Supporting Information for

Origin of Excellent Charge Storage Properties of Defective Tin Disulfide in Magnesium/Lithium-Ion Hybrid Batteries

Xin Fan^{1, 2}, Mike Tebyetekerwa^{1,3}, Yilan Wu¹, Rohit Ranganathan Gaddam⁴, and Xiu Song Zhao^{1, *}

¹School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia

²School of Material Science and Technology, North University of China, Shanxi, Taiyuan 030051, P. R. China

³Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia

⁴Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, India

*Corresponding author. E-mail: <u>george.zhao@uq.edu.au</u> (X.S.Z)

Supplementary Figures and Tables

Scheme S1 Schematic illustration of the movement of Mg^{2+} and Li^+ during charge and discharge in a MLHB cell with Mg anode and a Mg^{2+}/Li^+ co-intercalation cathode

Fig. S1 FESEM images of holey graphene foams (HGF)

Fig. S2 FESEM images at different magnifications of SnS₂ (a, b) and SnS (c, d)

Fig. S3 XRD patterns of (**a**) SnS₂ and highly-defective SnS₂/HGF and of (**b**) SnS and defect-free SnS/HGF (**b**)

Fig. S4 Galvanostatic discharge and charge profiles of (**a**) highly-defective SnS_2/HGF , (**b**) moderately-defective SnS_2/HGF and (**c**) defect-free SnS/HGF cycled in a MIB at 50 mA g⁻¹ in the voltage window between 0.01 and 2.0 V vs. Mg^{2+}/Mg

Fig. S5 Galvanostatic discharge and charge profils of (**a**) highly-defective SnS_2/HGF , (**b**) moderately-defective SnS_2/HGF and (**c**) defect-free SnS/HGF cycled in a MLHB at 50 mA g⁻¹ in the voltage range 0.01-2.0 V *vs*. Mg²⁺/Mg

Fig. S6 (a) Cycling performance and (b) CV curves of HGF in MIBs and MLHBs, showing negligible capacity contribution from HGF. (c-f) CV curves at different scan rates to determine *b*-values at different potentials *vs*. Mg²⁺/Mg in MIBs (c, d) and MLHBs (e, f). Constant *b* can be obtained by plotting log i(V) vs. log v according to $i(V) = av^b$, where Constant *a* is a constant, indicating a capacity contribution mainly from charge transfer with surface/subsurface atoms

Fig. S7 Comparison of cycling stability between SnS_2 and highly-defective SnS_2/HGF (**a**) and between SnS and SnS/HGF (**b**) at 800 mA g⁻¹ in the voltage range between 0.01 and 2.0 V vs. Mg^{2+}/Mg . Cyclic voltammograms of SnS_2 (**c**) and SnS (**d**) at the scan rate of 0.2 mV s⁻¹. Comparison of rate performance between SnS_2 and highly-defective SnS_2/HGF (**e**) and between SnS and SnS/HGF (**f**). Comparison of Nyquist plots between SnS_2 and highly-defective SnS_2/HGF (**g**) and between SnS and SnS/HGF (**h**) before and after first cycle at the OCP. The dotted lines were fitted data using the equivalent circuit shown above **g**

Fig. S8 Cycling performance of highly-defective SnS₂/HGF in LIB in the potential window range between 0.8 and 2.8 V *vs.* Li⁺/Li and in MLIB in the potential windows between 0.01 and 2.0 V *vs.* Mg²⁺/Mg at 50 mA g⁻¹ (**a**) and 800 mA g⁻¹ (**b**)

Fig. S9 Mg 2p and Li 1s XPS spectra for fully discharged defective SnS_2/HGF and defect-free SnS/HGF at 0.01 V vs. Mg^{2+}/Mg in a MIB cell (**a**) and a MLHB cell (**b**)

Figure S10 *Ex-situ* XPS spectra represent changes of Mg 2p and Li 1s of the (\mathbf{a}, \mathbf{b}) highly-defective SnS₂/HGF and (\mathbf{c}, \mathbf{d}) SnS/HGF after the first cycle at charged and discharged stages, respectively

Fig. S11 Kinetics and quantitative analysis of SnS_x/HGF in MIBs. *b*-values of highly-defective SnS_2/HGF , moderately-defective SnS_2/HGF and SnS/HGF at different potentials *vs*. Mg^{2+}/Mg during (**a**) discharging and (**b**) charging processes. CV curves of (**c**) highly-defective SnS_2/HGF , (**d**) moderately-defective SnS_2/HGF and (**e**) SnS/HGF at various scan rates, and the corresponding capacitive charge storage contributions of (**f**) highly-defective SnS_2/HGF , (**g**) moderately-defective SnS_2/HGF and (**h**) SnS/HGF at a scan rate of 2.0 mV s⁻¹

