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Low-energy electronic states of carbon nanocones in 
an electric field 
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The low-energy electronic states and energy gaps of carbon nanocones in an electric field are 
studied using a single-�-band tight-binding model. The analysis considers five perfect carbon 
nanocones with disclination angles of 60°, 120°, 180°, 240° and 300°, respectively. The numerical 
results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are 
highly sensitive to its geometric shape (i.e. the disclination angle and height), and to the direction 
and magnitude of an electric field. The electric field causes a strong modulation of the state energies 
and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The 
energy-gap modulation effect becomes particularly pronounced at higher strength of the applied 
electric field, and is strongly related to the geometric structure of the nanocone. 
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The properties and potential applications of carbon-related 

nanometer-size materials have attracted intensive interest in 

recent years. Of these various materials, carbon nanotubes play 

a particularly crucial role in the field of nano-material science 

and technology. Since the observation of multiwalled carbon 

nanotubes by Iijima [1], many carbon nanostructures have 

identified, such as carbon tori [2], carbon nanohorns [3], and 

carbon nanocones [4], etc. A graphite sheet can be notionally 

divided into six equivalent wedges by choosing one of its 

hexagon centers through each of its corners. A nanocone can 

then be formed by removing one or more of these wedges from 

the graphite sheet and rolling up the remainder. Nanocones are 

identified by their disclination angle ��where this angle 
corresponds to the angle of the part removed from the sheet 

before the rolling process. The surface of a nanocone can be 

regarded as a hexagonal network containing pentagonal defects. 

The growth process of carbon nanocones compared to those of 

carbon nanotubes and C60 was studied by Ge and Sattler [4]. 

The results showed that perfect carbon nanocones have one of 

five possible open apex angles, i.e. 123.6°, 86.6°, 60°, 38.9° 

and 19.2° corresponding to their disclination angles of 60°, 

120°, 180°, 240° and 300°, respectively. 

Many theoretical [5-10] and experimental studies [11-14] 

of the geometric and electronic properties of carbon nanocones 

or nanotube tips have been revealed over the past decade. In 

general, the results have shown that the electronic structure, e.g. 

the electronic states, energy gaps and density of states, are 

highly sensitive to the symmetry of the edge sites at the open 

apex and to the curvature effect. However, relatively few 

studies have investigated the effect of an electric field on the 

electronic structures of carbon nanocones. It is known that an 

electric field can significantly affect the electronic properties of 
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carbon-related systems such as carbon nanotubes [15-21], 

carbon tori [22], and layered graphite [23]. Hence, it is 

reasonable to speculate that the energy gap of a carbon 

nanocone will also be modulated under the effects of a uniform 

electric field. Accordingly, in this study, a tight-binding model 

is employed to investigate the changes, induced by a uniform 

electric field, on the low-energy electronic structures of perfect 

carbon nanocones. 

The schematic diagram of a carbon nanocone is shown in 

Fig. 1. The current investigations consider carbon nanocone 

structures with disclination angles � of 60°, 120°, 180°, 240° 
and 300°, respectively. Each of these nanocones is comprised a 

similar number N of carbon atoms. The C�C bond length 
 of this conical system is approximately 1.42 Å, and the 

open base of each nanocone is terminated by hydrogen atoms. 

The single-�-band tight-binding model is used to calculate the 
low-energy electronic states. In this model, the 2pz orbitals can 

describe completely the �-electronic states so as to dominate 

exactly the low-energy electronic properties. However, the � 
bands are omitted because they are far from the Fermi energy 

EF. In present analysis, the interaction between two 

nearest-neighbor carbon atoms is considered and the magnitude 

of this interaction, ��, is assumed to be 3.033 eV [24]. When an 
electric field E is applied, the low-energy electronic state of the 
nanocones is modulated drastically. However, it is assumed that 

E has no effect on the geometric structure of the nanocones and 

thus on the parameter ��. Furthermore, due to the screen effect, 
E is regarded as an effective field, that is, it changes only the 
on-site potential of the carbon atoms. 

