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Full‑Fiber Auxetic‑Interlaced Yarn Sensor 
for Sign‑Language Translation Glove Assisted 
by Artificial Neural Network
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 HIGHLIGHTS

• Full-fiber auxetic-interlaced yarn sensor was fabricated by a continuous and mass-producible computerized wrapping spinning technology.

• Auxetic-interlaced yarn sensor shows a Poisson’s ratio of − 1.5, a robust mechanical property (0.6 cN/dtex), and a fast train-resistance 
responsiveness (0.025 s).

• A novel sign-language translation glove was developed to recognize the full English alphabet and translate the wearer’s sign language 
to text.

ABSTRACT Yarn sensors have shown promis-
ing application prospects in wearable electronics 
owing to their shape adaptability, good flexibility, 
and weavability. However, it is still a critical chal-
lenge to develop simultaneously structure stable, 
fast response, body conformal, mechanical robust 
yarn sensor using full microfibers in an indus-
trial-scalable manner. Herein, a full-fiber auxe-
tic-interlaced yarn sensor (AIYS) with negative 
Poisson’s ratio is designed and fabricated using a 
continuous, mass-producible, structure-program-
mable, and low-cost spinning technology. Based 
on the unique microfiber interlaced architecture, 
AIYS simultaneously achieves a Poisson’s ratio 
of−1.5, a robust mechanical property (0.6 cN/
dtex), and a fast train-resistance responsiveness 
(0.025 s), which enhances conformality with the 
human body and quickly transduce human joint 
bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. 
Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The 
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sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Further-
more, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. 
The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers. 

KEYWORDS Negative Poisson’s ratio yarns; Interlaced yarn sensors; Smart glove; Deep learning; Sign-language translation

1 Introduction

Hearing-impaired people can only rely on sign language to 
communicate and exchange ideas with the world [1, 2]. Thus, 
portable and flexible sign-language translation systems that can 
translate gestures into text or voice are clearly needed. For the 
English language, such a system is required to recognize all 26 
letters of the English alphabet with high accuracy in any environ-
ment. Currently available sign-language translation systems can 
be divided into two categories: vision-based system [3] and sen-
sor-based gloves [4, 5] such as electromyography [6–8], pressure 
sensor [9], and strain/stress sensors [5, 10, 11]. The vision-based 
approach requires strict imaging condition requirements, such as 
camera angle [12], illumination [13], and background [1, 3, 13]. 
This makes the vision-based approach impractical in the complex 
and variable daily life of deaf people. In these scenarios, sensor-
based wearables show more potential because of their strong anti-
interference ability to the environment. However, sensor-based 
systems are still limited by many issues, such as small amount 
of recognizable sign numbers [7, 14], long translation time [10, 
14], structural complexity [10], and lack of conformality [14]. 
Moreover, strict adherence to requirements for the form-factor, 
sensitivity, resolution, and mechanical compliance is highly 
needed for glove sensors to achieve sign-language translation.

Yarn sensors [2, 15–20] provide a new alternative approach for 
wearable sign-language translation because such textiles can be 
compatible with traditional textile-production processes [21] and 
have the functionality of detecting human joint motion [22–27]. 
Unlike film-based sensors [9, 10, 28–30] that are difficult to 
integrate into wearable textile gloves, full-fiber yarn sensors are 
flexible, invisible, and breathable in wearable clothes or gloves 
[31–33]. However, the further advancement of yarn sensors 
still faces several critical challenges. First, current yarn sensors 
normally have core-shell structures with unidirectional twists 
[34–38]. This architecture only allows fibers assembled in one 
twisting direction, which results in structure instability because 
of the directional residual torque in the spinning process. Second, 
the fabrication of yarn sensors, such as emulsion dipping, com-
posite laminating, and sputter coating, is difficult to maintain an 
even surface because of the Plateau-Rayleigh instability [39]. The 

non-fiber uneven yarns will restrict the flexibility, breathability, 
and stretchability of the fabric sensors [40]. Third, many yarn 
sensors are not compatible with traditional textile-production 
processes, therefore have difficulties in mass-production and 
structure manipulation [41]. Forth, the current yarn sensors nor-
mally have a positive Poisson’s ratio [34–38], which will contract 
in the yarn axial directions when it is stretched longitudinally. 
This may result in stress concentration and restricts the future 
study in conformality with human bending joint parts [42, 43].

