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Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier 
and doped source-drain contacts carbon nanotube field effect transistors (CNTFETs) with strain 
applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with 
and without strain applied. The off-state current in both types of contact is similar with and without 
strain applied. This is because both types of contact offer very similar potential barrier in off-state. 
However, the on-state current in doped contact devices is much higher due to better modulation of 
on-state potential profile, and its variation with strain is sensitive to the device contact type. The 
on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, 
and their variations with strain are relatively less sensitive to the device contact type. The channel 
transconductance and device switching performance are much better with doped source-drain 
contact, and their variations with strain are sensitive to device contact type. 
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Carbon nanotube (CNT) is a fascinating material that shows 

metallic or semiconducting behavior depending on its radius 

and chirality [1-7]. CNTs can withstand very large mechanical 

strains [8], and have extremely high Young's modulus [9]. The 

strain has significant effects on the electronic properties of 

CNTs [3-7,10-14]. Maiti et al. [14] have shown that strain can 

change the conductance of a zigzag nanotube by several orders 

of magnitude. The pioneer experiment by Tombler et al. [15] 

shows that high strain (~3%) can change the conductance of a 

metallic single-walled nanotube by two orders of magnitude. In 

that experiment, strain was applied to a suspended nanotube 

using atomic force microscope (AFM) tip. Strain can open up a 

band gap in metallic CNTs, and can modify the band gap of 

semiconducting CNTs [16]. Small band gap semiconducting or 

quasi-metallic nanotubes exhibit the largest changes in 

resistance and piezo-resistive gauge factors, and they can be 

used as nanoscale pressure sensors [17]. 

While the study of strain effects on electronic and 

mechanical properties of CNTs shows significant progress, 

strain engineering in CNT based devices is still in early stage. 

Single-walled carbon nanotube devices have been fabricated on 

elastomeric polydimethylsiloxane (PDMS) substrates [18]. In 

those devices, strain has been applied to modulate their 

electronic properties. The conductance of a suspended 

multi-walled CNT has been measured by applying strain using 

AFM tip [19]. The strain effects on the performance of ballistic 

Schottky-barrier carbon nanotube transistors have been 

theoretically studied [20]. 

In this paper, we compare the performance of ballistic 

zero-Schottky-barrier and doped source-drain contacts carbon 
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nanotube transistors with strain applied. Performance 

comparison between Schottky and doped contacts CNTFETs 

has been carried out before without strain [21,22]. Our 

simulation model self-consistently solves the non-equilibrium 

Green's function (NEGF) equations for charge density and the 

two dimensional Poisson's equation in cylindrical coordinates 

for electrostatics. The CNT is modeled using π-orbital of carbon 

atom. The doped contact devices outperform the Schottky 

contact CNTFETs. The variation of off-state current with strain 

is not sensitive to the contact type; however, the magnitude of 

on-state current variation with strain is sensitive to device 

contact type. This is because the potential barrier in off-state for 

both types of contact is almost same, and therefore, the off-state 

current is not sensitive to the contact type with and without 

strain. However, the on-state current in Schottky contact 

devices is limited by the Schottky barrier, and the gate does not 

modulate much the potential profile when the potential under 

the gate goes below the source Fermi level. On the other hand, 

the gate modulation of potential profile is relatively larger in 

doped contact devices even after the source-channel flat band 

condition, and therefore, the on-state current in doped contact 

devices is much higher. The strain changes the band gap that 

changes the modulation of on-state band profile. This effect is 

higher in doped contact devices. The on/off current ratio and the 

inverse subthreshold slope are better in doped contact devices, 

and their variations with strain are not much sensitive to device 

contact type. The switching performance of doped contact 

devices is better, and its variation with strain is sensitive to 

device source-drain contact type. 

SIMULATION MODEL 

The simulation model uses a self-consistent solution 

between electrostatics and charge density. For a coaxially gated 

CNTFET, we obtain electrostatic potential by solving 

two-dimensional Poisson's equation in cylindrical coordinates (r, 

�, z)  
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The Poisson's equation, Eq. (1), is discretized using finite 

difference, and is solved by standard Newton-Raphson method. 