 
FIG. 1. Schematic diagram of carbon nanocone showing Cartesian coordinate 

system and a uniform electric field, E, applied at an incidence angle, �E, to the 

cone axis ( -axis). 

The nearest-neighbor Hamiltonian is given by 

 

    (1) 

where 	i(E) are the unperturbed on-site potentials induced by E, 
and (ci) the creation (annihilation) operators of Fermions. 

The Hermitian matrix representation of this Hamiltonian is built 

from the subspace spanned by the N basis wavefunctions of 2pz 

orbitals. For convenience, the Cartesian coordinate is used in 

current computations and the position of each atom is denoted 

as (xi, yi, zi), i=1, ···, N. The origin of the coordinate is located at 

the center of the carbon nanocone (see Fig. 1). The symmetry 
axis of the carbon nanocone is parallel to the -axis of the 
coordinate. The distance  between the i-th and j-th carbon 

atoms is given by 

 
 

 
Where ,  and . 

If E is absent, the elements of the Hamiltonian matrix are given 
by 

      (2) 

However, when the electric field is applied, the on-site 

energies of the carbon nanocone will be changed. In present 

analysis, the electric field is assumed to be 
 

Where, E is the strength of the electric field and in the unit of 

�0/Å. Meanwhile, �E is the angle between the electric field 
direction and the -axis, and  ( ) is the unit vector in 

-axis ( -axis). After applying the electric field, the diagonal 

elements of the Hamiltonian matrix vary from zero to 
   (3) 

The electronic state energies of carbon nanocones are 

obtained by diagonalizing the N by N Hamiltonian matrix 
[25-28], and are expressed as , where M, from 1 to 

N, represents the discrete state, and  ( ) corresponds to the 

unoccupied (occupied) states. Note that an energy gap, Eg, may 

exist between the highest occupied molecular orbital (HOMO) 

state and the lowest unoccupied molecular orbital (LUMO) 

state. 

The present analysis commences considering the effects on 

the low-energy electronic states of the carbon nanocones due to 

an electric field whose direction is parallel to the symmetry axis 
of the cone, i.e.  and . Figure 

2(a)
(e) presents the �-electronic states corresponding to the 
2pz orbitals of the five nanocones. Note that the value of Fermi 

energy is set to be zero (EF����) in the computations. At E ���, it 
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is observed that the lowest electronic states, which are close to 

EF, are symmetric, while the other states are non-symmetric. 

However, as E increases, the electronic states are drastically 

modulated and state crossings take place at EF���� indicating 
the occurrence of zero-gap transitions (ZGTs), i.e. a change in 

the energy gap from a finite value to zero, or vice versa. It is 

revealed that the ZGTs occur more frequently at larger E values. 
The nanocone with the largest disclination angle, , 

has the greatest height between the apex and the base, and the 
magnitude of the on-site potential induced by  is also the 

highest. As a result, a more drastic modulation of the electronic 

states takes place. In other words, as the strength of the applied 

electric field or the disclination angle increases, the extent of 

the modulation effect also increases. Significantly, the HOMOs 

and LUMOs of the carbon nanocones are symmetric to one 

another about EF at larger E values. Finally, Fig. 2(f) shows that 

the Fermi energies of these five systems increase almost 

linearly with increasing E (larger E indicates the increment of 
the on-site potential ). Overall, the results presented in 

Fig. 2 demonstrate that the low-energy electronic states and 

Fermi energies of carbon nanocones are strongly dependent on 

the nanocone geometry. 

