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S1 Supplementary Text 

S1.1 Computational Details 

First-principles computations based on density functional theory (DFT) were implemented in 

the Vienna Ab initio simulation package (VASP) [1]. The generalized gradient approximation 

(GGA) involving Perdew-Burke-Ernzerhof (PBE) [2] functional was used for calculating the 

exchange-correlation energy. A 400 eV cut-off energy was adopted for the plane-wave basis 

set in conjunction with the projector augmented wave (PAW) [3]. The energy and force 

convergence was set to be 1×10-4 and 2×10-2 eV respectively. The Brillouin zone was sampled 

using the Monkhorst-Pack scheme, K-points were generated by VASPkit [4], and the 

recommended value is 0.04 (2π×0.04 Å−1). The adsorbed energy (Eb) of K ions is defined as : 

Eb =Etotal-EG-EK, where Etotal denotes the DFT total energy of K ion absorbed on the Graphene, 

EK is the energy of K atoms and EG is the total energy of Graphene. 

 

S1.2 Capacitive Contribution in OFGC-600 

Through mathematical analysis of anode and cathode at different scan rates, the storage 

mechanism of K+ in OFGC-600 can be determined. The value of b can be determined according 

to the relationship between scan rate (v, mV s-1) and peak current (i, mA) (Eq. S1): 

i = avb                            (S1) 

When the value of b is 0.5, it indicates limited diffusion. And if the value of b is 1, it implies 

an activation polarization reaction. This reaction limitation process includes capacitive behavior 

but is not limited to surface capacitance.  

The quantitative calculation of the proportion of diffusion behavior and activation polarization 

behavior contribution to the overall capacity of the OFGC-600 electrode can be evaluated based 

on the following Eq. (S2):  

i = k1v + k2v
1/2                         (S2) 

Where k1ν is the contribution of the capacitance-controlled process, and k2ν
1/2 is the contribution 

of the ionic diffusion-controlled process. 
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S2 Supplementary Figures and Tables 

 

Fig. S1 The formation process diagram of the 3D honeycomb-like OFGC sample 

 

Fig. S2 a) SEM images of OFGC-600. b) TEM image at 1μm. c) High-resolution TEM image 

of OFGC-600 

 

Fig. S3 a-c) SEM images of OFGC-500. d-f) SEM images of OFGC-700 

 

Fig. S4. High-resolution XPS spectra of C 1s: a) OFGC-500, b) OFGC-700 
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Fig. S5 Cycle performance of OFGC-600 compared with OFGC -500/700 at 500 mA g−1 

 

Fig. S6 Galvanostatic discharge/charge profiles of OFGC-600 at 100 mA g-1 at 1st, 2nd, 10th, 

500th, 1000th, and 1500th cycles 

Table S1 Comparison of electrochemical performances of OFGC-600 half cell with those of 

the previously reported carbon-based materials 
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Fig. S7 The optimized configurations of a single K atom adsorbed in graphene with three 

functional groups (COOH, C-OH, and C=O) 

 

Fig. S8 a) The optimized configurations of a single K atom adsorbed in graphene with C=O 

functional groups and b) the charge density of graphene with C=O functional groups after 

adsorbing K ion. Yellow and blue areas represent increased and decreased electron density, 

respectively 

 

Fig. S9 The equivalent circuit model of the Nyquist diagram of OFGC-500/600/700 electrode 
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Fig. S10 Nyquist plots of a) OFGC-500 and b) OFGC-700 at different potentials during the 

second discharge/charge process 

 

Fig. S11 Nyquist diagram of OFGC-600 in different charging/discharging processes (original, 

5th, and 500th) 

 

Fig. S12 Contribution of the capacitive at the scan rate of 0.6 mV s−1 
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Fig. S13 TEM images and High-resolution TEM image of OFGC-600 after 50 cycles. a-d) 

discharged to 0.01 V, e-h) charged to 3.0 V 

 

Fig. S14 EDS elemental mapping images after 50 cycles at charged to 3.0 V state 

 

Fig. S15 Rate performance of OFGC-600//PB full cell at the current density of 200, 400, 600, 

800, and 1000 mA g-1 
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Table S2 Comparison of electrochemical performances of OFGC-600//PB full cell with those 

of the previously reported full batteries with PB or PBAs as the cathode 

 

 

Fig. S16 Cycle performance of OFGC-600//PB full cell at current density 200 mA g-1 
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