Sample	Electrolyte	Capacity (mAh g ⁻¹)/current density (mA g ⁻¹)	Refs.
MoS_2	0.25 M LiCl + 0.25 M APC ^a	301/20	[S1]
${ m TiO_2}$	$\begin{array}{c} 1.5 \text{ M LiBH}_4 + 0.5 \text{ M} \\ \text{Mg}(\text{BH}_4)_2/\text{TGM}^b \end{array}$	140/20	[S2]
Li ₄ Ti ₅ O ₁₂ /Graphene	1.5 M LiBH ₄ +0.4 M APC	147.5/20	[S3]
TiS_2	0.4 M LiCl+0.4 M APC	161/20	[S4]
Mo_6S_8	0.4 M LiCl+1 M APC	126/20	[S5]
MoSe ₂ /C	0.5 M LiCl+0.2 M APC	204/50	[S6]
VO ₂	1 M LiCl+0.25 M APC	210.6/50	[S7]
VS ₂ -GO	1 M APC-LiC	235/90	[S8]
d-Ti ₃ C ₂ T _x /CNT	0.4 M LiCl+0.5 M APC	105/10	[S9]

 Table S1 Comparison of MLHB cell performance of different electrodes

TiNb ₂ O ₇	1.25 M LiCl + 0.4 M APC	240/7.75	[S10]
Cu ₂ Se	1 M LiCl + 0.4 M APC	239.7/26	[S11]
$Li_3V_2(PO_4)_3$	1 M LiCl + 0.4 M APC	147.8/50	[S12]
$Li_4Mn_5O_{12}$	1 M LiCl + 0.25 M APC	155/16.3	[S13]
FeS_2	1.5 M LiBH4 + 0.1 M Mg(BH4)2 (DGM ^c)	600/45	[S14]
FeS/CNF	0.4 M LiCl + 0.4 M APC	463/70	[S15]
Cu ₉ S ₅ -AEHPA ^d	1 M LiTFSI + 0.2 M Mg(HMDS)2 ^e -AlCl3-MgCl2 (DGM)	280/50	[S 16]
LiV ₃ O ₈ @GO	1 M LiCl + APC	245.9/50	[S17]
Cu ₂ Se/rGO	1 M LiCl + 0.4 M APC	243/26	[S18]
$TiNb_2O_7$	1.5 M LiCl + 0.4 M APC	225/7.75	[S19]
Cu ₂ S@C	1 M LiCl + 0.4 M APC	393.2/16.84	[S20]
Ni-doped MnO ₂ /CNT	1 M LiCl + 0.4 M APC	175/20	[S21]
(NiMnCo) ₃ O ₄	1 M LiCl + 0.4 M APC	550/50	[S22]
$Na_2C_6O_6$	1 M LiCl + 0.25 M APC	350/50	[S23]
SnS ₂ /HGF	0.25 M LiCl + 0.25 M APC	600/50	This
SnS/HGF	0.25 M LiCl + 0.25 M APC	520/50	work

* ^aAPC: All-phenyl complex. ^bTGM: Tetraglyme. ^cDGM: Diglyme. ^dAEHPA: Amino-ended hyperbranched polyamide. ^eMg(HMDS)₂: Bishexamethyldisilazide magnesium.

Supplementary References

- [S1] X. Fan, R.R. Gaddam, N.A. Kumar, X.S. Zhao, A hybrid Mg²⁺/Li⁺ battery based on interlayer-expanded MoS₂/graphene cathode. Adv. Energy Mater. 7(19), 1700317 (2017). <u>https://doi.org/10.1002/aenm.201700317</u>
- [S2] S. Su, Z. Huang, Y. NuLi, F. Tuerxun, J. Yang et al., A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51(13), 2641-2644 (2015). <u>https://doi.org/10.1039/C4CC08774G</u>
- [S3] Q. Miao, Y. NuLi, N. Wang, J. Yang, J. Wang et al, Effect of Mg²⁺/Li⁺ mixed electrolytes on a rechargeable hybrid battery with Li₄Ti₅O₁₂ cathode and Mg anode. RSC Adv. 6(4), 3231-3234 (2016). <u>https://doi.org/10.1039/C5RA25827H</u>
- [S4] T. Gao, F. Han, Y. Zhu, L. Suo, C. Luo et al., Hybrid Mg²⁺/Li⁺ battery with long cycle life and high rate capability. Adv. Energy Mater. 5(5), 1401507 (2015). <u>https://doi.org/10.1002/aenm.201401507</u>
- [S5] Y. Cheng, Y. Shao, J.G. Zhang, V.L. Sprenkle, J. Liu et al., High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 50, 9644-9646 (2014). <u>https://doi.org/10.1039/C4CC03620D</u>

