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S1 Supplementary Materials and Methods 

S1.1 Fabrication of Random Network SWCNT and MWCNT Buckypapers, and the 

Reduced Graphene Oxide (RGO) Films 

The random network SWCNT Buckypapers were prepared by filtrating the as-prepared 

SWCNT dispersion with a cellulose membrane filter (0.22 μm pore size). DI water was 

employed to remove the surfactant. The resulting dried films were peeled off from the substrate 

cellulose membranes. In the same procedure, the different aspect-ratios MWCNT assembled 

Buckypapers were also prepared based on the commercial MWCNT aqueous dispersions 

(supplied by Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences): long 

MWCNT (TNM2, diameter around 8‒15 nm and length around 50 μm) and short MWCNT 

(TNM8, average diameter around 50 nm and length 10‒20 μm). The graphene films were 

prepared by the same vacuum filtration approach to the GO dispersion (prepared by a modified 

Hummer’s method as reported in our previous work [23]) followed by a further reduction 

treatment by utilizing hydroiodic acid vapor as a reducing agent. 

S1.2 Theoretical Simulation of SWCNT’s Thermal Conductivity 

To indicate the thermal conductivity (𝜅𝑝ℎ ) theoretically, we calculated the lattice thermal 

conductivity by solving the phonon Boltzmann Transport Equation (BTE) with the first-

principles simulations. The models we adopted are armchair SWCNTs (8,8) and (12,12), which 
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are corresponding the diameter 1.085 and 1.6272 nm. Our simulating results of the lattice 

thermal conductivities along the axial direction at 300K are shown in Figure S5.  𝜅𝑝ℎ of the 

SWCNT (8,8) is 3580 W m-1K-1, and  𝜅𝑝ℎ  of the SWCNT (12,12) is 3102 W m-1K-1. Our 

simulation results are consistent with other theoretical and experimental work [S1-S7]. Here, 

we only considered the 𝜅𝑝ℎ along the axial direction along the SWCNTs.  

Here is the details of the theory and simulating process. First, by solving the BTE, we have 

the following equation: 

𝜅𝑝ℎ = ∑ ∑ 𝐶𝑝ℎ𝑞𝑝 ∙ 𝑣𝑔
2 ∙ 𝜏                             (S1) 

where 𝑝 and 𝑞 donate the phonon branch and wavevector respectively, 𝐶𝑝ℎ is the specific heat 

capacity of phonon,𝑣𝑔 is the phonon group velocity along the axial direction of SWCNTs and 

𝜏 is the phonon lifetime. To obtain the key parameters 𝑣𝑔 and 𝜏, we calculated the second and 

third order interatomic force constants (IFCs) based on the density functional theory (DFT) 

method. We performed all the first-principles calculations with the Vienna Ab-initio Simulation 

Package (VASP) [S8, S9], and chosen the Perdew-Burke-Ernzerhof (PBE) of the generalized 

gradient approximation (GGA) as the exchange correlation functional [S10]. We used the 

projector augmented wave (PAW) potentials to describe the core (1𝑠2) and valence electrons 

(2𝑠2 and 2𝑝2) of carbon element. The kinetic energy cutoff of the wave functions was set as 

500eV, which is enough for the hard-core carbon element. In the momentum space of electrons, 

the k-mesh 1×1×20 was used to sample the Brillouin Zone (BZ) including Γ point by 

Monkhorst-method. To hinder the self-interactions among the cylinders arising from the 

employed periodic boundary condition, we set a vacuum layer 10 Å among the neighbor unit 

cells. All the structures were fully optimized with the Hellmann-Feynman force tolerance 

0.001 𝑒𝑉/Å . For the second and third order IFCs calculations, the supercell 1×1×6 was 

constructed, the convergence of length was examined. The second order harmonic IFCs were 

obtained under the linear response framework by using the finite displacement method as 

implemented in the PHONOPY package [S11]. The phonon dispersions can also be obtained 

from PHONOPY package, which is shown in Fig. S1. In the calculations of third order IFCs, 

the atomic force interaction cutoff was taken into account up to forth nearest neighbors. With 

the third order IFCs, we iteratively solved the phonon BTE by using ShengBTE code developed 

by Li et al. [S12]. The momentum space of phonon was sampled with 1×1×100 grid in first BZ. 