To address the aforementioned problems, we report a full-
fiber auxetic-interlaced yarn sensor (AIYS) using a continuous, 
mass-producible spinning technology. Two conductive polyam-
ide (PA) yarns are interlocked with the core polyurethane (PU) 
yarn along the wrapping direction at a high speed. Furthermore, 
the geometric and auxetic behavior, mechanical properties, and 
electrical performance of the AIYS during stretching are ana-
lyzed. Moreover, we propose a new mechanical constitutive 
model that fully considers the structure distribution and nonlin-
ear mechanical behavior of the AIYS, which shows a high con-
sistence with the experimental data. In addition, a smart glove 
sewed with a 16-AIYS array covering the entire movable joint 
of the human hand and wrist is fabricated. An artificial neural 
network (ANN) algorithm was developed for sensor calibration 
and correction. We demonstrate that the sign-language transla-
tion glove has an overall recognition accuracy of 99.8% for the 
26 letters of the English alphabet, according to American Sign 
Language (ASL) [18]. Moreover, the smart glove makes it pos-
sible to  transduce human thoughts from sign language into text 
or voice with the aid of mobile devices at a rapid speed. There-
fore, our low-cost, full-fiber, mass-producible sign-language 
translation glove with excellent flexibility, high recognition 
accuracy, and good body conformality will be helpful for the 
hearing-impaired community.

2  Experimental Section

2.1  Materials

Conductive silver-coated PA yarns were purchased from 
Qingdao Zhiyuan Xiangyu Functional Fabric Co., Ltd., 
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China. PU yarns were purchased from Huaian New Tech-
nology Co., Ltd., China. Knitted gloves were purchased from 
Hwa Heung Glove Company, South Korea.

2.2  Preparation of the AIYS and Smart Glove

AIYS was fabricated using the JGC141 fully computerized 
yarn-wrapping machine, which was purchased from Zhejiang 
Jingong Science and Technology Co., Ltd, Zhejiang, China. 
First, the silver-coated PA yarn for the inner sheath layer was 
transferred from a commercial bobbin to a hollow yarn bob-
bin through a yarn-pressing machine in a clockwise direction. 
Second, the process was conducted in a counterclockwise 
direction for the outer sheath layer bobbin. Third, the two 
hollow yarn bobbins with the silver-coated PA yarns were 
mounted on the fully computerized yarn-wrapping machine 
in a proper order. Fourth, as shown in Fig. 2, the core yarn 
was placed according to the required order, from the bottom 
to the top, successively through tension controller, positive 
rollers, aprons, and two wrapping areas. Fifth, the fully com-
puterized yarn-wrapping machine started to spin after setting 
the appropriate spinning parameters. To obtain AIYSs with 
different wrapping angles, systematical twists were set at 300, 
600, 900, and 1200. During fabrication, the AIYSs were col-
lected on the groove drum-driven bobbins. After finishing the 
mass-productive spinning process, sixteen AIYSs with the 
length of approximately 20 mm were connected to the copper 
electrode wire using conductive silver paste, and the con-
nection part was further encapsulated with two-component 
epoxy resin. Subsequently, the sensors were sewed on the 
selected position of a knitted glove by plain stitches. Among 
them, 14 AIYSs were vertically distributed on each movable 
joint of the five fingers, one sensor was vertically sewed in 
the middle of the wrist part, and the remaining sensor was 
horizontally connected between the index and middle fin-
gers, as shown in Fig. 1a. According to the positions, the 
sensors were labeled as Thumb Top, Thumb Bottom, Index 
Top, Index Middle, Index Bottom, Middle Top, Middle–Mid-
dle, Middle Bottom, Ring Top, Ring Middle, Ring Bottom, 
Pinky Top, Pinky Middle, Pinky Bottom (sensors 1–14), 
Index Middle (sensor 15), and Wrist (sensor 16).

2.3  Characterization of AIYS Performance

The morphologies of the AIYS yarns and surface mor-
phologies of the silver-coated PA fibers were analyzed 

using a scanning electron microscope (TM3000, Hitachi 
Group, Japan) and a Dino-Lite digital microscope. 
After collecting the geometric pictures from the Dino-
Lite digital microscope, the auxetic performance of the 
AIYS yarns were measured using the software ImageJ. 
The mechanical properties of the yarn were measured 
using a yarn elongation-strength tester (XL-1A, Shang-
hai Xinxian Instrument Co., Ltd., Shanghai, China). The 
testing yarn sample was clamped at the crosshead with a 
gauge length of 20 mm. The resistance of the AIYS was 
measured by using an inductance–capacitance–resistance 
meter (TH2829, Shenzhen Tonghui Instrument Co., Ltd., 
Shenzhen, China).

