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CRISPR‑Cas12a‑Empowered Electrochemical 
Biosensor for Rapid and Ultrasensitive Detection 
of SARS‑CoV‑2 Delta Variant
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HIGHLIGHTS

• A robust technique‑methodology of electrochemical CRISPR sensing is first proposed for the rapid, highly sensitive and specific 
detection of SARS‑CoV‑2 variant without any nucleic‑acid‑amplification assays.

• Using the DNA template identical to SARS‑CoV‑2 Delta spike gene sequence as model, our biosensor exhibited excellent analytical 
detection limit (50 fM) and high linearity (R2 = 0.987) without any amplification assay.

• Specific crRNA was designed to match the mutation site on nucleic acid sequence of the SARS‑CoV‑2 Delta variant, presenting 
programmability, universality, and scalability for diagnosis of other emerging SARS‑CoV‑2 variants.

ABSTRACT Coronavirus disease 2019 (COVID‑19) is a highly con‑
tagious disease caused by severe acute respiratory syndrome corona‑
virus 2 (SARS‑CoV‑2). The gold standard method for the diagnosis of 
SARS‑CoV‑2 depends on quantitative reverse transcription‑polymerase 
chain reaction till now, which is time‑consuming and requires expen‑
sive instrumentation, and the confirmation of variants relies on further 
sequencing techniques. Herein, we first proposed a robust technique‑
methodology of electrochemical CRISPR sensing with the advantages 
of rapid, highly sensitivity and specificity for the detection of SARS‑
CoV‑2 variant. To enhance the sensing capability, gold electrodes are 
uniformly decorated with electro‑deposited gold nanoparticles. Using 
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DNA template identical to SARS‑CoV‑2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit 
(50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic‑acid‑
amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR‑Cas 
system. Furthermore, based on the wireless micro‑electrochemical platform, the proposed biosensor reveals promising application ability 
in point‑of‑care testing.

KEYWORDS SARS‑COV‑2 variant; Methodology of electrochemical CRISPR sensing (MOECS); Gold nanoparticles (AuNPs); 
Point‑of‑care testing (POCT)

1 Introduction

The global outbreak of coronavirus disease 2019 (COVID‑
19) caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS‑CoV‑2) has spread rapidly all over 
the world [1–3]. With 525,467,084 confirmed cases and 
6,285,171 deaths worldwide, by 27 May 2022 (WHO Coro‑
navirus (COVID‑19) Dashboard, 2022), the world is suf‑
fering a considerable health, social, and economic burden. 
Consequently, quick and precise identification and moni‑
toring of coronavirus infection are crucial for preventing 
disease transmission and ultimately saving lives [4–7]. Gen‑
erally, there are two diagnostic methods for SARS‑CoV‑2, 
serological and viral nucleic acid tests [8–11]. Serological 
testing detects the presence of antibodies or the antigenic 
viral proteins produced by an (infected) individual because 
of exposure to the virus. The antibody test should not be 
used to diagnose people with active infections and may give 
false‑negative results because the body’s immune system 
may not be active in the early stage of infection [8, 9, 12]. 
Rapid antigen tests for SARS‑CoV‑2 are cost‑effective and 
give immediate results, while the tests are generally not 
as sensitive as nucleic acid‑based tests. Consequently, to 
accurately diagnose active SARS‑CoV‑2 infection, viral 
nucleic acid testing should be used. Currently, the gold 
standard method for diagnosing SARS‑CoV‑2 is a diagnos‑
tic test based on the detection of viral RNA by quantitative 
reverse transcription polymerase chain reaction (qRT‑PCR) 
[13–15]. However, there are some disadvantages of qRT‑
PCR, such as being time‑consuming and requiring a spe‑
cialized laboratory setting with expensive instruments and 
trained personnel [14–16].

