Supporting Information for

# A Novel Hybrid Point Defect of Oxygen Vacancy and Phosphorus Doping in TiO<sub>2</sub> Anode for High-Performance Sodium Ion Capacitor

Daming Chen<sup>1</sup>, Youchun Wu<sup>1</sup>, Zhiquan Huang<sup>1</sup>, Jian Chen<sup>1, \*</sup>

<sup>1</sup>School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China

\*Corresponding author. E-mail: j.chen@seu.edu.cn (J. C.)

**Supplementary Figures and Tables** 



Fig. S1 a, b XRD pattern and SEM image of Ti-MOF



**Fig. S2 a** SEM image of TiO<sub>2</sub>/C. **b** TEM image of TiO<sub>2</sub>/C. **c** HRTEM image of TiO<sub>2</sub>/C. **d** SEM image of TiO<sub>2</sub>/C-P. **e** TEM image of TiO<sub>2</sub>/C-P. **f** HRTEM image of TiO<sub>2</sub>/C-P



**Fig. S3 a-f** TEM images of TiO<sub>2</sub>/C-HPD1, TiO<sub>2</sub>/C-HPD2, TiO<sub>2</sub>/C-HPD3, TiO<sub>2</sub>/C-O3, TiO<sub>2</sub>/C-HPD4 and TiO<sub>2</sub>/C-HPD5, respectively



**Fig. S4**  $N_2$  adsorption-desorption isotherm and pore size distribution of the TiO<sub>2</sub>/C, TiO<sub>2</sub>/C-O3, TiO<sub>2</sub>/C-P and TiO<sub>2</sub>/C-HPD3, respectively



**Fig. S5 a, b** XPS spectra of the TiO<sub>2</sub>/C, TiO<sub>2</sub>/C-P, TiO<sub>2</sub>/C-HPD1, TiO<sub>2</sub>/C-O1, TiO<sub>2</sub>/C-HPD3, TiO<sub>2</sub>/C-O3, TiO<sub>2</sub>/C-HPD5 and TiO<sub>2</sub>/C-O5



**Fig. S6 a-c** The structural models of TiO<sub>2</sub>/C. **d-f** The structural models of TiO<sub>2</sub>/C-O3. **g-i** The structural models of TiO<sub>2</sub>/C-P and **j-l** The structural models of TiO<sub>2</sub>/C-HPD3



**Fig. S7 a, b** Rate performances and cycling performances of TiO<sub>2</sub>/C-O1, TiO<sub>2</sub>/C-O2, TiO<sub>2</sub>/C-O3, TiO<sub>2</sub>/C-O4 and TiO<sub>2</sub>/C-O5. **c, d** Rate performances and cycling performances of TiO<sub>2</sub>/C-HPD1, TiO<sub>2</sub>/C-HPD2, TiO<sub>2</sub>/C-HPD3, TiO<sub>2</sub>/C-HPD4 and TiO<sub>2</sub>/C-HPD5



Fig. S8 a, b TEM images of TiO<sub>2</sub>/C-HPD3 electrode after 500 cycles at 1 A g<sup>-1</sup>



Fig. S9 Typical CV curves of the TiO<sub>2</sub>/C-HPD3 at a scan rate of 0.2 mV s<sup>-1</sup> within 0.01-3.0 V



**Fig. S10 a** CV curves of TiO<sub>2</sub>/C at various sweep rates. **b** CV curve with capacitive- and diffusion-controlled contributions at 20 mV s<sup>-1</sup>. **c** Ratio of capacitive contribution in TiO<sub>2</sub>/C at different scan. **d** CV curves of TiO<sub>2</sub>/C-P at various sweep rates. **e** CV curve with capacitive- and diffusion-controlled contributions at 20 mV s<sup>-1</sup>. **f** Ratio of capacitive contribution in TiO<sub>2</sub>/C at TiO<sub>2</sub>/C-P at different scan