2.4  Dataset Collection and Deep Learning Training 
Model

In terms of the training data for individual alphabet rec-
ognition, the signal data from 16 channels were recorded 
with 41,600 data points and 100 samples were collected for 
the sign language of each alphabet. Out of these 100 sam-
ples, 60 samples were randomly used for training (60%), 20 
were used for validation (20%), and 20 were used for testing 
(20%). The volunteer wore the smart glove and repeated each 
letter of the alphabet (from A to Z) 100 times. To ensure data 
independence and the generalization ability of the dataset, 
two actions of full bending and full extension were inter-
spersed between two data points corresponding to the two 
alphabet sign languages. The dataset was collected using a 
data-acquisition system (DAQ 970A, Keysight Technolo-
gies, UK). The ANN models used in the system were con-
figured as follows: the model architecture was composed of 
16 input nodes, two hidden layers with 100 nodes each, and 
26 output nodes. An activation function ReLU was used for 
the two hidden layers. In addition, the Softmax function was 
used as an activation function for the output layer. The ANN 
was trained through backward propagation using the stochas-
tic gradient descent method. The cross entropy loss function 
was used as the loss function. We periodically adjust the 
learning rate using a learning rate scheduler, StepLR. The 
learning rate decreased proportionally to 0.99 in every 50 
steps of learning. 10 epochs were performed with the above 
conditions. The PyTorch [44] library was used for all the 
computations involving the ANN.
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3  Results and Discussion

3.1  Design and Working Mechanism 
of the Sign‑language Translation Glove

Figure 1a illustrates the working process of sign-language 
translation using the AIYS-array-embedded smart glove. 
The glove is fabricated by sewing a 16-element yarn sensor 
array on the movable joints of the fingers and wrist of a knit-
ted glove. Firstly, the sensor array is connected with a mul-
tichannel data-acquisition system to acquire a large dataset, 
which is fed into the ANN algorithm to train a deep learning 
model. Subsequently, in real-time application, by wearing 
the smart glove and invoking the trained model, all the 26 
letters can be translated from hand gestures into readable and 

audible text. As shown in Fig. 1b, the sensing unit AIYS has 
a unique interlocking structure, which contains two silver-
coated PA yarns (sheath yarns) symmetrically wrapped on 
the PU yarn (core yarn).

The well-designed structure provides the AIYS with a 
high resistance–strain responsiveness (Fig. 1bi) and a nega-
tive Poisson’s ratio performance (Fig. 1bii) simultaneously. 
The auxetic structure reduces tension concentration, thereby 
enhancing the smart glove conformality with the human 
body, whereas the resistance–strain responsiveness, owing 
to the intrinsic slippage and elongation of the conductive 
sheath fiber during stretching, provides high sensitivity to 
the glove for different human hand movements. At the same 
time, it is easy to densely weave AIYS into textile gloves 
for sign-language recognition of the full English alphabet.

Fig. 1  Schematic illustration of the sign-language translation glove based on auxetic yarn sensor array. a Diagram of the real-time sign-lan-
guage translation, showing signal acquisition, data processing, and deep learning paths from the AIYS-array-embedded smart glove to the sign-
language translation. b Architecture of the AIYS and illustration of its strain responsiveness and auxetic effect. c Schematic illustration of the 
continuous yarn-wrapping technology. Insets (i) and (ii) are optical images of the Z-twist helical yarn and interlaced-helical yarn, and (iii) is a 
picture of collecting bobbins with the AIYS
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The full-fiber AIYS is fabricated using a continuous, 
mass-producible spinning technology with a high work-
ing efficiency and a low cost, as shown in Figs. 1c and S2 
and Video S1. For the core yarn, it was firstly successively 
guided into the yarn-wrapping machine from bottom to top 
through tension controller, positive rollers, aprons, and two 
wrapping areas, and subsequently collected by the groove 
drum-driven collecting bobbins (Fig. 1c). The sets of rollers 

and wrap point controllers effectively control the feeding 
speed of the core yarn and protect them from being affected 
by the wrapped yarn. For the inner sheath yarn, it was fed 
into the first wrapping area and twisted on the surface of core 
PU core yarn in a clockwise winding direction to obtain a 
Z-twist helical structure (Fig. 1ci). For the outer sheath yarn, 
it is twisted in a counterclockwise winding direction on the 
Z-twist helical yarn surface of the second wrapping area to 