The potential is fixed to VGS - ΦG/q at the gate electrode. For 

Schottky contact, potential is fixed to - ΦS/q at the source 

electrode and to VDS - ΦD/q at the drain electrode. Here, VGS and 

VDS are the gate to source and drain to source voltages, and ΦG, 

ΦS, and ΦD are the work functions of gate, source, and drain 

metallizations. For doped source-drain contacts, the axial 

component of electric field is set to zero at the source and drain 

ends. The radial component of electric field is set to zero along 

the exposed surface of dielectric. 

The CNT is modeled using π-orbital basis of carbon atom. 

When strain is applied, we assume that the on-site energy does 

not change, and the hopping parameter changes following 

Harrison's formula [23] Vppπ = V0
ppπ(r0/r)2. Here, V0

ppπ and r0 are 

the hopping parameter and the carbon-carbon bond length, 

respectively, of the unstrained CNT, and r is the bond length of 

strained CNT. With uniaxial strain applied, the axial, rt, and the 

circumferential, rc, components of a carbon-carbon bond are 

calculated by the following equations [5] 
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Here, axial strain, εt and circumferential strain, εc are related via 

Poisson's ratio υ=- εc/ εt, and r0t and r0c are the axial and 

circumferential components, respectively, of the unstrained 

carbon-carbon bond. A Poisson's ratio value of 0.2 is used in 

our simulation [7,20]. For torsional strain, the circumferential 

component of the carbon-carbon bond is modified as rc=r0c+ 

tan(γ)r0t where, γ is the shear strain. The Hamiltonian parameter 

values are taken from Ref. [24]. 

For charge density calculation, we use recursive Green's 

function (RGF) algorithm [25,26] to solve NEGF equations. 

The charge density at the Lth atomic layer is calculated from 
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Where, the factor 2 includes spin degeneracy, e is the electronic 

charge, tr is the trace over the atomic orbitals, and fS and fD are 

the source and drain Fermi functions, respectively. The full 

spectral function is calculated from AL,L= i(GL,L - G†
L,L) and the 

left spectral function from 1,
†

1,1,, LLL
L

LL GGA �
 . The Green's 

function is defined as G=(E–H-Σ)-1, and the broadening 

function Γ is negative twice the anti Hermitian component of 

self energy Σ. The self energies are Σ1,1 = -it1,0 and ΣN,N = -itN,N+1 

for the Schottky contact devices [26,27], and Σ1,1 = t1,0g0,0t0,1 

and Σ1,1 = tN,N+1gN+1,N+1tN+1,N for the doped contact devices [28]. 

Here, t's are the coupling matrices, and g0,0 and gN+1,N+1 are the 
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surface Green's functions. We use decimation method [29,30] to 

calculate the surface Green's function 
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(4) 

Here, n is the iteration number. Iterations are repeated until An 

and Bn are small enough so that the nearest neighbor coupling 

can be disregarded. Then the surface Green's function can be 

obtained from gs(E) = (E-Hs
n)-1. For g0,0, the iteration is started 

with A0 = t1,0 and B0 = t0,1. For gN+1,N+1, the iteration is started 

with A0 = t0,1 and B0 = t1,0. In both cases, the matrix H0 is the 

unit cell Hamiltonian of the carbon nanotube, and Hs
0 = H0. The 

coherent drain current is calculated from 

2 ( )( ),D S D
eI dET E f f

h

 ��       (5)                                                                 

Where, h is Planck's constant, and the transmission is calculated 

from [25] 
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The self-consistent loop is started with an initial guess of 

the potential profile. We generate the initial profile following 

Ref. [31]. That is, the initial conduction band edge is a step 

profile with EC = ECS in the source region, EC = ECS + Eg/2 

under the gate region, and EC = ECS - eVDS in the drain region. 

Here, VDS is the drain to source bias, e is the electronic charge, 

and ECS is the conduction band edge relative to the source Fermi 

level and is calculated from the charge neutrality condition. 

However, for Schottky contact, the potentials are fixed at the 

gate, source, and drain terminals, and therefore, our initial 

potential profile is generated from the Laplace equation. The 

update profile for the next iteration of self-consistent loop is 

created using Anderson mixing scheme [32]. 

