ H ₅ OH	СН ₃ СООН	C ₃ H ₇ OH	CH ₃ CHO
-0.85	3.06	29.16	19.1	0	36.58	0	7.18	7	0	3.94	0
-0.9	5.81	19.94 ± 2.39	17.68 ± 0.91	0	28.73 ± 2.69	0	15.29 ± 1.12	7.07±3.12	0	5.25 ± 0.62	0
-0.95	9.72	17.76 ± 3.47	10.5 ± 1.2	1.33 ± 0.31	18.01 ± 1.91	0.84 ± 0.78	28.44 ± 2.47	9.63±1.02	0.54 ± 0.19	8.68±0.79	0.56 ± 0.47
-1	23.95	15.06 ± 1.85	3.15 ± 0.28	3.38 ± 0.58	8.73±0.99	0.58 ± 0.25	40.68 ± 1.4	16.8±1.33	0.75 ± 0.42	8.21±0.31	1.94 ± 0.93
-1.05	35.78	11.98 ± 2.81	1.41 ± 0.28	4.45±1	5.7 ± 2.07	0.53 ± 0.58	42.2 ± 1.92	20.97±0.73	0.86 ± 0.21	8.2±0.25	1.95 ± 0.63
-1.1	56.71	$22.88{\pm}1.48$	0.83±0.19	6.35±0.9	3.06±0.55	0.5 ± 0.36	33.02±1.77	22.41±2.44	0.5±0.19	3.77±0.74	0.75 ± 0.05

Loading (mg cm ⁻²)	j (mA cm ⁻²)	H_2	CO	CH ₄	нсоон	CH ₃ OH	C ₂ H ₄	C ₂ H ₅ OH	СН ₃ СООН	C ₃ H ₇ OH	CH ₃ CHO
0.1	16.5	15.84	2.25	9.36	10.66	0	33.3	16.32	0.13	5.88	0.92
0.25	26.34	9.45±0.9	1.66 ± 0.14	5.56 ± 0.62	5.91±0.94	0.17±0.3	43.32±2.01	18.39±0.94	0.72 ± 0.18	6.58 ± 0.28	1.77±0.51
0.5	35.78	11.98 ± 2.81	1.41 ± 0.28	4.45±1	$5.7{\pm}2.07$	0.53 ± 0.58	42.2±1.92	20.97±0.73	0.86±0.21	8.2±0.25	1.95±0.63
1	44.34	22.56±2.93	1.49±0.16	4.8±0.97	$5.84{\pm}1.23$	0.7 ± 0.82	34.11±1.6	17.61±1.7	0.75 ± 0.24	6.27 ± 2.94	1.22±0.59
2	56.72	27.36	1.08	4.58	6.08	0.78	27.67	13.3	0.43	8.2	0.32

Table S6 FEs of H₂ and various CO₂RR products as well as the geometric current density on various X-UiO/Cu electrodes at -1.05 V vs. RHE