Then we have the phonon lifetime 𝜏, and combining with the Eq. (1) we calculated the lattice 

thermal conductivity 𝜅𝑝ℎ finally. The convergence of the sampling grid in momentum space 

for phonon was examined [S12]. To convert the ShengBTE results into the experimental values, 

we used the cross-sectional area   𝑆 = 𝜋𝑑ℎ, for the SWCNTs [S13], where 𝑑 is the diameter 

and ℎ =  3.4 Å (the interactive length which is the van der Waals force radius of carbon atoms).   

S1.3 Thermal Conductivity Measurement 

Thermal conductivity of as-prepared freestanding SWCNT film was measured through our 

home-made vacuum thermal test apparatus (Fig. S6a). The as-prepared SWCNT films were cut 

into strips with width of around 5 mm and suspended in a vacuum chamber between two 

isolated stages, which were connected to alumel-chromel thermocouples. The two stages were 

named as floating and fixed stages, respectively. The floating stage was placed on Teflon tubes 

and did not make surface contact with anything other than the test sample. The fixed stage was 

connected to a power supply and could be warmed up by Joule heating. After loading sample, 

the apparatus was pumped down with a mechanical pump to reduce the chances of causing heat 

dissipation through convection. The thermal measurement was triggered by turning on the 

power supply attached to a heater on the fixed stage. The temperatures of the two stages were 

then recorded through the stage thermocouples every 60 seconds for thirty minutes, and the 
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power supply was shut off for the final ten minutes. The thermal conductivity of the sample 

was calculated in between every two measured points using the following equations and then 

averaged together (Fig. S6b).  

                           (S2) 

                                      (S3) 

                        (S4) 

                                                    (S5) 

Here, 𝑚 is the mass of copper and stainless steel of the floating stage, 𝑐𝑝 is the heat capacity of 

the metals of the floating stage, 𝑇𝑓𝑖𝑥𝑒𝑑 is the temperature of fixed stage measured during test, 

𝑇𝑓𝑙𝑜𝑎𝑡 is the temperature of floating stage measured during test, Rsample is the absolute thermal 

resistance of the sample, L is the thickness of the sample, which can be measured before test, 

A is the cross-sectional area perpendicular to the path of heat flow, 𝑘 is the thermal conductivity 

of the sample.  

It can be found that we introduced a correction term 𝜑∆𝑇𝑙𝑒𝑎𝑘𝑎𝑔𝑒 compared to the standard heat 

equation. It is because the heat leaking from the floating stage, which should be proportional to 

the temperature difference between the floating stage and room temperature ambient, is non-

negligible. 𝜑 is an empirical constant that can be obtained through adjusted it until the thermal 

conductivity is close to a constant. For example, as shown in Figure S6c, the measured thermal 

conductivity of pure copper without leakage correction is displayed as blue squares, which 

shows an unreasonably non-constant feature. After introducing leakage correction, measured 

thermal conductivity of copper (red dots in Fig. S6c) became constant and close to its theoretical 

value. We also measured some pure metals (copper, aluminum and silver) and found their 

measured thermal conductivity values were consistent with their theoretical values (Fig. S6d). 

S1.4 EMI Shielding Performance Test 

The EMI shielding tests of the samples were carried out with the waveguide method by a vector 

network analyzer (VNA, Agilent 8517A). The tested samples were cut with size of 22.86×10.16 

mm2 (length × width) for the X-band frequency range of 8.2–12.4 GHz, 15.8×7.9 mm2 (length 

× width) for the Ku-band frequency range of 12.4–18 GHz,  and 5.68×2.84 mm2 (length × width) 

for the Q-band frequency range of 33–50 GHz. Herein, the thin samples were fixed between 

two 1 mm-thick PC substrates with negligible EMI SE. In the Terahertz frequency range of 

100–400 GHz, shielding performance was evaluated using terahertz time domain spectroscopy 

(Topical Teraflash). More than five samples for each component were tested. Unless 

specifically mentioned, the electric field direction of the incident EM waves was parallel to the 

aligned SWCNTs for the SWCNT films. The obtained S-parameters of each sample were used 

to calculate the EMI SE as follows: 

SET = -10Lg (|S12|2) = -10Lg (|S21|2)                         (S6) 

SER = -10Lg (1-|S11|2)                                                  (S7) 

SEA = -10Lg (|S12|2/ (1-|S11|2)) =SET－SER               (S8) 

Where |Sij|
2 is the power transferred from port i to port j.  