Fig. 2  Geometric and mechanical behavior of an AIYS sensing unit. a Cross-sectional and side view of the AIYS. b AIYS being stretched to 
0%, 30%, and 50% elongation, showing negative Poisson’s ratio behavior. c Comparison of the Poisson’s ratios between interlaced-helical and 
single-helical auxetic yarn. “Axial strain” means the stretching strain applied along the axial direction of AIYS composite yarn. d Variation of 
the radial strains of AIYS with different wrapping angles of 45.7°, 50.9°, 63.1°, 69.1°. “Radial strain” means the deformation strain measured 
along the radial direction of AIYS composite yarn. e Poisson’s ratios of the AIYS with different wrapping angles. f Typical mechanical behavior 
of the AIYS during stretching and recovery from 0 to 200% elongation. g Cyclic mechanical stretching performance of the AIYS during 0–10% 
elongation. h Comparison of experimental and theoretical viscoelastic mechanical behavior of an AIYS described by Model-I and Model-II
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form an interlaced structure (Fig. 1cii). Consequently, the 
AIYS is continuously collected in the bobbin, as shown in 
Fig. 1ciii. The AIYS fabrication process has a fast work-
ing speed, and approximately 2,400 m of the AIYS can be 
obtained on a one-ring bobbin within 1 h (Video S1). In 
addition, the fabrication cost of an AIYS is very low, as cal-
culated in Table S1 and Note S1, resulting in approximately 
$0.085 per meter of yarn sensor. Hence, the sign-language 
translation glove can be mass-produced at a low cost of less 
than $2.

3.2  Geometric and Mechanical Behavior of the AIYS 
Sensor

Figure 2 shows that the AIYS has unique stability and a 
negative Poisson’s ratio performance owing to the well-
designed interlaced structure. In the AIYS, two sheath yarns 
are wound in opposite wrapping directions and form a tight 
interlocked structure on the core yarn surface, as shown in 
Fig. 2a-b. The interlocked AIYS exhibits more stability in 
a tension-free state than the helical yarn sensor with only 
one wrapping sheath (Figs. S3 and S4) [38, 45], because the 
unbalanced residual torque leads to a slipping of the wrap 
component from the core. In addition, an evident negative 
Poisson’s ratio effect for the AIYS is achieved during stretch-
ing, as shown in Fig. 2b. Here, the Poisson’s ratio (ν) is the 
ratio of the radial contraction strain to the axial strain in the 
stretching force direction, that is,

where εr and εa represent the radial and axial strains of AIYS 
composite yarns, respectively (Fig. S4). When the AIYS is 
stretched from 0 to 5% elongation, the sheath yarns first 
wrap the core more tightly to reach the force and moment 
equilibria, whereas the cross-sectional area of the core 
yarn contracts and the diameter decreases because of the 
stretching. With the elongation increasing to 30%, the dif-
ference between the elastic modulus of the yarn components 
changes the structure of the sheath yarns from a helical wrap 
to straight; conversely, the core yarn changes from straight 
to bend, exhibiting a sinusoidal-curve shape. Consequently, 
the contour dimension of the AIYS rapidly increases to the 

(1)�r =
d − d

0

d
0

(2)� = −
�r

�a

maximum value and exhibits an evident auxetic performance 
(Figs. 2b and S5).

Owing to the unique interlaced structure, the change in the 
radial contour diameter of the AIYS is greater than that of 
the helical auxetic yarn (Fig. S5); hence, it exhibits a higher 
negative Poisson’s ratio performance (Figs. 2c and S5). 
Meanwhile, with a decrease in the initial wrapping angle (θ) 
from 69.1° to 45.7°, the geometric radial diameter changes 
more significantly and has a greater negative Poisson’s ratio 
effect (Fig. 2d-e). When the initial wrapping angle is large, 
such as 63.1º and 69.1º, the AIYS doesn’t show an obvious 
negative Poisson’s ratio effect; however, when it decreases 
to 50.9º, the AIYS shows a negative Poisson’s ratio of − 0.7 
at the strain 15%. The maximum Poisson’s ratio of the AIYS 
reaches up to − 1.5 with a wrapping angle of 45.7°. As the 
yarn elongates (30–50%), the diameter decreases because 
the compliant core straightens until the sheath yarns break. 
Furthermore, we theoretically calculated the Poisson’s ratio 
by establishing numerical models based on the geometric 
deformation, which are consistent with experimental results, 
as shown in Note S1 and Fig. S6.