Since the first application of the CRISPR‑Cas9 system 
for gene editing in the mammalian genome, CRISPR‑Cas 
systems have exploded in the field of biotechnology and 
have become an essential tool for transcriptional regulation 

and genome editing, among other applications [17–20]. 
Recently, CRISPR‑Cas effectors (e.g., Cas12, Cas13) 
have been deployed in nucleic acid detection, which show 
great potential in terms of novel biosensors fabrication for 
nucleic acid detection due to their unique properties of pro‑
viding signal output when target nucleic acids and single‑
stranded non‑targeted nucleic acids (employed as reporters) 
are cleaved [18, 20]. There are many different types of Cas 
nuclease that have been applied in gene detecting meth‑
odologies. For example, by employing Cas12 or Cas13 
and pre‑amplifying DNA or RNA sequences using RPA, 
Zhang et al. designed SHERLOCK [21], a gene detecting 
method with high specificity and sensitivity. As SHER‑
LOCK initiated the rapid development of CRISPR‑based 
diagnostics (CRISPR‑Dx), the following methods like 
HOLMES [22, 23], HOLMESv2 [24], CONAN [25], etc., 
target different types of nucleic acid samples with different 
methods of amplification. Based on such techniques, Dif‑
ferent CRISPR‑Dx platforms have been applied in clinical 
to detect bacteria [26], diagnosis of hereditary diseases 
[27], and screening of viruses [28]. Now the evolving 
CRISPR‑Dx platforms for SARS‑CoV‑2 has been reported 
broadly, it has been determined that the majority of them 
consist of viral purification, amplification, and detection 
processes [29–32]. Although these diagnostic methods are 
making SARS‑CoV‑2 testing more available to meet the 
needs of rapid testing, they still rely on the amplification 
of viral RNA templates, leading to extended experimental 
time [33], high‑cost and sophisticated devices. Recently, 
there are more and more CRISPR‑Dx platforms that avoid 
the use of polymerase‑mediated amplification by improv‑
ing the sensitivity of detection systems, including droplet 
microfluidics [34] and modular catalytic hairpin assembly 
circuits [25, 35]. In addition, CRISPR can also integrate 
different platforms for enhanced signals. A CRISPR‑based 
surface‑enhanced Raman scattering (SERS) assay can 
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detect ~ 10 fM genomic DNA with the target sequence [36]. 
A graphene field‑effect transistor coupling with CRISPR‑
Cas9 system, as a specific capturer for specific exons of 
genomic DNA related to inherited disease [27]. Our group 
also designed a CRISPR‑empowered surface plasmon reso‑
nance (SPR) platform, fulfilling accurate detection of ~ 5 
fM unamplified DNA samples [37].

Electrochemical biosensors have attracted considerable 
attention as powerful analytical tools in medical diagnos‑
tics, because they offer various advantages over other 
diagnostic procedures in diagnostics, such as high sensi‑
tivity, simplicity, rapid response, and cost‑effectiveness 
[38, 39]. Among the currently available nucleic acid‑
based biosensors, electrochemical biosensors have shown 
their powers for POCT applications as well [40–42]. In 
addition, gold nanoparticle (AuNP) has high biocompat‑
ibility, low toxicity, and well‑established biochemistryap‑
plication. It is one of the most popular and robust selec‑
tion for biosensor fabrication [43, 44]. Therefore, in this 
work, we first present the methodology of electrochemi‑
cal CRISPR sensing (MOECS), to address the demand 
for rapid and accurate detection of the variants of SARS‑
CoV‑2. For enhanced sensing performance, the working 
electrode (AuE) is modified with AuNPs to increase the 
conductivity and specific surface area by electrodeposi‑
tion because the deposition of high‑quality AuNPs by in 
situ electro‑deposition method is simple in operation and 
can be completed in a few hundred seconds. After that, 
the AuNPs decorated AuE (AuE‑AuNPs) is modified 
by methylene blue‑single stranded DNA (MB‑ssDNA) 
which acts as reporter gene. For stable electrochemical 
signal and long‑time storage, Cas12a protein was chosen 
to fabricate the biosensor. When the biosensor is treated 
by Cas12a‑crRNA‑target DNA triplex, the trans‑cleavage 
activity of Cas12a is activated and the MB‑ssDNA would 
be un‑specifically cleaved off from the electrode sur‑
face. Therefore, the electron transfer between the AuE 
and the redox mediator (MB) on the ssDNA is altered 
before and after the cleavage, while the variation can 
be electrochemically transduced and detected. The fea‑
sibility of developed electrochemical biosensor based on 
the CRISPR‑Cas system (E‑CRISPR) for SARS‑COV‑2 
Delta variant was examined by both biological and elec‑
trochemical strategies. Accordingly, the limit of detec‑
tion (LOD), specificity and stability of the biosensor are 
characterized. Finally, the performance and potential 

application in POCT of the E‑CRISPR are explored on 
the micro‑electrochemical platform.