 

S1.5 Theoretical Calculation of EMI Shielding Performance  

∆𝑇

𝑅
= 𝑚𝑐𝑝

𝜕𝑇

𝜕𝑡
+ 𝜑∆𝑇𝑙𝑒𝑎𝑘𝑎𝑔𝑒  

∆𝑇 ≡ 𝑇𝑓𝑖𝑥𝑒𝑑 − 𝑇𝑓𝑙𝑜𝑎𝑡  

∆𝑇𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ≡ 𝑇𝑓𝑙𝑜𝑎𝑡 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡  

𝑅𝑠𝑎𝑚𝑝𝑙𝑒 =
𝐿

𝑘𝐴
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The complex transmission coefficient (T) of a homogeneous shield can be calculated by a 

Transfer Matrix Method. The continuity of the tangential parts of both electric and magnetic 

fields of a time harmonic (ejωt) plane wave at the incident face of shields generate the boundary 

conditions: 

0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0

i i i i

0 0 1 1

i i i i

0 0 0 1 1 1

,
( ) ( )

k z k z k z k z
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k z k z k z k z

i r
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Y A e B e Y A e B e

− −
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 + = +


− = −

                    (S9) 

where A and B are the coefficients of forward-travelling and backward-travelling waves, 

respectively,  𝑘 = √𝜇𝜀 is the wave number, 𝑌 = √𝜀/𝜇 is the admittance of shielding materials, 

𝜇 and 𝜀 are the complex permeability and permittivity of shielding materials, the subscripts 0 

and 1 are variables relating to the air and the shielding materials, respectively. Since our 

shielding architectures are nonmagnetic, 𝜇 equals to 1. The complex permittivity (𝜀) consist of 

the real part (𝜀') and imaginary part (𝜀'')as following: 

j (1 j ).
w


   


  = − = −


                      (S10) 

where w is the angular frequency and σ is the conductivity. Herein, for a conductivity-caused 

EMI shielding calculation of the homogenous shields, the real part (𝜀') is equal to 𝜀0. 

Thus, the boundary condition gives as follows at the wave emergent face of the shielding 

materials: 

0 11 1 1 1

0 11 1 1 1

ii i

1 1 0

ii i

1 1 1 0 0

.
( )

k zk z k z
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k zk z k z
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
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The T of the shielding materials are calculated as follows: 0

0

0

0

r
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t

i

B
R
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T

A

=

=

                        (S12) 

Finally, the SET of the shields in dB are calculated: 

T 2

R 2

1
SE 10log

1
SE 10log

1

T

R

=

=
−

                     (S13) 

S2 Supplementary Videos 

Video S1 The printing process  for preparing the SWNCT film 

Video S2 The SWCNT film after immersion in water for 15 days and sonication treatment 

Video S3 The SWCNT film immersed in liquid nitrogen 

S3 Supplementary Figures and Tables 
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Fig. S1 SEM images of as-prepared freestanding SWCNT films with various thickness: (a) 

1.5 µm, (b) 3.5 µm, (c) 12 µm, and (d) 55 µm 

 

Fig. S2 Optical images of the hydrophobic and waterproof aligned SWCNT films (a) with water 

drops on the surface, after (b) immersion in water for 15 days and (c) a further ultrasonic 

treatment of 10 min 

Calculation of porosity of the aligned SWCNT films. The porosity of the SWCNT films is 

calculated by (1 − ρ / ρ0), where ρ and ρ0 are the density of the SWCNTs and SWCNT films, 

respectively. The apparent densities of the SWCNT films are obtained by the weighing method 

and combined with the density of SWCNTs (~1.5 g cm-3). Herein, the porosity of the aligned 

SWCNT films with an apparent density of ~0.6 g cm-3 can be calculated with a value of 60%. 
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Fig. S3 Pressure drop of the aligned SWCNT films in comparison to the commercial N95 

masks. The much lower pressure drop of the SWCNT films shows the good air permeability 

 

Fig. S4 Optical images of the printed SWCNT film (left) and the SWCNT film doped with 

magnetic Fe3O4 (right) attracted by a magnet, showing the capability of integrating other 

functional materials 
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Fig. S5 2D SAXS/WAXS patterns and azimuthal-integrated intensity distribution curves of 

SWCNT films. (a) SAXS patterns and (b) WAXS patterns of aligned SWCNT films; (c) SAXS 

patterns and (d) WAXS patterns of random SWCNT films; (e) azimuthal-integrated intensity 

distribution curves from SAXS and (f) WAXS patterns of aligned SWCNT and random 

SWCNT films 

 

Fig. S6 (a) The simulating models of SWCNTs with diameters of 1.085 nm (8,8) and 1.6272nm 

(12,12). (b) The lattice thermal conductivities of SWCNTs from our simulations and references. 