The AIYS has good cycling stability (Fig. 2g) and elastic 
recovery within the strain range of 0–10% owing to the high 
elasticity of core PU yarn and the wrapped geometric mor-
phology of the sheath yarn. Within this range, two sheath 
yarns are only straightened from curve to a straight state, 
instead of being stretched like core PU yarn. There exists 
a slight stress relaxation during the 1000 times repeated 
stretching cycling, as shown in Fig. S7. The AIYS has a 
breaking elongation of more than 200%, and exhibits a 
unique stress–strain behavior (Fig. 2f). During stretching, the 
axial stress increases until the state of the outer sheath yarn 
turn from twist to straight, and then is stretched to its break-
ing point (point 1 in Fig. 2f). Within this range, the AIYS is 
highly stable and repeatable. Subsequently, the inner sheath 
yarn endures the major external stresses until the axial strain 
reaches the next breaking point (point 2 in Fig. 2f). Then, 
the stress–strain curve exhibits a near elastic stretching and 
recovery behavior, which is similar to that of the PU yarn. 
Moreover, with well-aligned AIYS, a porous fabric can be 
formed because of the deformation of the yarn components 
during stretching, which is beneficial for the fabric structure 
design (Fig. S5). The auxetic effect of the AIYS facilitates 
self-expansion when an E-textile is worn on the human body, 
thereby resulting in better body conformality.
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Figure 2h shows two theoretical viscoelasticity models 
established based on the interlaced core–shell yarn structure 
to better describe and predict the mechanical performance 
of the AIYS. As discussed, the AIYS is composed of one 
core PU yarn and two helical PA yarns with different twist-
ing directions; therefore, it can be considered that the AIYS 
consists of a viscoelastic core parallel to two spring-like 
filaments. Considering the viscoelastic properties and inter-
action with the sheath yarns, a Maxwell model of a dashpot 
in series with a spring is used to describe the mechanical 
performance of the PU component. Further, two springs are 
used to describe the two sheath yarns; thus, a four-element 
model (Model-I) is established (Figs. 2h and S8a). Consid-
ering that the morphology of the inner sheath yarn is not a 
regular linear spring because it is subjected to the double-
layer stress from the outer sheath and core yarns, a nonlinear 
spring is used to replace the original spring in Model-I; con-
sequently, Model-II is established (Figs. 2h and S8b). After 
deriving the constitute equations based on the deformation 
characteristics of the basic components (Note S2), we can 
get the constitutive numerical models as follows:

Model-I:

Model-II:

where η is the viscosity coefficient of the ideal dashpot, E1 
and E2 represent Young’s modulus of two spring elements 
in the designed models, � and � are the strain and stress of 
AIYS, p is the function correction factor. Then, we fitted 
the experimental data with our proposed numerical models 
using the Origin software. The fitting aptness of the constitu-
tive models is evaluated based on widely accepted statistical 
criteria, such as the determination coefficient (R2).

A determination coefficient of 0.999 is observed for 
the theoretically and experimentally derived stress–strain 
curves (Figs. 2h and S8) using Model-II, whereas only 
0.992 is achieved by Model-I. Because it considers the 
inner sheath yarn tension and has a nonlinear mechanical 
behavior, Model-II is more consistent with the viscoelas-
tic behavior of AIYS than Model-I. The results show that 
the predictions from Model-II are in closer agreement with 
the measured mechanical performances in the strain range, 
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thus demonstrating that Model-II is more suitable for ana-
lyzing and characterizing the mechanical properties of the 
AIYS. The new mechanical constitutive model, which fully 
considers the structural distribution and nonlinear mechani-
cal behavior of the AIYS, is of significant value to better 
understand the mechanical behavior of the intelligent yarn 
sensor and provide guidance for the parameter design of the 
E-textiles.