NUMERICAL RESULTS AND DISCUSSIONS 

We simulate coaxially gated zero-Schottky-barrier and 

doped source-drain contacts CNTFETs. The device cross 

sections used for simulation are shown in Fig. 1. An (n,0) 

zigzag CNT is used as the channel material. The devices have a 

gate length Lg of 10 nm and source and drain extensions LuS and 

LuD of 30 nm each. The gate oxide is SiO2 with thickness tox of 

2 nm. Poisson solver uses an extended dielectric thickness tox-ex 

(or gate metal thickness) of 6 nm. For Schottky contact devices, 

the source and drain metal extensions Lex of 15 nm are included 

in Poisson solver to take care of the fringing electric fields. For 

the doped contact devices, the source and drain contacts are 

assumed to be uniformly doped. The gate metal is assumed to 

have the same work function value as the CNT has. For 

zero-Schottky-barrier contacts, the source and drain metal 

Fermi functions align with the conduction band of the CNT. 

Ballistic transport is assumed. We use both uniaxial and 

torsional strains in our simulation. 

The band gap variations with uniaxial and torsional 

strains of (13,0) and (14,0) CNTs that cover two families of 

CNTs are shown in Fig. 2. The other family, mod (n-m,3) = 0, is 

 
FIG. 1. Device cross sections used for simulation. (a) zero-Schottky-barrier

source-drain contacts. (b) doped source-drain contacts. 

 
FIG. 2. The band gap variations with (a) uniaxial and (b) torsional strains of 

(13,0) and (14,0) CNTs. Here, compressive and tensile uniaxial strains are 

represented as negative and positive strains, respectively. 
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not discussed in this study because it has zero band gap at no 

strain. All the CNTs that have mod (n-m,3) = 1 will show the 

band gap variation similar to (13,0) and similar to (14,0) if mod 

(n-m,0) = 2 [5,20]. The band gap of the (13,0) CNT with 2% 

uniaxial strain is about 25% larger than that of the unstrained 

one. For the (14,0) CNT, this gap is about 26% smaller than that 

of the unstrained CNT at 2% uniaxial strain. A 6o of torsional 

strain increases the band gap of the (13,0) CNT by 19%, and 

decreases the  band gap of the (14,0) CNT by 23%. Uniaxial 

strain on a CNT may either increase or decrease the band gap 

by applying either tensile or compressive strain. Torsional strain 

however only increases the band gap of mod (n-m,3) = 1 CNTs, 

and decreases the band gap of mod(n-m,3) = 2 CNTs regardless 

of whether the torsional angle is positive or negative [20]. 

From hereon, we will use (13,0) CNT as the channel 

material to study performance of CNTFETs with strain. The 

other family shows the opposite behavior of performance 

metrics with strain compared to the (13,0) devices due to the 

opposite nature of band gap variation, Fig. 2. The variations of 

off-state current with strain for (13,0) CNTFETs are shown in 

Fig. 3. The shape of the off-state current versus strain curves of 

Schottky-barrier (13,0) CNTFET follows the shape of mod 

(n-m,3) = 1 family reported before [20]. The off-state current in 

our study is the drain current at zero gate bias with VDS = 0.5V. 

The off-state current of both zero-Schotkky-barrier and doped 

contact devices is almost same at no strain. The off-state current 

improves with tensile uniaxial strain for (13,0) CNT channel. 

The rotational strain improves the off-state current of (13,0) 

CNT channel. Note that results for positive angles of torsional 

strain are shown because the band gap variation with torsional 

strain is symmetric with positive and negative angles. The 

physics behind the off-state current variation with strain is the 

modulation of band gap (see Fig. 2) with strain. The off-state 

current improves with the type of strain that increases the band 

gap. This is because, with intrinsic channel, the off-state 

potential barrier height and width increase with larger band gap 

as shown in Fig. 4. The increased height and width of the 

barrier reduces the off-state current, mainly the tunneling 

component of current. The off-state currents are 6.487×10-5 μA, 

9.9×10-7 μA, and 3×10-8 μA for the (13,0) CNT devices with 

zero-Schottky-barrier contact at a 2% compressive strain, at no 

strain, and at a 2% tensile strain, respectively. These values for 

the doped contact devices are 1.4×10-4 μA, 1.25×10-6 μA, and 

2.6×10-8 μA, respectively. So the strain effect on off-state 

current is not much sensitive to the contact type. This is also 

true for the torsional strain.  

