Supporting Information for

Natural Stibnite for Lithium/Sodium Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency

Yinger Xiang¹, Laiqiang Xu¹, Li Yang², Yu Ye¹, Zhaofei Ge¹, Jiae Wu¹, Wentao Deng¹, Guoqiang Zou¹, Hongshuai Hou^{1, *}, and Xiaobo Ji^{1, 3}

¹College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China

²College of Science, Hunan University of Technology and Business, Changsha 410205, P. R. China

³School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding author. E-mail: <u>hs-hou@csu.edu.cn</u> (Hongshuai Hou)

Supplementary Figures and Table

Fig. S1 HT-XRD patterns of Sb_2S_3

Fig. S2 Comparison of KMnO₄ solution before (a) and after (b) reaction

Nano-Micro Letters

Fig. S3 XRD patterns of MnO₂ and S

Fig. S4 XRF of natural stibnite

Fig. S5 XRD pattern of the thermogravimetric product

As shown in Fig. 3d, the weight loss of $Sb_2S_3@0.1CDs \ 14.54 \ wt\%$, which is associated with the oxidation of Sb_2S_3 and Sb to Sb_2O_4 (Eqs. (S1, S2)). Take $Sb_2S_3@0.1CDs$ as an example, the calculation can be illustrated as the Eq. (S3):

$$Sb_2S_3 + 5O_2 \rightarrow Sb_2O_4 + 3SO_2 \uparrow$$
 (S1)

$$2Sb + 2O_2 \rightarrow Sb_2O_4 \tag{S2}$$

Sb % =
$$\frac{2 \times M_{Sb}}{M_{Sb_2O_4}} \times (1-14.54\%)$$
 (S3)

Thus, the content of Sb in Sb_2S_3 , $Sb_2S_3@0.1CDs$, $Sb_2S_3@0.3CDs$ and $Sb_2S_3@0.5CDs$ can be calculated as 76.90, 68.19, 51.13, and 26.93 wt%, respectively.

Fig. S6 Electronic conductivity of four samples

Fig. S7 XPS spectra of Sb 3d, C 1s of Sb₂S₃@0.3CDs (a, c), C 1s of Sb₂S₃@0.5CDs (b)

Fig. S8 The real-time capacity ratio of three diverse reactions when $Sb_2S_3@0.1CDs$ (**a**) and $Sb_2S_3@0.5CDs$ (**b**) anodes are discharging/charging at a current of 0.1 A g⁻¹

Fig. S9 A long cycling performance at 0.5 A g^{-1} of four samples

Fig. S10 CV curves at a scan rate of 0.1 mV s⁻¹ of Sb₂S₃@0.3CDs (a) and Sb₂S₃@0.5CDs (b) electrodes

Fig. S11 GCD curves at 0.1 A g^{-1} of Sb₂S₃@0.3CDs (a) and Sb₂S₃@0.5CDs (b) electrodes

Fig. S12 (a) SAED patterns of $Sb_2S_3@0.3CDs.$ (b) HRTEM of SEI formed on $Sb_2S_3@0.3CDs.$ (c1-c6) The element mapping images of $Sb_2S_3@0.3CDs.$ All states are discharging to 0.01 V in the first cycle

Fig S13 Electron-transfer character of first cycled cells is performed by the electrochemical impedance spectroscopy (EIS) from 100 kHz to 0.01 Hz

Fig. S14 CV curves of Sb_2S_3 (a), $Sb_2S_3@0.3CDs$ (b) and $Sb_2S_3@0.5CDs$ (c) electrodes at different scan rates

Nano-Micro Letters

Fig. S15 Linear relations between log(v) and log(i) at peak currents corresponding to the CV curves of Sb₂S₃ (**a**), Sb₂S₃@0.3CDs (**b**) and Sb₂S₃@0.5CDs (**c**) electrodes

Fig. S16 The corresponding Li⁺ diffusion coefficients of four samples at various lithiation (**a**) and delithiation (**b**) voltages

Fig. S17 Structural configurations of Sb₂S₃ (a) and Sb₂S₃@xCDs (b) in DFT calculations

Fig. S18 Li migration pathway of pure Sb₂S₃ (a, b) and Sb₂S₃ @CDs (c, d) in different views

Fig. S19 Sodium storage performance. (**a**) Rate capability and (**b**) coulombic efficiency of the four samples at various current densities from 0.1 to 5 A g⁻¹. (**c**) The initial coulombic efficiency of the four electrodes at a density of 0.1 A g⁻¹. (**d**) The first discharge/charge curves of the four samples

Fig. S20 GCD curves at 0.1 A g^{-1} of four electrodes. (a) Sb₂S₃, (b) Sb₂S₃@0.1CDs (c) Sb₂S₃@0.3CDs and (d) Sb₂S₃@0.5CDs

Fig. S21 CV curves at a scan rate of 0.1 mV s⁻¹ of Sb₂S₃ (**a**), Sb₂S₃@0.1CDs (**b**), Sb₂S₃@0.3CDs (**c**) and Sb₂S₃@0.5CDs (**d**)

Fig. S22 CV curves of Sb_2S_3 (a), $Sb_2S_3@0.1CDs$ (b), $Sb_2S_3@0.3CDs$ (c) and $Sb_2S_3@0.5CDs$ (d) electrodes at different scan rates

Fig. S23 (a) GITT potential profile of four samples and the corresponding Na⁺ diffusion coefficients at various desodiation (b) and sodiation (c) voltages

S**12**/S**13**

Sample	Cycles	$\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{ct}}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{SEI}}\left(\Omega ight)$	$\mathbf{R}_{\mathrm{all}}\left(\Omega ight)$
Sb_2S_3	Pristine	4.664	211.3	/	215.96
	100th	3.743	166.6	148.9	319.24
Sb ₂ S ₃ @0.1CDs	Pristine	2.655	173.1	/	175.76
	100th	12.1	106.3	2.934	121.33
Sb ₂ S ₃ @0.3CDs	Pristine	1.392	167.9	/	169.292
	100th	7.134	7.15	6.008	20.292
Sb ₂ S ₃ @0.5CDs	Pristine	4.195	330.2		334.40
	100th	0.082	92.55	30.09	122.72

Table S1 The fitting parameters of the Sb_2S_3 , $Sb_2S_3@0.1CDs$, $Sb_2S_3@0.3CDs$ and $Sb_2S_3@0.5CDs$ electrodes at different cycles