2  Experimental Section

2.1  Materials and Instruments

NaOH,  H2SO4, KCl, NaCl,  MgCl2,  HAuCl4, Tris–HCl, 
 K3[Fe(CN)6],  K4[Fe(CN)6], Tris‑(2‑carboxyethyl) phosphine 
hydrochloride (TCEP), 6‑mercaptohexanol (MCH), Ethyl‑
enediaminetetra acetic acid (EDTA) (all analytical grade) 
were purchased from Macklin Biochemical Co., Ltd (Shang‑
hai, China). Primer sets were synthesized by the Shanghai 
Generay Biotech Co., Ltd (China). Other oligonucleotides, 
including the crRNA, MB‑ssDNA reporter, and FAM‑ssDNA 
reporter, were synthesized by Sangon Biotech (Shanghai) Co., 
Ltd. (Shanghai, China). Their sequences are listed in Table S1.

Electrochemical measurements were performed on CHI 
760E electrochemical workstation (Shanghai Chenhua 
Instrument Co. Ltd., China). Gold electrode (AuE, 3 mm in 
diameter), Ag/AgCl electrode, and platinum (Pt) wire were 
employed as working, reference, and counter electrodes in 
three‑electrode system, respectively, in which the working 
electrode can be reused thousands of times. Screen‑printed 
electrode (SPEC) and micro‑electrochemical workstation 
for POCT assays were obtained from Shenzhen Refresh 
Intelligent Technology Co, Ltd., China. The morphology 
of the electro‑deposited AuNPs was in situ characterized 
by scanning electron microscopy (TESCAN MIRA LMS).

A Cary Eclipse fluorescence spectrophotometer (Agilent 
Technologies, Palo Alto, CA) was used to read the fluo‑
rescence spectra. Concentrations of DNA suspensions were 
quantified by using NanoDrop 1000 spectrophotometer 
(Thermo Scientific, USA). The analysis of agarose gel elec‑
trophoresis was performed by an electrophoresis analyzer 
(Bio‑Rad, USA) and imaged with a ChemiDoc XRS system 
(Bio‑Rad, USA).

2.2  Artificial Synthesis of SARS‑CoV‑2 Nucleic Acid 
Fragments

For detecting the Delta variant, part of the spike (S) gene 
(Table S2) was selected as the target sequence because 
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D950N (24410 G˃A) mutation is a featured mutation for 
Delta and has not been found in any other variants yet. Based 
on the adjacent sequence of the mutation sites, specific 
crRNA is synthesized (Table S1).

Cas12a crRNA consists of two main parts: the universal 
scaffold region (UAA UUU CUA CUA AGU GUA GAU) for 
Cas12a protein to recognize and bind. The other part is a 
customized region, which is identical to the sequence of the 
target site (17–20 nt), extended from the 3′ end of the scaf‑
fold and ensures the specificity. As the dsDNA templates, 
plasmids containing wild‑type or mutated S gene sequences, 
MERS, Influenza virus, and HRSV (Table S2) were also 
synthesized. All the crRNA and plasmids are provided by 
Sangon Biotech (Shanghai) Co., Ltd. Besides, nucleic acid 
templates from SARS‑CoV‑2 virus (L02087A, Genscript, 
Nanjing, China) were extracted by using a virus RNA extrac‑
tion kit (4992285, TIANGEN, Beijing, China) according to 
the manufacturer’s instruction, and reverse‑transcribed into 
the cDNA template.