The variations of on-state current with strain are shown in 

Fig. 5. The on-state current versus strain curves for 

Schottky-barrier CNTFET have been reported previously [20]. 

The on-state current in our study is the drain current at VGS = 

VDS = 0.5 V. The variation trend of on-state current with strain is 

similar for both types of contact. The on-state current increases 

with the type of strain that reduces the band gap. This is 

 
FIG. 3. The off-state current versus strain. The SB means zero-Schottky-barrier

and DP means doped source-drain contacts. 

 
 

FIG. 4. Conduction band profiles vs channel position in (a) off (VDS = 0.5 V and

VGS = 0.0 V) state and (b) on (VDS = 0.5 V and VGS = 0.5 V) state. Here, SB

means zero-Schottky-barrier, and DP means doped source-drain contacts

devices. The channel is a (13,0) CNT. The solid lines are the band profiles of 

unstrained CNT channel, and the dashed lines are the band profiles of 2% tensile

strained CNT channel. 
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because the on-state potential barrier height reduces with the 

type of strain that reduces the band gap. This is evident from the 

band profiles shown in Fig. 4. The on-state current at no strain 

is much higher in doped contact devices compared to the 

Schottky contact devices. The on-state currents for Schottky 

contact devices are 1.78 μA, 0.865 μA, and 0.47 μA at a 2% 

compressive strain, at no strain, and at a 2% tensile strain, 

respectively. These values for the doped contact devices are 

21.6 μA, 9.6 μA, and 2.23 μA, respectively. While the 

improvement of on-state current for the Schottky contact device 

is from 0.865 μA to 1.78 μA at a 2% compressive strain, this is 

from 9.6 μA to 21.6 μA for the doped contact device. So the 

strain effect on on-state current is sensitive to the contact type 

when current magnitude is compared. However, the percentage 

change of on-state current with strain is less sensitive to the 

device contact type. This is also true for the torsional strain. 

The on/off current ratio versus uniaxial and torsional 

strains with Schottky and doped contacts are shown in Fig. 6. 

The on/off current ratio is better in doped contact devices. The 

change in on/off current ratio with strain is slightly sensitive to 

the device contact type, especially in case of torsional strain. 

This is because the off-state current variation with strain is not 

sensitive to the contact type, and this sensitivity of on-state 

current is not significant. For the Schottky contact CNTFETs, 

the on/off current ratios are 2.74×104, 8.76×105, and 1.85×107 at 

a 2% compressive strain, at no strain, and at a 2% tensile strain, 

respectively. These values for the doped contact devices are 

1.54×105, 7.71×106, and 8.4×107, respectively. The on/off 

current ratios are 9.96×106 and 5.64×107 for Schottky contact 

and doped contact, respectively, with 6o torsional strain. 

The variations of inverse subthreshold slope, defined as 

1( log / )D GSS I V �
 � � , with strain are shown in Fig. 7. The 

inverse subthreshold slope improves with tensile and torsional 

 
FIG. 5. The on-state current versus strain. Here, SB means zero-Schottky-barrier

contact and DP means doped contact. 

 
FIG. 6. The on/off current ratio versus strain. Here, SB means zero-Schottky-

barrier contact and DP means doped contact. 

 
FIG. 7. The inverse subthreshold slope versus strain. Here, SB means zero-

Schottky-barrier contact and DP means doped contact.. 
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strains. The inverse subthreshold slope is better in doped 

contact devices, and its change with strain is slightly sensitive 

to device contact type, especially with torsional strain. The 

inverse subthreshold slopes are 71.36 mV/dec, 61.4 mV/dec, 

and 60.30 mV/dec for Schottky contact and 69.78 mV/dec, 

60.68 mV/dec, and 60.03 mV/dec for doped contact at a 2% 

compressive strain, at no strain, and at a 2% tensile strain, 

respectively. The inverse subthreshold slopes are 60.21 mV/dec 

and 60.0 mV/dec at 6o torsional strain for Schottky contact and 

doped contact, respectively. 