Fig. S11 Log (i) versus log (v) profile of TiO<sub>2</sub>/C-HPD3



**Fig. S12 a, b** Nyquist plots of TiO<sub>2</sub>/C, TiO<sub>2</sub>/C-P, TiO<sub>2</sub>/C-HPD1, TiO<sub>2</sub>/C-HPD2, TiO<sub>2</sub>/C-HPD3, TiO<sub>2</sub>/C-HPD4 and TiO<sub>2</sub>/C-HPD5; the insert section is the equivalent circuit



Fig. S13 GITT potential profiles of a TiO<sub>2</sub>/C, b TiO<sub>2</sub>/C-P and c TiO<sub>2</sub>/C-HPD3

The diffusion coefficient  $(D_{Na}^+)$  in TiO<sub>2</sub>/C, TiO<sub>2</sub>/C-P and TiO<sub>2</sub>/C-HPD3 electrodes can be calculated from the GITT potential profiles (with a 10 min constant current pulse of 50 mA followed by a relaxation process lasted 30 min) through Fick's second law according to the following equation:

$$D = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\triangle E_S}{\triangle E_\tau}\right)^2 \tag{S1}$$

where  $\tau$  represents the duration of the current pulse,  $m_B$  represents the mass of the active materials,  $V_M$  is the molar volume of the samples,  $M_B$  represents the molecular weight, S is the total surface electrode in contact with the electrolyte,  $\Delta E_S$  denotes the quasi-thermodynamic equilibrium potential difference before and after the current pulse,  $\Delta E_{\tau}$  is the potential difference during current pulse.



Fig. S14 a-c TEM images of the NPC before and after etching



Fig. S15 a XPS spectra of the NPC. b  $N_2$  adsorption-desorption isotherm and pore size distribution of the NPC



**Fig. S16** Electrochemical performance of NPC: **a** CV curves at different scan rates, **b** rate performance, **c** GCD curves and **d** Cycling performances of NPC and AC at a current density of  $1 \text{ A g}^{-1}$ 



**Fig. S17 a** CV curves of TiO<sub>2</sub>/C-HPD3//NPC SICs at scan rate of 5 mV s<sup>-1</sup>. **b** CV curves of at different scan rates. **c** Galvanostatic charge/discharge curves



Fig. S18 a-d SEM images and XRD patterns of  $TiO_2/C$ -HPD3 electrodes after different cycles of  $TiO_2/C$ -HPD3//NPC SICs at a current density of 2 A g<sup>-1</sup>



Fig. S19 Long-term cycle performance of TiO<sub>2</sub>/C-HPD3//NPC SICs at different mass ratio



Fig. S20 Self-discharge curves of TiO<sub>2</sub>/C-HPD3//NPC SICs after charging to 4V

| Species          | TiO <sub>2</sub> /<br>C | TiO <sub>2</sub> /C-<br>O1 | TiO <sub>2</sub> /C-<br>O3 | TiO <sub>2</sub> /C<br>-O5 | TiO <sub>2</sub> /C<br>-P | TiO <sub>2</sub> /C<br>-HPD1 | TiO <sub>2</sub> /C-<br>HPD3 | TiO <sub>2</sub> /C-<br>HPD5 |
|------------------|-------------------------|----------------------------|----------------------------|----------------------------|---------------------------|------------------------------|------------------------------|------------------------------|
| Ti <sup>3+</sup> | 9.05%                   | 10.32%                     | 10.88%                     | 11.38%                     | -                         | -                            | -                            | -                            |
| OVs              | 25.05<br>%              | 25.84%                     | 26.94%                     | 29.40%                     | -                         | -                            | -                            | -                            |
| Р                | -                       | -                          | -                          | -                          | 6.75%                     | 8.04%                        | 9.17%                        | 6.47%                        |
| Ti-O-P           | -                       | -                          | -                          | -                          | 13.91%                    | 13.99%                       | 16.39%                       | 12.67%                       |
| P-O-Ti           | -                       | -                          | -                          | -                          | 22.76%                    | 24.68%                       | 33.81%                       | 18.69%                       |

Table S1 Ti<sup>3+</sup>, OVs, P, Ti-O-P and P-O-Ti content calculated from XPS results