2.3  Fabrication of the ssDNA‑Modified Electrode

Before modification, the bare AuE was carefully polished by 
using alumina powder (0.3 and 0.05 μm in diameter, respec‑
tively) to obtain a mirror‑like surface followed by sonicat‑
ing with ethanol and deionized water, respectively. After 
that, the electrochemical cleaning procedure was performed 
to further remove the oxides and impurities on the surface 
of the AuE. In detail, a series of cyclic voltammetry (CV) 
cycles (0.1 V  s−1, from − 1 to 1 V vs. Ag/AgCl) in 0.5 M 
NaOH, 0.5 M  H2SO4, 0.1 M  H2SO4 with 0.01 M KCl and 
0.05 M  H2SO4 with 0.01 M KCl were applied, respectively, 
until repeated CV curves were obtained. After washing with 
deionized water, the AuE was dried with nitrogen for fur‑
ther use. The AuNPs modified AuE was fabricated by an 
electrochemical deposition method. The electrodeposition 
on the pretreated AuE was conducted at 0.5 V vs Ag/AgCl 
in a stable 5 mM  HAuCl4 solution (pH 5.0) for 300 s by 
chronoamperometry.

For sample analysis, 100  μM thiolated MB‑ssDNA 
reporters were pretreated with 10 mM TCEP in the dark 
at 37 °C for 2 h to reduce the thiol–thiol bonds. After that, 
the MB‑ssDNA reporter was diluted into 1 μM by add‑
ing Tris‑buffer solution (10 mM Tris–HCl, 2 mM EDTA, 
10 mM  MgCl2, 0.1 M NaCl, pH 7.4). And then, 10 μL of 

the reduced and diluted MB‑ssDNA reporter was directly 
incorporated onto the pretreated AuE‑AuNPs surface and 
incubated in the dark at 37 °C for 4 h in humidity. The MB‑
ssDNA modified AuE was then rinsed by 10 mM Tris–HCl 
buffer (pH 7.4). The cleaned MB‑ssDNA modified AuE‑
AuNPs was then immersed into 10 mM Tris–HCl solution 
(pH 7.4) containing 1 mM MCH for 1 h to passivate the 
surface and obtain well‑aligned DNA monolayer. Finally, 
after thoroughly washing with 10 mM Tris–HCl buffer (pH 
7.4), the electrode was dried with nitrogen and ready for 
the following processes. Note that: For short‑term storage, 
the modified AuE can be stored at 4 °C in the dark under 
nitrogen protection.

2.4  Electrochemical Detection of Artificial Samples

For electrochemical analysis of trans‑cleaved reporters, the 
Cas12a‑mediated cleavage assay was carried out by adding 
a Cas12a‑crRNA duplex (100 nM Cas12a, 100 nM crRNA, 
1× NEBuffer 2.1) into target DNA to form Cas12a‑crRNA‑
target DNA triplex. Then, the triplex was dropped onto the 
MB‑ssDNA modified AuE and incubated at 37 °C for 45 min 
in humidity. After Cas12a‑mediated cleavage treatment, the 
AuE was thoroughly rinsed by 10 mM Tris–HCl buffer (pH 
7.4) and then dried with nitrogen before the following elec‑
trochemical processes.

The electrochemical square wave voltammetry (SWV) 
was performed in 8 mL of 10 mM Tris buffer (pH 7.4) con‑
taining 0.1 M NaCl with a potential increment of 4 mV, a 
frequency of 25 Hz, an modulation amplitude of 25 mV, and 
a potential range from − 0.45 to 0 V vs. Ag/AgCl. The ΔI 
(%) used for quantitative analysis can be calculated as I0−I

I
0

 , 

in which I0 is the current before cleavage (without target 
DNA), I represents the current after cleavage (with target 
DNA). EIS operating conditions were as follows: 0.1 M KCl 
solution contenting 5 mM [Fe(CN)6]3−/4−, biased potential 
of 0.23  V (vs. Ag/AgCl) in the frequency range of 
0.01–105 Hz, and 5 mV amplitude.