(c) The phonon dispersion of the SWCNT (8,8) with diameter of 1.085 nm 
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Fig. S7 (a) Schematic of the thermal conductivity measurement apparatus. (b) Schematic of the 

thermal conductivity measurement. (c) Comparison of thermal conductivity results obtained 

with and without leakage correction. (d) Comparison of measured thermal conductivity results 

of some pure metal metals (copper, aluminum and silver) and their theoretical values 
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Fig. S8 Typical stress-strain curves of freestanding SWCNT films in (a) parallel and (b) 

perpendicular directions. (c-f) SEM images of the microstructures of the as-prepared SWCNT 

film’s fracture surface measured from parallel direction 

 

Fig. S9 Characterizations of random network SWCNT Buckypaper. (a) Side-view SEM image, 

showing a typical thickness of 60 µm. (b) In-plane SEM image of the Buckypaper, showing 

random network of SWCNTs. (b) Typical tensile stress-strain curve. (d) I-V curve 
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Fig. S10 Demonstrations of the aligned SWCNT film as a flexible electrical conductor before 

and after mechanical deformations including bending, twisting, and kneading, and ohmic 

resistance change of an SWCNT film during the 10000-cycle bending measurement. These 

show the stability and reliability of the SWCNT films for ultraflexible electronics. The cycle 

bending treatment was performed at a bending speed of 3 mm s-1 and a bending angle of around 

30° 
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Fig. S11 Theoretically calculated EMI SE based on the conductivity of a homogeneous shield 

with various thicknesses 

 

Fig. S12 Optical images of the aligned SWCNT films after immersion for 15 days in (a) 

concentrated hydrochloric acid (37%), (b) sodium hydroxide (1M), and (c) acetone 

 

Fig. S13 Optical images of the aligned SWCNT films in liquid nitrogen (-196 ℃), showing the 

stability and mechanical flexibility of the aligned SWCNT films under extremely low 

temperature conditions 
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Fig. S14 Thermal gravimetric analysis of SWCNTs in (a) nitrogen, and (b) air from room 

temperature to 900 ℃ 

 

Fig. S15 Storage and loss modulus of the aligned SWCNT films in a wide range of temperature, 

showing the stability of the SWCNTs in low/high temperature conditions 

Table S1 Comprehensive properties comparison of various EMI shielding materials 

Materials 
Tensile strength 

(MPa) 

Thermal conductivity 

(W m-1K-1) 
Refs. 

Aligned SWCNT film 169 398 This work 

Graphene film 145 190 [S14] 

Graphene/PI film 128 142 [S14] 

Al-foil 120 217 [S15, S16] 

Ti3C2Tx-MXene film 22 2.84 [S17, S18] 

90wt%-Ti3C2Tx 
MXene/SA 

50 ＜2.84 [S17, S18] 

16wt%-rGO/PI 11.4 ＜20 [S19, S20] 
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Table S2 EMI shielding performance of various shielding materials 

Materials 
EMI SE 

(dB) 

Thickness 

(mm) 

SE/d 

(dB mm-1) 

SSE 

(dB·cm2 g-1) 

Carbon-based porous and solid shields  
 

Aligned Cellular SWCNT film 

(This work) 