Table S2 Adsorption energy of TiO<sub>2</sub>/C, TiO<sub>2</sub>/C-O3, TiO<sub>2</sub>/C-P and TiO<sub>2</sub>/C-HPD3

| Sample                   | Esodiated<br>TiO2/eV | ETiO2/eV  | ENa/eV  | ΔEsodiation/eV |
|--------------------------|----------------------|-----------|---------|----------------|
| TiO <sub>2</sub> /C      | -368.0925            | -367.1483 | -1.3353 | 0.3911         |
| TiO <sub>2</sub> /C-O3   | -368.0925            | -367.1483 | -1.3353 | 0.2464         |
| TiO <sub>2</sub> /C-P    | -356.6367            | -355.1686 | -1.3353 | -0.1328        |
| TiO <sub>2</sub> /C-HPD3 | -343.7680            | -341.9331 | -1.3353 | -0.4996        |

| Sample                                                          | Current<br>density (A g <sup>-1</sup> ) | Cycle<br>number | Specific capacity<br>(mAh g <sup>-1</sup> ) | Rate capacity<br>(current density) | Refs.          |  |
|-----------------------------------------------------------------|-----------------------------------------|-----------------|---------------------------------------------|------------------------------------|----------------|--|
|                                                                 | 0.2                                     | 300             | 239.4                                       |                                    |                |  |
| TiO <sub>2</sub> /C-HPD3                                        | 1                                       | 1000            | 183.8                                       | 92.4 (10);<br>82 5 (15)            | This<br>work   |  |
|                                                                 | 10                                      | 10000           | 84.1                                        | 02.3 (13)                          | WUIK           |  |
|                                                                 | 0.2                                     | 200             | 188.7                                       | 112 1 (10)                         | [61]           |  |
| <b>HIIFS-I</b> II                                               | 5                                       | 10000           | 132.5                                       | 115.1 (10)                         | [51]           |  |
| TiO <sub>2</sub> @TiOF <sub>2</sub> -30                         | 0.5                                     | 2000            | 151.7                                       | 115 4 (5)                          | [S2]           |  |
| h                                                               | 5                                       | 10000           | 101.2                                       | 113.4 (3)                          |                |  |
|                                                                 | 0.1                                     | 400             | 274                                         |                                    | [83]           |  |
| TiS <sub>2</sub> /S-TiO <sub>2</sub> /C                         | 3                                       | 1500            | 161                                         | 114.2 (5)                          |                |  |
|                                                                 | 10                                      | 10000           | 58                                          |                                    |                |  |
| TiO./C                                                          | 0.1                                     | 300             | 206                                         | 105 (10)                           | [S4]           |  |
| 1102/C                                                          | 10                                      | 10000           | -                                           | 105 (10)                           |                |  |
| TiO                                                             | 0.1                                     | 200             | 236.3                                       | 1/180(2)                           | [85]           |  |
| 1102-5                                                          | 1                                       | 1000            | 171.3                                       | 140.7 (2)                          |                |  |
| TiO <sub>2</sub>                                                | 0.1                                     | 100             | 207                                         | 110 (1)                            | [ <b>S6</b> ]  |  |
| M-TiO <sub>2</sub> @rGO                                         | 5                                       | 5000            | 123.3                                       | 142 (2)                            | [ <b>S7</b> ]  |  |
| TiO <sub>2</sub> (A/B)-MS                                       | 2.5                                     | 1000            | -                                           | 50 (12.5)                          | <b>[S8]</b>    |  |
| yolk@shell TiO <sub>2-x</sub>                                   | 1                                       | 1000            | 99.8                                        | 68.6 (5)                           | <b>[S9]</b>    |  |
| TiO <sub>2</sub> /SCNT                                          | 3.35                                    | 1000            | 118                                         | 60 (16.75)                         | <b>[S10]</b>   |  |
| S-TiO <sub>2</sub> /CS                                          | 10                                      | 5000            | 100.5                                       | 120 (6.7)                          | <b>[S11]</b>   |  |
| TiO <sub>2</sub> -HS                                            | 5                                       | 4000            | 119                                         | 112 (12.8)                         | <b>[S12]</b>   |  |
| N/S-TiO <sub>2</sub>                                            | 0.5                                     | 1000            | 90                                          | 75 (1)                             | <b>[S13]</b>   |  |
| P-TiO <sub>2</sub>                                              | 3.35                                    | 1000            | 141                                         | 147 (3.35)                         | <b>[S14]</b>   |  |
| TiO <sub>2</sub> nanosheets                                     | 0.5                                     | 2500            | 120                                         | 120 (1)                            | <b>[S15]</b>   |  |
| <b>TiO</b> <sub>2</sub> ∩NPCSs                                  | 0.67                                    | 3000            | 152                                         | 85 (13.4)                          | <b>[S16]</b>   |  |
| TiO <sub>2</sub>                                                | 0.5                                     | 1400            | 98                                          | 102 (1.5)                          | [ <b>S17</b> ] |  |
| TiO <sub>2</sub> @Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 0.96                                    | 5000            | 110                                         | 68 (3.84)                          | [S18]          |  |