3.3  Sensing Performance of the AIYS Sensor

Figure 3a shows that the AIYS exhibits a good performance 
in strain sensing, with significant variation in resistance dur-
ing stretching. The sensing mechanism relies on the con-
tact resistance between the sheath yarn spiral units and the 
squeezing of the fiber bundles during stretching. Accord-
ing to the geometric structure of the conductive PA sheath 
filaments are bundled together, wrapping on the PU core 
fibers with a certain angle θ. Considering that PA and PU 
are insulating materials with a higher electrical resistance 
than conductive silver, their conductivities are ignored in 
the AIYS. The equivalent resistance of a wrapping unit of 
the AIYS can be regarded as two yarn sheath length resist-
ances (Ri1 and Ri2) in parallel and connected with a contact 
resistance (Ri3) in between. During stretching or bending, 
the state of the wrapping conductive yarn changes from the 
helical wrap to straight, and subsequently the yarn continues 
to be stretched until it breaks (Fig. 2b). If the helical yarn 
is stretched along the central axis (Fig. 3b), the increase 
in the pitch (h) decreases the radius (r) and increases the 
length (l) of the sheath yarn, which simultaneously leads 
to an increase in the length resistance (Ri1, Ri2). Moreover, 
during the stretching of the AIYS, the contact area between 
the two sheath yarn layers decreases, which also results in 
an increase in the contact resistance (Ri3) between the sheath 
fibers. When the initial wrapping angle is very high, parts of 
the sheath wrapping fibers are initially connected with each 
other because of the decreasing of pitch distance; hence, 
gaps are generated between the helical units during stretch-
ing, increasing the overall resistance of the AISY. The AIYS 
with a smaller wrapping angle shows better responsiveness 
under the axial strain, which is attributed to its significant 
geometric deformation and auxetic effect during stretching.

Figure 3c shows a response time of 25 ms (trs) while 
loading and unloading a 15% strain to the sensor with high 
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Fig. 3  Sensing performance of the AIYS sensing. a Relative change in resistance (ΔR/R0) of AIYS during stretching. b Response and recovery 
time (trs and trc) of the AIYS sensor when stretched to 15% strain. c Illustration of the unfolding of the spiral sheath yarn. d Response of AIYS 
under the frequency range of 0.05–5 Hz. e Resistance variation of the AIYS after continuous washing test. Insets depict the SEM images of the 
conductive part of AIYS, showing no obvious change. f Cyclic electrical performance of AIYS sensor for stretching and recovery 8000 times; 
insets depict the amplification of the signal near the beginning (Cycle No. 100–106) and the end of the test (Cycle No. 7101–7106). g Optical 
and SEM images of the AIYS in the states of origin with washing 8 times and cycling 8,000 times. Scale bar of 50 mm. h Detected signals of 
human winking when volunteers wear the AIYS at the eye corner, the insets are the pictures showing the upper facial expressions around the 
eyes. i Real-time sensing performance of the AIYS-embedded glove after fast bending, slow bending, keeping, and releasing behaviors
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speed and holding it for 5 s. The trs (trc) is defined as trs 
(trc) = trs0 (trc0) – t0, where trs0 (trc0) is the measured response 
or recovery time and t0 denotes the time required for strain 
loading or unloading [24]. More tests on the loading in dif-
ferent strains (0–20%) shows that the response and recovery 
timed of AIYS are less than 50 and 150 ms, respectively 
(Fig. S9). This phenomenon is attributed to the superior 
resilience of the core PU yarn. Moreover, the fast response 
of the AIYS can be verified by the stable response under a 
high stretching frequency of 5 Hz (Fig. S10). As shown in 
Fig. 3d, the AIYS has a similar response and good cycling 
performance under a mechanical frequency of 5 Hz with a 
relatively low frequency of 1, 0.5, and 0.05 Hz. Figure 3c-d 
also show the good resistance recoverability of the AIYS 
when the stress is released, which is due to the high elastic-
ity of core PU yarn and wrapped geometric morphology of 
the sheath yarn. In addition, we tested the washability of 
the conductive yarn and AIYS with detergent and water in a 
beaker. As shown in Figs. 3e and S11, AIYS does not show 
an obvious change in morphology for the eight times that 
it is washed, and the electroplated silver layer is still uni-
form on the surface. Therefore, the resistance does not show 
an obvious fluctuation. The slight decrease in resistance is 
caused by the loosening of the fiber bundle during washing, 
as seen from the optical images in Fig. S9c. The AIYS also 
shows an excellent cyclic stability during the 8,000 times 
that it is stretched and released, as shown in Fig. 3f. The 
slight upshift in the baseline during the cycling is caused 
by the stress relaxation of the AIYS. The amplification of 
the signal in cycle numbers 101 and 7101 shows that there 
are continuous stable responses under repeated stretching. 
The optical and SEM images in Fig. 3g show that the AIYS 
maintains its interlaced structures under repeated wash-
ing and cyclic stretching tests. The washed AIYS shows an 
unchanged performance as compared to that of the original 
AIYS (Fig. S12). Meanwhile, after the AIYS is stretched for 
8,000 times, it shows a slightly decreased signal owing to 
the polymer stress relaxation. Because of the fast response 
and good sensitivity of AIYS, it can be utilized for human 
facial expression detection and translation. When the AIYS 
is worn on human skin, a small movement signal of winking 
or coughing can be detected, as shown in Figs. 3h and S13. 
Furthermore, the AIYS is attached to the index-finger joint 
part of the knitted glove, which generates unique signals to 
different joint bending information such as fast and slow 

movements, bending, releasing, and holding, as shown in 
Fig. 3i.