2.5  Analysis of Mismatch, Interferential Virus

Specificity of crRNAs to different sequences from the sam‑
ples was validated by performing a typicalCRISPR‑Cas12a 
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diagnosis assay: each 10 μL reaction mix contains 100 nM 
Cas12a (NEB), 100 nM crRNA, 1×NEB 2.1 buffer (NEB), 
500 nM single‑stranded DNA (ssDNA) fluorescent quenched 
reporter (5′ 6‑FAM/TTA TTA TT/BHQ‑1 3’, Sangon), and 
10 nM target dsDNA sequences, including wild‑type or 
Delta S genesequences, MERS, Influenza virus, or HRSV. 
were diluted in Rnase/Dnase‑free water into 10 μL. Reac‑
tions were incubated at 37 °C for 30 min. Real‑time fluores‑
cence was measured using a BioTek NEO HTS plate reader 
(BioTek Instruments) with readings every 2 min (excitation: 
485 nm; emission: 528 nm). The cis‑cleavage of sequences 
was further verified by electrophoresis on 2.5% agarose gel 
under 120 V for 30 min.

3  Results and Discussion

The principle of the electrochemical biosensor for 
the detection of SARS‑COV‑2 Delta variant based on 
CRISPR‑Cas12a‑mediated nonspecific cleaving of MB‑
ssDNA reporter is illustrated in Fig. 1. First, the bare AuE 
was decorated by AuNPs by electrodeposition before the 
immobilization of the MB‑ssDNA reporter. Next, the guide 
Cas12a/crRNA duplex was designed to specifically recog‑
nize the target DNA of SARS‑COV‑2 based on the proto‑
spacer adjacent motif (PAM) sequence of the target and the 
complementarity between target DNA and crRNA [45]. 
In the absence of the target DNA, the cleavage activity of 
the Cas12a‑crRNA was not activated and the MB‑ssDNA 

reporters were retained on the modified electrode surface, 
resulting in a distinct electrochemical signal of MB. In the 
presence of the target DNA, the Cas protein recognizes 
the PAM sequence and the Cas protein as DNA helicase 
unwinds the target DNA. After activating the trans‑cleavage 
activity of Cas12a, the MB‑ssDNA reporters were nonspe‑
cifically cleaved off from the electrode surface, resulting 
in a low electrochemical signal of MB [46]. Therefore, the 
MB‑ssDNA immobilized AuE‑AuNPs realized the elec‑
trochemical transduction of the CRISPR detection signal 
based on the transduction of the electron transfer between 
AuE‑AuNPs and MB on ssDNA. Furthermore, the fabricated 
AuNPs‑assisted E‑CRISPR could convert target recognition 
events into massive cleavage of the ssDNA reporter on the 
electrode for highly sensitive electrochemical nucleic acid 
biosensing.

To examine the feasibility of a CRISPR‑Cas12a‑based 
electrochemical biosensor for nucleic acid detection, experi‑
ments were performed before the on‑device detection. As 
shown in Fig. 2a, different target templates were designed 
and inserted into pUC57 plasmids. Through the amplifi‑
cation using PCR, DNA templates were obtained and the 
concentrations were determined. CRISPR detection was 
performed using a Cas12a‑crRNA complex, and a FAM‑
BHQ ssDNA reporter. Only if the dsDNA template con‑
tains an identical part of crRNA could the Cas12a protein 
be activated, thus cleaving the template (cis‑cleavage) and 

MB-ssDNA
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With target

crRNA

Cas12a
Without target

Without Target DNA

With Target DNA

AuE-AuNPs

Activated Cas12a/crRNA
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C
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Fig. 1  Schematic representation of the AuNPs‑assisted E‑CRISPR biosensor
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the ssDNA reporter (trans‑cleavage), then the freed FAM 
generates fluorescence to be detected.

