Supporting Information for

High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell

Shaoke Fu¹, Wencong He¹, Huiyuan Wu¹, Chuncai Shan¹, Yan Du¹, Gui Li¹, Ping Wang¹, Hengyu Guo¹, Jie Chen^{2, *}, Chenguo Hu^{1, *}

¹Department of Applied Physics, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China

² College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, P. R. China

* Corresponding authors. E-mail: <u>chenjie@cqnu.edu.cn</u> (J. C.), <u>hucg@cqu.edu.cn</u> (C. Hu)

Supplementary Figures

Fig. S1 The short-circuit current (**a**) and transferred charge (**b**) of the FS-PC-TENG with different electronegative materials

Fig. S2 The transferred charge of the FS-PC-TENG with different slider materials

Nano-Micro Letters

Fig. S3 The detailed working principle of the FS-PC-TENG. (a) The working principle of the FS-PC-TENG in stage iii. (b) The working principle of the FS-PC-TENG in stage iv

Fig. S4 The comparison of the output charge of PC-TENG with that of DC-TENG at different pressure forces. (**a**) Schematic diagram of DC-TENG based on air breakdown. (**b**) Schematic diagram of the PC-TENG based on contact electrification and electrostatic induction (**c**) the output charge of normal DC-TENG at different pressure forces. (**d**) The comparisons of the output charge of PC-TENG with that of normal DC-TENG at pressure forces of 6 N and 36 N, respectively

Fig. S5 The short-circuit current (a) and transferred charge (b) of the FS-PC-TENG with different sliding speeds