3.4  Smart Glove for Full letter Sign‑language 
Recognition and Real‑time Dialogue Translation

Figure 4 shows the working mechanism of the knitted glove 
embedded with 16 AIYSs for distinguishing the different 
signs of the 26 letters of the alphabet. Among them, 14 
AIYSs are vertically distributed on the movable joints of 
five fingers, one AIYS is horizontally connected between 
the index and middle fingers, and the remaining sensor is 
vertically sewn in the middle of the wrist part, as shown 
in Fig. 4a. According to the sign-language gestures based 
on ASL (Fig. S14), most of the signs for the letters of the 
alphabet have apparent differences in bending situation and 
can be distinguished by the sensors distributed on the back 
of the joint part (sensors 1–14), except for some similar let-
ters such as “u” and “v,” and “k” and “p,” which require two 
additional sensitive sensors with a specialized purpose (sen-
sors 15 and 16). For the letters whose sign languages con-
tain a motion (“j” and “z”), the last signal of the movement 
is taken as its training data. The electrical signals from all 
AIYSs are captured using a data-acquisition system, as illus-
trated in Fig. S15. After data normalization for each sensor, 
the bending and stretching situations of each alphabet were 
counted and analyzed, as shown in Fig. 4b. The color bar 
exhibits the degree of movement of each joint part, where 
blue indicates no bending or stretching, and red indicates full 
bending or stretching. As shown in Figs. 4b and S16, most 
of the letters have a distinguishable combination of bending 
situations detected by the 14 finger joint sensors. The rest 
of them, such as “u” and “v” can be distinguished by sensor 
15 (Index-Middle), and “k” as “p” can be distinguished with 
the help of sensor 16 (Wrist). Therefore, each letter (from A 
to Z) shows a different combination of bending or stretching 
situations between the sensors. Meanwhile, it is shown that 
among all the joint movements contributing toward the sign 
language, the ring and pinky fingers have frequent bending 
movements than the other three fingers.

During the repeated bending and recovery, we noticed 
that the sensors encountered the problems of baseline shift, 
stress relaxation, and position movement, which can be also 
seen from Figs. 3f and S10. To overcome these problems, we 
further used the ANN algorithm for the sensor calibration 
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and correction, and letter sign-language signal classifica-
tion. We firstly prepared a dataset comprising 2,600 data 
points, that is, 100 data points for each letter of the alphabet. 
Subsequently, a t-distributed stochastic neighbor embed-
ding (t-SNE) plot [46], which is a dimensionality reduction 
technique to visualize the group of datasets was generated, 
as shown in Fig. 4c. Each point on the plot represents one 
gesture information projected from the sensor data. The data 
points that belong to the same letter category are clustered 
together, roughly generating 26 categories. There is no evi-
dent overlapping between the dataset, indicating the distin-
guishability of the 26 signs.

Figure 5a illustrates the detailed process of sign-language 
classification using the ANN architecture. The multichannel 
resistance signals of the AIYS array were fed into the deep 

learning algorithm after normalization. The sensor signals 
acquired from each volunteer were normalized by the mini-
mum  (Mint) and maximum  (Maxt) signals of the individu-
als. Subsequently, a total of 1,560 data points (60% of the 
dataset) were randomly selected from the acquired signals 
to serve as the training set, and 520 data points (20% of the 
dataset) were used as the validation set. The remaining 520 
data points (20% of the dataset) were used as the test set. The 
training set was used to train the ANN, which consisted of 
two hidden layers with 100 nodes in each layer. Thereafter, 
using the trained ANN, we built the real-time sign-language 
classification model that caters to a frequency greater than 
5 Hz (which is the frequency of our data-acquisition device). 
The confusion matrix of the classification result is presented 
in Fig. 5b. Each column of the matrix represents the test 

Fig. 4  Working mechanism of the sign-language translation glove. a Photograph of a smart glove embedded with 16 channel sensors. b Signal 
matrix for sensor-bending situation when the smart glove makes the sign-language gestures from “a” to “z.” 0” indicates no bending or stretch-
ing, and “1″ indicates full bending or stretching. c t-SNE plot of alphabet signal dataset recorded by the glove enabled with 16 AIYS array
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samples in an actual class, while each row represents a pre-
dicted class. The results demonstrate that the sign signals 
for 25 letters achieved a classification accuracy of 100%, 
whereas the one remaining letter “u” achieved an accuracy 
of 95%, because of the gesture similarities between “u” and 
“r.” The overall accuracy is 99.8% and the average recogni-
tion time for the entire gesture class is less than 0.25 s.