Table S3 Comparison of sodium storage performance with reported Ti-based materials

Table S4 Impedance parameters of the fitting equivalent circuit

| ~ -                      | - (                          | - (                                | - (-)                                |
|--------------------------|------------------------------|------------------------------------|--------------------------------------|
| Sample                   | $R_{ m s}\left(\Omega ight)$ | $R_{\mathrm{f}}\left(\Omega ight)$ | $R_{\mathrm{ct}}\left(\Omega\right)$ |
| TiO <sub>2</sub> /C      | 7.43                         | 265.8                              | 594.8                                |
| TiO <sub>2</sub> /C-P    | 2.86                         | 152.9                              | 417.0                                |
| TiO <sub>2</sub> /C-HPD1 | 2.35                         | 141.7                              | 315.8                                |
| TiO <sub>2</sub> /C-HPD2 | 1.83                         | 128.4                              | 308.4                                |
| TiO <sub>2</sub> /C-HPD3 | 1.55                         | 112.6                              | 226.5                                |
| TiO <sub>2</sub> /C-HPD4 | 1.98                         | 135.6                              | 296.0                                |
| TiO <sub>2</sub> /C-HPD5 | 3.87                         | 181.4                              | 375.1                                |

## **Supplementary References**

- [S1] P. Xue, Q. Li, W. Gong, Z. Sun, H. Wang et al., Structure-induced partial phase transformation endows hollow TiO<sub>2</sub>/TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. J. Mater. Chem. A 9(20), 12109-12118 (2021). <u>https://doi.org/10.1039/d1ta01729b</u>
- [S2] S. Guan, Q. Fan, Z. Shen, Y. Zhao, Y. Sun et al., Heterojunction TiO<sub>2</sub>@TiOF<sub>2</sub> nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A 9(9), 5720-5729 (2021). <u>https://doi.org/10.1039/d0ta12340d</u>
- [S3] Y. Zhang, Y. Huang, V. Srot, P.A. Aken, J. Maier et al., Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO<sub>2</sub>/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 12, 165 (2020). <u>https://doi.org/10.1007/s40820-020-00506-1</u>
- [S4] H. Li, J. Lang, S. Lei, J. Chen, K. Wang et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 28(30), 1800757 (2018). https://doi.org/10.1002/adfm.201800757
- [S5] M. Kang, Y. Wu, X. Huang, K. Zhou, Z. Huang et al., Engineering of a TiO<sub>2</sub> anode toward a record high initial coulombic efficiency enabling high-performance lowtemperature Na-ion hybrid capacitors. J. Mater. Chem. A 6(45), 22840-22850 (2018). <u>https://doi.org/10.1039/c8ta07127f</u>
- [S6] W. Feng, R.R. Maça, V. Etacheri, High-energy-density sodium-ion hybrid capacitors enabled by interface-engineered hierarchical TiO<sub>2</sub> nanosheet anodes. ACS Appl. Mater. Interfaces 12(4), 4443-4453 (2020). <u>https://doi.org/10.1021/acsami.9b17775</u>