- [S6] J.J. Fan, S.Y. Shen, Y. Chen, L.N. Wu, J. Peng et al., A rechargeable Mg²⁺/Li⁺ hybrid battery based on sheet-like MoSe₂/C nanocomposites cathode. Electrochem. Commun. 90, 16-20 (2018). <u>https://doi.org/10.1016/j.elecom.2018.03.004</u>
- [S7] C. Pei, F. Xiong, J. Sheng, Y. Yin, S. Tan et al., VO₂ nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9(20), 17060-17066 (2017). https://doi.org/10.1021/acsami.7b02480
- [S8] R. Sun, C. Pei, J. Sheng, D. Wang, L. Wu et al., High-rate and long-life VS₂ cathodes for hybrid magnesium-based battery. Energy Storage Mater. **12**, 61-68 (2018). <u>https://doi.org/10.1016/j.ensm.2017.11.012</u>
- [S9] A. Byeon, M.Q. Zhao, C.E. Ren, J. Halim, S. Kota et al., Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces 9(5), 4296-4300 (2017). <u>https://doi.org/10.1021/acsami.6b04198</u>
- [S10] S. Maletti, O. Janson, A. Herzog-Arbeitman, I.G.G. Martinez, R. Buckan et al., Operation mechanism in hybrid Mg-Li batteries with TiNb₂O₇ allowing stable highrate cycling ACS Appl. Mater. Interfaces 13(5), 6309-6321 (2021). <u>https://doi.org/10.1021/acsami.0c20905</u>
- [S11] H.C. Yuan, N. Wang, Y.N. NuLi, J. Yang, J.L. Wang, Hybrid Mg²⁺/Li⁺ batteries with Cu₂Se cathode based on displacement reaction. Electrochim. Acta 261, 503-512 (2018). <u>https://doi.org/10.1016/j.electacta.2017.12.169</u>
- [S12] M. Rashad, H. Zhang, X. Li, H. Zhang, J. Mater, Fast kinetics of Mg²⁺/Li⁺ hybrid ions in a polyanion Li₃V₂(PO₄)₃ cathode in a wide temperature range. J. Mater. Chem. A 7(16), 9968-9976 (2019). <u>https://doi.org/10.1039/C9TA00502A</u>
- [S13] Y. Cen, Y. Liu, Y. Zhou, L. Tang, P. Jiang et al., Spinel Li₄Mn₅O₁₂ as 2.0 V insertion materials for Mg-based hybrid ion batteries. ChemElectroChem 7(5), 1115-1124 (2020). <u>https://doi.org/10.1002/celc.201902105</u>
- [S14] Y. Zhang, J. Xie, Y. Han, C. Li, Dual-salt Mg-based Batteries with conversion cathodes. Adv. Funct. Mater. 25(47), 7300-7308 (2015). <u>https://doi.org/10.1002/adfm.201503639</u>
- [S15] X. Chen, S. Wang, H. Wang, High performance hybrid Mg-Li ion batteries with conversion cathodes for low cost energy storage. Electrochim. Acta 265, 175-183 (2018). <u>https://doi.org/10.1016/j.electacta.2018.01.148</u>
- [S16] T. Li, A. Qin, H. Wang, M. Wu, Y. Zhang et al., A high-performance hybrid Mg²⁺/Li⁺ battery based on hierarchical copper sulfide microflowers conversion cathode. Electrochim. Acta 263, 168-175 (2018). <u>https://doi.org/10.1016/j.electacta.2018.01.067</u>
- [S17] M. Li, C. Pei, F. Xiong, S. Tan, Y. Yin et al., A high energy density hybrid magnesium-lithium ion battery based on LiV₃O₈@GO cathode. Electrochim. Acta 320, 134556 (2019). <u>https://doi.org/10.1016/j.electacta.2019.134556</u>
- [S18] H. Yuan, N. Wang, Y. NuLi, J. Yang, J. Wang, Hybrid Mg²⁺/Li⁺ batteries with Cu₂Se cathode based on displacement reaction. Electrochim. Acta 261, 503-512 (2018). <u>https://doi.org/10.1016/j.electacta.2017.12.169</u>
- [S19] S. Maletti, A. Herzog-Arbeitman, S. Oswald, A. Senyshyn, L. Giebeler et al., TiNb₂O₇ and VNb₉O₂₅ of ReO₃ type in hybrid Mg–Li batteries: electrochemical and interfacial

insights. J. Phys. Chem. C **124**(46), 25239-25248 (2020). https://doi.org/10.1021/acs.jpcc.0c07373

- [S20] W. Wang, Y. Yang, Y. NuLi, J. Zhou, J. Yang et al., Metal organic framework (MOF)-derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for hybrid Mg²⁺/Li⁺ batteries. J. Power Sources 445, 227325 (2020). <u>https://doi.org/10.1016/j.jpowsour.2019.227325</u>
- [S21] M. Asif, M. Rashad, Z. Ali, H. Qiu, W. Li et al., Ni-doped MnO₂/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries. Mater. Today Energy 10, 108-117 (2018). <u>https://doi.org/10.1016/j.mtener.2018.08.010</u>
- [S22] M. Asif, M. Rashad, Z. Ali, I. Ahmed, Synthesis of ternary metal oxides as positive electrodes for Mg-Li hybrid ion batteries. Nanoscale 12(2), 924-932 (2020). <u>https://doi.org/10.1039/C9NR08758C</u>
- [S23] J. Tian, D. Cao, X. Zhou, J. Hu, M. Huang et al., High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano 12(4), 3424-3435 (2018). <u>https://doi.org/10.1021/acsnano.7b09177</u>