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S1 Structural Analysis and Characterization 

The morphology and microstructure of PBAx–PDMS and PBAx–PDMS/FGf composites were 

characterized by field-emission scanning electron microscopy (FESEM; S4800-15kV, Hitachi, 

Japan). The chemical structures and components of the copolymer samples were examined by 

Fourier transformation infrared spectroscopy (FT-IR; Tensor27, Bruker, Germany) and X-ray 

photoelectron spectroscopy (XPS; 250Xi, Thermo Fischer, USA), respectively. All C1s line 

was corrected at 284.6 eV. The crystallinity of the polymer and the phase of the composite were 

characterized by X-ray diffraction (XRD, D8 Advance, Bruker, Germany) with Cu Kα radiation 

(λ = 1.54 Å). The glass transition temperature (Tg) and of the samples was evaluated by 

differential scanning calorimetry (DSC; TA660, TA instrument, Japan) in an Ar atmosphere at 

heating and cooling rates of 10 °C min−1. 1H-NMR spectra were recorded using a 400-MHz 

spectrometer (NMR; AVANCE III, Bruker, Swiss). Specifically, the content of the 

copolymerization unit is tested using the internal standard method, and the signal for 

quantitative integration and the number of protons generating the signal are selected to be found 

based on the molecular weight of the monomer. In order to ensure the reproducibility of the 

experiment, the molar ratio of the feed is used for its description. The CDCl3 (
1H at 7.26 ppm) 

was used as the solvent, and the splitting patterns of NMR were as follows: s, singlet; t, triplet; 

q, quartet; m, multiplet.  

S2 Supplementary Figures and Tables 

 

Fig. S1 1H NMR spectra of PBA-PDMS in CDCl3 
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Fig. S2 (a) Digital electro-photograph of (a) graphene film and (b) FGf. The (c) surface and 

(d) cross sectional SEM image of FGf 

 

Fig. S3 Cross sectional SEM image of PBA-PDMS/FGf 

 

Fig. S4 FTIR spectra of PBA, PDMS, PBAx–PDMS, and PBAx–PDMS/FGf 
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Fig. S5 Structural characterization of polymers. Magnification of (a) C1s, and (b) N1s of 

PBA-PDMS 

 

Fig. S6 (a) Stress-strain behavior of GFf and (b) PBA-PDMS/FGf at room temperature 

 

Fig. S7 Fracture energy test sample model 
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Fig. S8 Comparison of the self-healing efficiencies of the reported polymer compositions 

 

Fig. S9 Mechanical strength of composites with different composite methods 

First, three graphene membranes with the same morphology, structure and length were selected 

in the initial state. In the initial state, the polymer composite is obtained by covering the 

graphene film with polymer, and its mechanical tensile curve is A. The same length of graphene 

is folded in half and filled with polymer in the middle, and its stretching curve is set to B. The 

graphene film breaks, and then the polymer is covered at the fracture, and its mechanical tensile 

curve is set as C. The results show that the highest mechanical strength of A in the intact state 

is 4.8 MPa. The mechanical strength of the composite in the B state is 3.65 MPa and the self-

healing efficiency is 76%. The mechanical strength of the composite in the C state is 1.7 MPa 

and the self-healing efficiency is 35%. This indicates that the self-healing of the composite is 

mainly caused by the strong adhesion of the polymer to the graphene. And the data provide 

direct evidence of the primary mode of self-healing. 
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Table S1 Summary of the self-healing polymer materials reported in literatures 

Sample E (MPa) T (oC) Time (h) ησ (%) Refs. 

Py-PDMS-Co-1 - 25 24 71 [S1] 

Boroxine-PDMS 182 ± 15.8 70 12 95 [S2] 

PDMS-1 2.34 ± 0.22 25 4 95 [S3] 

U-PDMS0.9K-Es 0.23 ± 0.07 40 2 100 [S4] 

PDMS–MPU0.4–IU0.6 0.62 ± 0.06 25 48 72 [S5] 

PDMS (A4) - 100 2 85 [S6] 

(UP)3T 47.39 ± 1.03 40 12 77.5 [S7] 

Zn (Hbimcp)2-PDMS 43.68 ± 3.27 25 24 98.9 ± 1.9 [S8] 

HPUrea ~ 0.12 25 0.5 97.2±2.2 [S9] 

BE-PDMS1:3-UPy 130.46±10 25 6 97.69±0.33 [S10] 

D-PDMS 0.51 25 24 100 [S11] 

PDMS-2S 0.32 25 12 95 [S12] 

GC-PDMS-10k 0.17 80 24 75 [S13] 

PDMSPU 0.0747 60 10 76 [S14] 

PBA-PDMS 0.23±0.1 25 10 (min) 100 This work 

The default room temperature is 25 ℃. 

Table S2 Summary of the graphene/polymers composites materials reported in literatures 

Sample σ (MPa) T (oC) Time (h) ησ (%) Refs. 

graphene/PDMS–urea 17.5 50 0.8 95 [S15] 

SHPU/grapheme 4 30 3 39 [S15] 

NR/Graphene-2 4.59 ± 0.08 70 7 70 [S16] 

PANDA/Gr-0.6 22.3 ± 1.9 75 24 39 ± 4 [S17] 

PU-EDM/rmGO-1 31.16 ± 3.30 65 48 62 [S18] 

PU/MG050 7.10 30 3 39.63 [S19] 

AgNW/EVA 4 50 12 97.17 [S20] 

This work 2.23 ± 0.15 25 2 100  
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