The cis‑ and trans‑cleavage was confirmed using agarose 
gel electrophoresis. As shown in Fig. 2b, the band of intact 
dsDNA template was observed (indicates as “T”). After 
the CRISPR reaction with the right crRNA, the band of 
the template disappeared (cis‑cleavage), and fluorescence 
of the reporter was observed (“R” band, trans‑cleavage). 
A photograph of the gel under ultraviolet can be found in 
Fig. S1. In this study, the target DNA of SARS‑COV‑2 vari‑
ants, influenza viruses, and HRSV were chosen to prove the 
specificity of the crRNA used to detect the Delta variant of 
SARS‑CoV‑2. As shown in Fig. 2c, only the DNA template 
of the Delta variant reacted with the CRISPR system and 
strong fluorescence was observed. Other DNA templates of 
some respiratory viruses, including the wild‑type (Origin) 
SARS‑CoV‑2, only significantly weaker (P < 0.001) fluores‑
cence was observed. Furthermore, FAM‑ssDNA‑BHQ probe 
(Table S1) was used as reporter of Cas12a for fluorescence 
detection of the target Delta DNA with different concentra‑
tions (from 100 fM to 10 nM), and the LOD was calculated 
to be about 100 pM (Figs. 2d and S2).

Next, the E‑CRISPR for SARS‑COV‑2 Delta variant was 
characterized by electrochemical methods to investigate the 
cleavage feasibility and sensitivity. At the beginning of elec‑
trode modification, AuNPs were electro‑deposited on the 
surface of the bare AuE to form AuE‑AuNPs with higher 
specific surface area and electrical conductivity [47]. The 
average diameter of the electrochemically deposited AuNPs 
is about 50 nm, and AuE was covered by the homogeneous 
distributed AuNPs (Fig. S3). As expected, the electrochemi‑
cal surface area of AuE (2.17  mm2) and AuE‑AuNPs (12.3 
 mm2) were calculated by integrating the gold oxide reduc‑
tion peak at around 0.1 V vs Ag/AgCl in Fig. S4A, which 
confirmed the larger active surface area of AuE‑AuNPs 
(about 5.7 times to AuE) [48]. In addition, EIS of bare AuE 
and AuE‑AuNPs were carried out because EIS was highly 
effective for evaluating the interfacial electron transfer effi‑
ciency at different stages in biosensor fabrication [49]. The 
electron transfer resistance (Ret) is the main indicator and 
corresponds to the semicircle diameter in the Nyquist dia‑
grams [18]. The EIS characterization showed that the Ret 
of bare AuE was about 180 Ω in high frequency, while the 
Nyquist diagram of AuE‑AuNPs was an almost straight line 
without semicircle (Ret close to 0 Ω), indicating the higher 
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electrochemical conductivity of AuE‑AuNPs than bare AuE 
(Fig. S4B) [50]. After the immobilization of MB‑ssDNA 
on the surface of bare AuE and AuE‑AuNPs, the square 
wave voltammetry (SWV) was performed to characterize 
the quality of the biosensor as well. Clearly, the redox peak 
of MB at around − 0.27 V vs. Ag/AgCl on AuE‑AuNPs 
was much higher than that on AuE (Fig. S5), which dem‑
onstrated that a large amount of MB‑ssDNA molecules was 
immobilized on the surface of AuE‑AuNPs because of the 
enlarged active surface area by AuNPs [51]. Therefore, the 
AuE‑AuNPs would increase the immobilization efficiency 
of the reporter ssDNA and subsequently the efficient activity 
of trans‑cleavage.

After that, EIS of the biosensor at different stages were 
carried out to verify the successful fabrication of E‑CRISPR 
for SARS‑COV‑2. As displayed in Fig. 3a, the AuE‑AuNPs 
possessed an excellent electrochemical conductivity (black 
curve). After the fix of MB‑ssDNA on the AuE‑AuNPs, the 
value of Ret increased to 4795 Ω dramatically (red curve), 
which could be attribute to the electrostatic repulsive force 
with [Fe(CN)6]3−/4− and increased electron transfer distance 