Sequentially, we want to investigate the effect of the 

electric field on the energy gaps of the carbon nanocones. 
Figure 3(a) shows the influence of  on the energy gaps of 

the five carbon nanocones. The electric field strength E is 

increased from zero to 0.1 �0/Å. It is shown that, in the absence 

of the electric field, the carbon nanocones with ����60° and 

240° are semiconducting, while these with ������
�°, 180° and 

300° are metallic. As E increases to 0.1 �0/Å, the energy gaps 
are strongly modulated, and ZGTs take place. It is observed that 

the ZGTs occur more frequently when a nanocone has a larger 

� angle and is emitted at higher strength of E; meanwhile, we 

know that both larger value of � and of E will increase the 
strength of the on-site potential. Figure 3(a) confirms that the 

electric-field-dependent energy gap is highly sensitive to the 

geometric structure of a nanocone. Figure 3(b) illustrates the 

influence of incidence angles �E of an electric field on the 
energy gap of the carbon nanocone with a disclination angle of 

60°. At �E ���°, two ZGTs occur at E � 0.05 �0/Å. However, as 
the direction of the electric field moves away from the -axis, 

 
 

FIG. 2. Electric-field-dependent low-energy states of carbon nanocones for �E ����°: (a). N���1080, � ����°, (b). N���1060, � ���
�°, (c). N���1050, � �����°, (d).

N���1056, � ��
��°, (e). N���1022, � �����°, where N is the total number of carbon atoms in the nanocone and � is the disclination angle. (f). Electric-field-dependent

Fermi energies corresponding to five systems shown in (a) to (e). 
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the energy-gap modulation effect becomes more pronounced. It 

is observed that the original ZGTs at E � 0.05 �0/Å vanish at 

larger values of �E. For this particular nanocone � ����°, the 
opening angle is 123.6°, i.e. the radius of the open edge is 

greater than the height of this nanocone. Therefore, the 

variation of the on-site potential in the radial direction is larger 

than that in the axial direction. 

 
FIG. 3. (a). Influence of E=E|| on electric-field-dependent energy gaps of carbon 

nanocones with disclination angle of � ����°, �
�°, 180°, 240° and 300°, 

respectively. (b). Influence of electric-field incidence angle on the energy gap of 

the carbon nanocones with � ����° and N���1080. 

 

In a previous study [29], the authors showed that the 

energy gaps of a finite-length carbon nanotube were highly 

sensitive to its length. Therefore, the influence of the nanocone 

height, L, on the energy gaps is investigated in current study. 

Figure 4 illustrates the variation of the energy gap with L for a 

nanocone with disclination angle � ��
��° as a function of the 
strength and the direction of an applied electric field. In the 

absence of an electric field, the energy gap oscillates randomly 

with increasing L and gradually approaches zero at L � 50 Å. 
The decay-like characteristic evident in Fig. 4 is very similar to 

that observed in finite-length carbon nanotubes with different 

cap configurations [29]. At E���0.01 �0/Å, the energy-gap 
modulation effect is very weak in nanocones with any 

disclination angle when L is small. However, as L increases, the 

energy-gap modulation effect of the electric field increases 

significantly. Moreover, the change in the energy gap at �E 

����° is more evident than that at �E ���°. As a result, it is 
shown that the energy-gap modulation effect is sensitive to 

changes in both the height of the carbon nanocone and the 

direction and strength of the electric field. 

 
FIG. 4. Influence of nanocone height (L=6~48Å) on energy gap of the carbon 

nanocone with ��
��° and N��1056 for E=0 �0/Å and E=0.01 �0/Å which 

applied with the incidence angles of 0°, 30°, 60° and 90°, respectively. 

 

A single-�-band tight-binging model is used in this study 
to investigate the effects of an electric field on the electronic 

properties of perfect carbon nanocones with disclination angle 

of 60°, 120°, 180°, 240° and 300°, respectively. The results 

reveal that the low-energy electronic states, energy gap, and 

Fermi energy are highly sensitive to the geometric structure of 

the nanocone and to both the strength and direction of the 

applied electric field. The electric field causes a modulation of 

the electronic states and energy gaps of the nanocones, prompts 

ZGTs, and induces an almost linear change about the Fermi 

energy. Significantly, the HOMO and LUMO are symmetric to 

one another about the Fermi energy irrespective of the strength 

of the electric field. The present results provide further insights 

into the fundamental properties of conical finite-size systems in 

an electric field. 
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