38.54 0.0015 25 693 428 222 

43.11 0.0035 12 317 205 286 

54.43 0.008 6 804 113 395 

~90 0.024 3 750 62 500 

Random network SWCNT 

buckypaepr (this work) 
45 0.06 7500 25000 

SWCNT/MWCNT buckypaper 

[S21] 
65 0.13 500 6098 

MWCNT buckyaper [S22] 43 0.13 330.8 5803 

SWCNT nanopaper [S22] 57 ~0.05 1140 12667 

MWCNT nanopaper [S22] 30 ~0.05 600 10909 

MWCNT/PLA foam [S23] 23 2.5 9.2 308 

MWCNT/PVDF foam [S24] 57 2 28.5 380 

MWCNT/WPU foam [S25] 
23.0 2.3 10 4991 

21.1 1 21.1 5410 

MWCNT/cellulose aerogel 

[S26] 
20-35 2.5 8-14 1700-3776 

CNT sponge [S27] 22 2.38 9.2 4622 

Cellulose aerogel coated with 

MWCNT [S26] 
35-40 2.5 1416 1864-2078 

Graphene foam based PDMS 

foam [S28] 
30 1 30 ~5000 

Graphene foam/CNT/PDMS 

[S29] 
75 2 37.5 4165 

Graphene-coated PU foam [S30] 19.9 20 ~1 3320 

Graphene foam coated with 

PEDOT:PSS [S31] 
69.1 1.5 46.1 20837 

Graphene based composite 

aerogel [S32] 
37 3 12.3 1762 

Sponged-supported RGO 

aerogel [S33] 
24 12 2 1198 

CNT/multi-layered graphene 

foam [S34] 
~38 1.6 23.8 ~40000 

Graphene/cellulose-derived 

carbon foam [S35] 
47.8 5.0 9.6 33780 

Graphene/WPU [S36] 32 2 16 153 

CNF/PS foam [S37] 19 / / / 

CNT/PS foam [S38] 19 / / / 

Graphene/PVDF foam [S39] 28 / / / 

Graphene/PMMA foam [S40] 19 2.4 7.9 100 

Graphene/PS foam [S41] 29 2.5 11.6 258 

Graphene /PEI foam [S42] 9-12.8 2.3 3.9-5.6 135‒192 

Graphene/lignin-derived carbon 

aerogels [S43] 

23.2 2 11.6 46400 

14.3 1 14.3 57200 

Graphene aerogel [S44] 22.3 2 11.15 24778 

Carbon/Graphene foam [S45] 24 0.024 1000 13889 

Graphene foam [S46] 25.2 0.3 84 14000 

Graphene@Fe3O4/PEI foam 

[S46] 
15-18 2.5 6-7.2 

 

150‒176 

CF/PP foam [S47] 25 3.1 8.1 109 

Stainless-steel fiber/PP foam 

[S48] 
48 3.1 15.5 242 

Phthalonitrile-based carbon 51.2 2 25.6 1707 
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foam [S49] 

Commercial carbon foam [S50] 
40 

 
2 20 1250 

Carbon foam-CNT/carbon 

fiber foam [S51] 
21 5.0 4.2 3370 

SWCNT/cellulose film [S52] ~35 0.0315 1111.1 7678 

MWCNT/cellulose film [S53] ~20 0.0308 649.4 4205 

SWCNT(long)/epoxy [S53] 25 2 12.5 72 

SWCNT(annealed)/epoxy [S53] 21 2 12 60 

SWCNT(short)/epoxy [S53] 16 2 8 46 

SWCNT/epoxy [S54] 15-49 2 7.5-24.5 43-141 

SWCNT/PU [S55] 18 2 9 80 

CF mat [S56] 23 0.06 383.3 / 

Ni/CF mat [S56] 29 0.06 483.3 / 

Fe3O4/CNF mat [S57] 68 0.7 97.1 / 

CNF mat [S58] 
81.1 4.6 17.6 804.3 

52.2 2.9 18 1361.6 

MWCNT/PTT [S59] 22 2 11 / 

MWCNT/PP [S60] 
24 2.8 8.6 95 

35 1.0 35 / 

CNF sponge/Epoxy [S61] 40 2 20 / 

MWCNT/ABS [S62] 50 1.1 45.5 433 

Carbon black (CB)/ABS [S62] 22 1.1 20 190 

Carbon nanofiber (CNF)/ABS 

[S62] 
35 1.1 31.8 / 

MWCNT/WPU [S63] 24-50 0.05-0.32 480 3408 

MWCNT/PC [S64] 25 1.85 13.5  

MWCNT/PS [S65] 60 2 30 285 

Graphene/CNA [S66] 58.4 2.0 29.2 / 

CB/EPDM [S67] 18 5.5 3.27 / 

CVD graphene paper [S68] 62 0.05 1200 18300 

Pristine graphene/PI film [S14] 43.8 0.01 4380 28627 

Pristine graphene film [S14] 