- [S7] Y. Fang, Y. Zhang, C. Miao, K. Zhu, Y. Chen et al., Mxene-derived defect-rich TiO<sub>2</sub>@rGO as high-rate anodes for full na ion batteries and capacitors. Nano-Micro Lett. 12, 128 (2020). <u>https://doi.org/10.1007/s40820-020-00471-9</u>
- [S8] J.Y. Hwang, H.L. Du, B.N. Yun, M.G. Jeong, J.S. Kim et al., Carbon-free TiO<sub>2</sub> microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 4(2), 494-501 (2019). <u>https://doi.org/10.1021/acsenergylett.8b02510</u>
- [S9] Z. Chen, L. Xu, Q. Chen, P. Hu, Z. Liu et al., Spray-pyrolysis-assisted synthesis of yolk@shell anatase with rich oxygen vacancies for efficient sodium storage. J. Mater. Chem. A 7(12), 6740-6746 (2019). <u>https://doi.org/10.1039/c8ta11440d</u>
- [S10] S. Luo, T. Yuan, L. Soule, J. Ruan, Y. Zhao et al., Enhanced ionic/electronic transport in nano-TiO<sub>2</sub>/sheared cnt composite electrode for Na<sup>+</sup> insertion-based hybrid ioncapacitors. Adv. Funct. Mater. **30**(5), 1908309 (2020). https://doi.org/10.1002/adfm.201908309
- [S11] Y. Zhang, X. He, J. Tang, J. Jiang, X. Ji et al., Sulfur-doped TiO<sub>2</sub> anchored on a largearea carbon sheet as a high-performance anode for sodium-ion battery. ACS Appl. Mater. Interfaces 11(47), 44170-44178 (2019). <u>https://doi.org/10.1021/acsami.9b14597</u>
- [S12] X. Xu, B. Chen, J. Hu, B. Sun, X. Liang et al., Heterostructured TiO<sub>2</sub> spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. **31**(46), e1904589 (2019). https://doi.org/10.1002/adma.201904589
- [S13] W. Song, H. Zhao, L. Wang, S. Liu, Z. Li, Co-doping nitrogen/sulfur through a solid-

state reaction to enhance the electrochemical performance of anatase  $TiO_2$  nanoparticles as a sodium-ion battery anode. ChemElectroChem **5**(2), 316-321 (2018). <u>https://doi.org/10.1002/celc.201701015</u>

- [S14] J. Ni, S. Fu, Y. Yuan, L. Ma, Y. Jiang et al., Boosting sodium storage in TiO<sub>2</sub> nanotube arrays through surface phosphorylation. Adv. Mater. **30**(6), 1704337 (2018). <u>https://doi.org/10.1002/adma.201704337</u>
- [S15] R.R. Maça, D.C. Juárez, M.C. Rodríguez, V. Etacheri, Nanointerface-driven pseudocapacitance tuning of TiO<sub>2</sub> nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries. Chem. Eng. J. **391**, 123598 (2020). <u>https://doi.org/10.1016/j.cej.2019.123598</u>
- [S16] J. Feng, Y. Dong, Y. Yan, W. Zhao, T. Yang et al., Extended lattice space of TiO<sub>2</sub> hollow nanocubes for improved sodium storage. Chem. Eng. J. **373**, 565-571 (2019). <u>https://doi.org/10.1016/j.cej.2019.05.065</u>
- [S17] X. Wang, L. Qi, H. Wang, Anatase TiO<sub>2</sub> as a Na<sup>+</sup>-storage anode active material for dual-ion batteries. ACS Appl. Mater. Interfaces 11(33), 30453-30459 (2019). <u>https://doi.org/10.1021/acsami.9b09703</u>
- [S18] X. Guo, J. Zhang, J. Song, W. Wu, H. Liu et al., MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 14, 306-313 (2018). <u>https://doi.org/10.1016/j.ensm.2018.05.010</u>