caused by the self‑assembled negatively charged MB‑
ssDNA monolayer [49, 51]. After treated with the Cas12a‑
crRNA‑target DNA triplex, most of the MB‑ssDNA has 
been cleaved and separated from the AuE‑AuNPs surface 
because of the activated cleavage activity of Cas12a. As 
expected, the Ret showed considerable decrease (about 1,612 
Ω) in the blue curve. The results demonstrated the successful 
modification and the target‑induced cleavage of MB‑ssDNA 
on AuE‑AuNPs surface [52]. Square wave voltammetry 
(SWV) was applied to evaluate the feasibility of the biosen‑
sor. As revealed in Fig. 3b, a high redox peak of MB at about 
− 0.27 V vs. Ag/AgCl was observed when the biosensor was 
treated with Cas12a‑crRNA duplex and without target DNA 
(black curve). While a dramatically decreased redox peaks 
of MB was presented when the biosensor was treated with 
Cas12a‑crRNA together with target DNA (red curve), which 
further confirmed the successful cleavage of MB‑ssDNA 
and release of MB on the biosensor surface [18, 52]. ΔI rep‑
resented the different value between the current before and 
after cleavage. All in all, these results demonstrated that the 
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fabricated AuNPs‑assisted E‑CRISPR could be applied for 
nucleic acid detection.

Afterwards, the sensitivity of the constructed SARS‑
COV‑2 Delta variant biosensor was estimated. Figure 3c 
shows the SWV of the redox peaks of MB with the target 
DNA concentration range from 100 fM to 10 nM, in which 
a gradual current decrease was observed as the target DNA 
concentration increased. Besides, the ΔI% versus the loga‑
rithm of target DNA concentration showed a good correla‑
tion in the investigated concentration range (Fig. 3d). The 
regression equation was ΔI% = 14.37 lgC + 192.67, the R2 
and the LOD were calculated to be 0.987 and 50 fM (3σ 
rule) [49, 51], which indicated a commendable linearity and 
ultra‑high sensitivity, respectively. Generally, the cleavage 
of ssDNA and detection process can be rapid finished within 
1 h. Besides, the LOD of fluorescence detection of the target 
Delta DNA was calculated to be 100 pM, which is much 
higher than that of the electrochemical biosensor (Figs. 2d 
and S2). Clearly, E‑CRISPR should be a robust strategy for 
the detection of SARS‑COV‑2 without amplification, which 
deserves more attention and discussion.

Furthermore, the specificity and selectivity of the E‑CRISPR 
for SARS‑COV‑2 Delta variant wereinvestigated by testing 
other nucleus acid extracted from the original SARS‑CoV‑2, 
MERS, and some other respiratory tract infection related virus, 
which should not appears cross‑reaction signal. In the reaction 
system that detecting Delta variant, gene sequence of origin 
SARS‑CoV‑2 lacks of a PAM sequence. PAM is not a com‑
plementary part of the protospacer, but it is a crucial sequence 
for the activation of Cas12a protein [53]. As expected in Fig. 4, 
a low ΔI% was observed when the target DNA was replaced 
by the nucleus acid of origin SARS‑CoV‑2 (16.1%), which 
confirmed the specificity of crRNA targeting the Delta vari‑
ant. Besides, MERS, H1N1, H3N2, Influenza B and HRSV 
all showed unconspicuous signal changes (ΔI% < 10%), while 
only the target DNA from Delta variant exhibited significant 
electrochemical responses (ΔI% = 77.9%). These results dem‑
onstrated that the established detection platform was capable 
of testing the SARS‑COV‑2 Delta variant with high specificity. 
Meanwhile, due to the programmability of crRNA, Cas‑based 
biosensors allow the development of a general biosensing plat‑
form for any other emerging SARS‑CoV‑2 variants by easily 
changing the crRNA guide region sequence in theoretical [54, 
55]. Moreover, the long‑time stability of in vitro diagnostic 
devices is critical for practical applications.Hence, the stability 
and reproducibility of the AuNPs‑enforced E‑CRISPR platform 

have been characterized. The MB‑ssDNA modified electrodes 
were stored in a dry box under nitrogen at 4 °C. The SWV 
signal remained stable (the signal decreased < 10%) within a 
week (Fig. S6), which is a sufficient turnaround time for the 
detection of SARS‑COV‑2.