60.2 0.025 2408 16161 

38.1 0.004 9525 63926 

44.5 0.008 5563 37332 

Flexible Graphite [S69] 110 0.2 550 500 

MXene-based porous and solid shields 

MXene/CNF aerogel [S70] 
74.56 2.0 37.3 46600 

28.41 1 28.4 189400 

MXene (Ti3C2Tx) foam [S71] 
32 0.006 5333.3 137000 

70 0.06 1166.7 53030 

MXene aerogel [S72] 61.2 2 30.6 49520 

MXene/CNT aerogel [S73] 104 42 3 2476 

MXene-POSS-NH2 aerogel 

[S74] 
34.5 / 2 / 

MXene/PVA aerogel [S75] 28 10.8 5 2586 

MXene/SA film [S76] 57 0.008 7125 30830 

MXene film [S76] 68 0.011 6182 25863 

MXene/cellulose film [S77] 
24 0.047 510.6 2647 

25 0.0167 1497 1326 

MXene@PS solids [S78] 62 2 31 29.5 

MXene/RGO-epoxy solids 

[S79] 
56.4 2 28.2 / 

MXene film (blade coated)[S80] 46.1 0.00094 49043 ~120 000 

Metal-based porous and solid shields 
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Cu wrapped  polymer nanofiber 

based porous membrane [S81] 

44.71 0.0012 37258 232860 

53.2 0.0025 21280 133000 

Ag wrapped polymer nanofiber 

based porous membrane [S81] 
55.13 0.0025 22052 111939 

Cu wrapped PVDF fiber based 

porous membranes [S81] 
43.05 0.008 5381 28854 

CuNi foam [S82] 15-25 1.5 10-16.7 420‒690 

CuNi-CNT foam [S82] 40-54.6 1.5 26.7-36.4 116‒1580 

Porous cellulose papers coated 

with Ag NWs [S83] 
48.6 0.164 296 5584 

AgNW/CNF [S84] 
70.5 2 35.2 56854 

30.3 1 30.3 178235 

AgNW/polymer 

Aerogels [S85] 
36.4-72.5 2.3 15.8-31.5 11420-20522 

Ag NWs/PI foam [S86] 17-23.5 5 3.2-4.7 2136 -1544 

Ag NWs/WPU foam [S87] 20.0-64.0 2.3 8.7-27.8 10970-6184 

Ag NW@C hybrid sponge [S88] 
37.9 1 37.9 99214 

70.1 3 23.4 61169 

Cu NWs aerogels [S89] ~17 9.46 1.8 / 

Cu NW@ graphene 

aerogels [S89] 
52.5 9.46 8.1 3921.8 

Al foil [S75] 66 0.008 8250 30555 

Cu foil [S75] 70 0.010 7000 7812 

CA/AgNW/PU Film [S90] 31.2 / / / 

PP/PDA/AgNPs/PDMS [S91] 71.2 1.5 47.5 1804.7 

AgNW aerogel/PDMS ~60 4 15 / 

PPy/PDA/AgNW [S92] 48.4 ＞0.095 ＜509.5 ＜1819.5 

Copper [S93] 90 3.1 29 32 

Nickel [S93] 82 /   

Stainless steel [S93] 89 4 22.3 28 

(2 m) Ni fibers/PES [S93] 58 2.85 20.4 109 

(20 m) Ni fibers/PES [S93] 4 2.85 1.4  

Ni filaments/PES [S93] ~87 2.85 30.5 165 

Aluminium flakes/PES [S94] 35-39 2.92 12-13.4 / 

Ag NW/PANI [S95] 48 0.0133 3609 28872 

Ag NW/epoxy [S96] 25.09 0.040 627 5018 

Ag NP/epoxy [S97] 5.06 0.040 126.5 1012 

Ag NW/PVA [S96] 30.1 0.040 752.5 6691 

Ni-Co alloy nanoparticle-coated 

PAN-PU [S97] 
68 0.18 377.7 640 

Ag NW/graphene [S98] 26 0.03 867 / 

Ag NW/PS [S99] 31.85 0.8 39.8 379 

Cu NW/PS [S100] 35 0.21 166.7 158.7 

/: unclear or uncalculated value; the numbers in the square brackets denote the numbers of 

references which are at the end of the supporting information. 
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