More importantly, our all-alphabet recognition glove can 
be used as a movable and wearable keyboard to freely input 

and translate complex sentences and common dialogues into 
text or voice in real-time. This cannot be fulfilled by other 
sign-language translation systems with limited ability for 
alphabet recognition [14]. On wearing the smart glove, a 
volunteer can make the sign-language gestures from “A” to 
“Z” by invoking the established deep learning model, and 
the corresponding letters can be immediately translated into 
text, as shown in Fig. S17 and Videos S2 and S3. Based 
on this, the smart glove also output the voices or texts of 

Fig. 5  Deep-learning-enabled all-alphabet sign recognition and real-time dialogue translation. a Training and real-time process of 26-letter-
recognition and translation system, and detailed ANN architecture. b Confusion matrix for individual recognition of all letters, exhibiting a high 
overall accuracy of 99.8%. c Collected real-time-normalized data when a continuous dialogue sign “how are you” is demonstrated. d Experiment 
showing the input sentence in real time from the sign language demonstrated by the volunteer wearing the smart glove. e Illustration showing a 
signer communicating with a person with the help of the sign-language translation glove
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sentences by inputting the signs of the 26 letters in sequence. 
For example, when the volunteer wore the smart glove and 
made the alphabet letter signs for the sentences they wanted 
to express in sequence, such as “Hello,” “How are you,” “I 
am fine,” and other complex dialogues (Figs. S18 and S19), 
they were transferred to texts without any apparent delay 
(Fig. 5d and Video S4). Figure 5c shows the normalized data 
collected from the sentence “How are you.” Here, the breaks 
between the words were input manually using a pre-set key 
to show the results more clearly.

As illustrated in Fig. 5e, it is worthy to further compare 
our sensor-based sign-language translation glove with a 
vision-based sign-language translation system. As reported, 
the latter has a drawback of various challenges faced dur-
ing video/image processing such as lighting conditions, 
brightness, background noise, and camera angle [21]. In 
contrast, the former has a strong ability that is not affected 
by the users’ environment and allows wearers to move freely 
while using it. In addition, our smart glove not only has 
more advantages such high portability, low-cost (< $2), and 
high recognition accuracy, it can also translate sign-language 
owing to its ability to recognize and translate all letters. 
Furthermore, our smart glove can be easily integrated with 
various portable devices such as cellular phones or smart 
watches, making it easy for the ANN algorithm developed 
in this work to be implemented as a mobile app, which can 
translate the sign language in real-time into text messages, 
voices, and braille-writers without the limitations of loca-
tions. Therefore, our smart glove could provide a new light 
for eliminating the existing associated barriers that hinder 
the communication between signers and non-signers.

4  Conclusions

In this work, a sign-language translation glove is developed 
using auxetic-interlaced AIYS array and a deep learning 
algorithm. The AIYS was fabricated using a continuous 
and mass-producible interlaced yarn-wrapping technology 
at a high speed and low cost. The prepared AIYS sensing 
unit exhibited a well-stabilized geometric structure, high 
negative Poisson’s ratio performance (− 1.5), excellent 
mechanical–electrical performance, high strain sensitiv-
ity, fast response (0.025 s), and sufficient repeatability 
and reliability (> 8,000). In addition, we established four-
element viscoelastic models that theoretically consider the 

nonlinear elastic behavior of sheath yarns in a compre-
hensive manner. The theoretical models, which describe 
the mechanical behavior of the AIYS, not only showed 
consistency with the experimental results (R = 0.999) but 
also made it possible to engineer the excellent mechani-
cal–electrical performance. Moreover, we demonstrated 
that the smart glove sewn with 16 channels of the AIYS 
can completely recognize all the signs of the 26 letters 
of the alphabet by processing the multichannel-collected 
resistance data with deep learning algorithm. Using the 
ANN algorithm, we successfully classified 2,600 sign-
language gestures covering the 26 letters, and obtained a 
high recognition accuracy of 99.8% for all 26 letters with 
a short recognition time (< 0.25 s). Thus, we demonstrated 
that the smart glove allows sign language to be real-time 
translated into text or voice, which can eliminate the com-
munication barriers of signers in a portable, convenient, 
simple, and inexpensive manner.
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