The POCT eliminates dependence on large instruments 
and making analysis and detection more flexible and conveni‑
ent [56]. At the same time, SARS‑CoV‑2 demands POCT in 
particular due to its rapidly transmissible nature [13]. There‑
fore, the established E‑CRISPR for SARS‑CoV‑2 variant was 
transferred into the wireless micro‑electrochemical platform 
to explore the potential application in POCT. The schematic 
principle, photograph of primary assay and experimental 
results are shown in Fig. 5, in which the micro‑electrochemi‑
cal workstation was connected and directly controlled by the 
smartphone and the experimental data could be transported 
by Bluetooth in time. The work electrode of customed SPEC 
is gold with 3 mm in diameter, while the counter electrode is 
gold and the reference electrode is Ag/AgCl (Fig. S7). There‑
fore, the assays in this work based on the AuE were transferred 
and carried out on the SPEC. The screen‑printed technology 
is mature for the preparation of SPEC till now; thus, the cost 
of SPEC for POCT is ultra‑low. Considering the system dif‑
ferences between the traditional electrochemical workstation 
and the micro‑electrochemical workstation, the results should 
be distinct [57]. And the concentration of the target DNA in 
POCT assay was chosen as 10 nM just to prove the feasibility 
of the detection of SARS‑COV‑2 variant by micro‑electro‑
chemical workstation for POCT.
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Fig. 4  Specificity analysis of the AuNPs assisted E‑CRISPR for 
SARS‑COV‑2 Delta variant. The change in signal was calculated 
based on the SWV current with the addition of the target DNA 
(10 nM) and non‑target virus (10 nM), respectively. Error bars repre‑
sent standard derivation obtained in three parallel experiments



Nano‑Micro Lett.          (2022) 14:159  Page 9 of 12   159 

1 3

As shown in Fig. 5, the redox peak currents of MB from the 
SWV curve were 933.05 nA (without target DNA) and 280.11 
nA (with target DNA), respectively, ΔI% was calculated to 
be 69.97%, which was only a 10% difference compared with 
the corresponding ΔI% obtained from the traditional elec‑
trochemical workstation. Clearly, the E‑CRISPR combined 
with micro‑electrochemical platform can be applied to detect 
SARS‑CoV‑2 Delta variant as a POCT for quick and simple 
diagnosis without troublesome sample handling. Thanks to 
the popularity of smartphones, the development of wireless 
connection technology, and portable micro‑electrochemical 
platform, the great potential of CRISPR‑Cas‑based biosensor 
for future industrialization prospects is promising.

4  Conclusions

In summary, MOECS combined the advantages of elec‑
trochemical sensor (rapid and high sensitivity) and 
CRISPR‑Cas system (high specificity), which is urgent for 
the detection of SARS‑CoV‑2 Delta variant. In the novel 
MOECS‑based biosensor, uniform AuNPs deposited on 
the AuE enhanced the sensing performance by improving 
conductivity and enlarging the electrochemical active sur‑
face area. Meanwhile, benefiting from the high‑efficiency 
trans‑cleavage activity of Cas12a‑Cas system, the optimized 
electrochemical performance showed a wide linear range 
from 100 fM to 10 nM with high linearity (R2 = 0.987) and 
an ultralow LOD of 50 fM. The detection can be finished 
in 1 h and the E‑CRISPR displayed exceptional specific‑
ity and long‑time stability. As a comparable supplement for 

the RT‑qPCR method, this CRISPR‑Cas12a‑based electro‑
chemical biosensor will possess profound significance for 
the early diagnosis of SARS‑CoV‑2 in a pandemic situa‑
tion and simultaneously hold universality and scalability 
in other SARS‑CoV‑2 variants detection. One more high‑
light is that the POCT application based on the wireless 
micro‑electrochemical platform successfully inherits the 
remarkable advantages (rapidness, cost‑efficient, and sim‑
ple operation) of the E–CRISPR. has been successfully 
expanded to the POCT application based on the wireless 
micro‑electrochemical platform. In summary, the proposed 
of MOECS enables the fabrication of high quality biosensor 
for the detection of SARS‑CoV‑2 variants, which should be 
further developed and applied to other variants and clinical 
samples in the upcoming future.
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