Finally we compare the switching performance, namely 

the channel transconductance gm, the intrinsic switching delay τS, 
and the intrinsic unity current gain frequency fT. For this the 

gate capacitance is calculated from 

0
2 2 ,g ox ex

ox

L tr z
g t

g g

D DC R dz rdr
V V
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Where, R is the radius of the dielectric covering tox. The first 

integral takes care of the fluxes emanating from the bottom 

surface of the gate metal, and the second integral takes care of 

the fluxes emanating from the two sides of the gate metal facing 

to the source and drain. This gives the total gate capacitance Cg 

= Cgs + Cgd which includes the effects of fringing electric fields 

directly from the gate metal to the source and to the drain. The 

intrinsic switching delay is calculated from τS = CgVDD/Ion and 

the intrinsic unity current gain frequency from fT = gm/2πCg, 

where, the transconductance is computed from 
/m D GSg I V
 � �  at VDS =VDD. 

The on-state transconductance for both types of contact are 

shown in Fig. 8. The transconductance improves with 

compressive strain. This dependency is opposite for tensile 

strain. This change has a clear relationship with the change in 

band gap with uniaxial and torsional strain. The gm increases 

with the type of strain that reduces the band gap. The 

transconductance of doped contact CNTFETs is much higher 

than that of Schottky contact devices. The values of gm are 5.3 

μS, 4.5 μS, and 2.65 μS with Schottky contact and 116.22 μS, 

88.23 μS, and 32.08 μS with doped contact at a 2% 

compressive strain, at no strain, and at a 2% tensile strain, 

respectively. The gm reduces with torsional strain. The values of 

gm are 2.9 μS and 43.78 μS at a torsional strain of 6o for 

Schottky contact and doped contact, respectively. In terms of 

magnitude change of gm, strain has significant sensitivity to the 

device contact type. However, when the percent change is 

compared, this sensitivity may not be significant. 

The switching speed of any device relies on intrinsic 

switching delay as well as intrinsic cut-off frequency. The 

on-state intrinsic switching delay and intrinsic cut-off frequency 

are shown in Fig. 9 and 10, respectively, for the Schottky 

contact and doped contact. The intrinsic switching delay 

depends on gate capacitance and on-state current of the device. 

The switching delay improves with compressive strain. 

 
FIG. 8. The on-state transconductance versus strain. Here, SB means zero-

Schottky-barrier contact and DP means doped contact. 

 
FIG. 9. The on-state intrinsic switching delay and on-state intrinsic cut-off 

frequency versus strain for zero-Schottky-barrier CNTFETs. 
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Torsional strain degrades the switching delay. The intrinsic 

switching delays are 0.1689 ps, 0.3053 ps, and 0.5309 ps with 

zero-Schottky-barrier contact at a 2% compressive strain, at no 

strain, and at a 2% tensile strain, respectively. These values for 

the doped contact devices are 0.0362 ps, 0.0664 ps, and 0.2017 

ps, respectively. The intrinsic switching delays are 0.4892 ps 

and 0.1396 ps for zero-Schottky-barrier contact and doped 

contact, respectively, at 6o torsional strain. Here, also the doped 

contact CNTFETs outperforms the zero-Schottky-barrier 

CNTFETs. The switching frequency improves with the type of 

strain that reduces the band gap. The intrinsic switching 

frequencies are 1.4035 THz, 1.2699 THz, and 0.8435 THz with 

zero-Schottky-barrier at a 2% compressive strain, at no strain, 

and at a 2% tensile strain, respectively. For the doped contact 

devices, they are 11.8574 THz, 11.0137 THz, and 5.6739 THz, 

respectively. The intrinsic switching frequencies are 0.8735 

THz and 7.492 THz for zero-Schottky-barrier and doped 

contact, respectively, at 6o torsional strain. 

CONCLUSION 

Performance of zero-Schottky-barrier and doped 

source-drain contacts carbon nanotube transistors is compared 

using a π-bond atomistic quantum simulation for different types 

of strain. The doped source-drain contact transistor has better 

performance with and without strain applied. The variations of 

on-state current and switching performance with strain are 

sensitive to the device contact type. However, strain effect on 

off-state current, on/off current ratio, and inverse subthreshold 

slope is almost insensitive to the device contact type. 
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