Supporting Information for

Inner Co Synergizing Outer Ru Supported on Carbon Nanotubes for Efficient pH-Universal Hydrogen Evolution Catalysis

Jian Chen¹, Yuan Ha², Ruirui Wang³, Yanxia Liu¹, Hongbin Xu³, Bin Shang⁴, *, Renbing Wu³, *, and Hongge Pan^{1, 5, *}

¹Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, P. R. China

²School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China.

³ Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

⁴State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, P. R. China.

⁵State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

*Corresponding authors. E-mail: <u>bshang@wtu.edu.cn</u> (Bin Shang); <u>rbwu@fudan.edu.cn</u> (Renbing Wu); <u>honggepan@zju.edu.cn</u> (Hongge Pan)

Supplementary Figures and Tables

Fig. S1 TEM images of ZIF-67@Lys precursor

Fig. S2 a–c FESEM and d–f TEM images of Co@CNTs composites

Fig. S3 TEM images of products obtained by directly pyrolyzing ZIF-67 without the introduction of Lys

Fig. S4 a–c FESEM images of Co@CNTs|Ru composites. **d–h** HAADF-STEM images and corresponding EDX elemental mappings of selective area of Co@CNTs|Ru composites

Fig. S5 XRD patterns of Co@CNTs|Ru composites with different Ru contents

Fig. S6 TEM images of Co@CNTs|Ru composite with different Ru contents

Fig. S7 a XPS survey spectra of Co@CNTs|Ru composites; b high-resolution XPS spectra of N 1s

Fig. S8 Co K-edge a XANES and b EXAFS spectra of Co@CNTs|Ru and the reference samples

Fig. S9 N₂ sorption isotherm and desorption isotherms of Co@CNTs|Ru composites. The inset showing the pore size distribution of Co@CNTs|Ru composites

Fig. S10 LSV curves of Co@CNTs|Ru with different Ru contents in 1.0 M KOH solution

Fig. S11 CV curves for **a** Co@CNTs, **b** CNTs, **c** CNTs|Ru and **d** Pt/C electrocatalysts at different scan rates of 20, 40, 60, 80, and 100 mV s^{-1}

Fig. S12 a Polarization curves of 10 wt% Ru/C in N₂-saturated 1.0 M KOH solution with scan rate of 5 mV s⁻¹; **b** C_{dl} values (inset: CV curves for Ru/C electrocatalysts at different scan rates: 20, 40, 60, 80, and 100 mV s⁻¹); **c** mass activities and **d** specific activities of 10 wt% Ru/C (Inset showing the mass and the specific activities at different overpotentials of 10, 20, and 30 mV)

As shown in Fig. S12, the mass activity of 10 wt% Ru/C catalyst is around 103 mA mg⁻¹, which is much lower than that of Co@CNTs|Ru catalyst (3706 mA mg⁻¹) at an overpotential of 10 mV. The specific activity of Ru/C is 0.004 mA cm⁻², which is also far smaller than that of Co@CNTs|Ru (0.37 mA cm⁻²) at an overpotential of 10 mV.

Fig. S13 XRD patterns of Co@CNTs|Ru catalyst before and after long-term durability test in 1.0 M KOH solution

Fig. S14 TEM images of Co@CNTs|Ru after long-term durability test in 1.0 M KOH solution

Fig. S15 High-resolution XPS spectra of **a** Co 2p and **b** Ru 3p in Co@CNTs|Ru after long-term durability test in 1.0 M KOH solution

Fig. S16 TOF values of Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and Pt/C catalysts at 10, 100, and 200 mV in 1.0 M KOH solution

Fig. S17 EIS spectra for Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and Pt/C electrocatalysts in **a** 0.5 M H₂SO₄ and **b** 1.0 M PBS solution (inset: the equivalent circuit for EIS)

Fig. S18 Polarization curves of Co@CNTs|Ru catalyst before and after 5000 cycles of CV test in **a** 0.5 M H₂SO₄ and **b** 1.0 M PBS solution (Inset showing the *i*-*t* curves of Co@CNTs|Ru for 50 h)

Fig. S19 TOF per surface metal site of Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and Pt/C catalysts in **a** 0.5 M H₂SO₄ and **b** 1.0 M PBS electrolytes

Fig. S20 Atomistic structures of the Co@CNTs in HER process

Fig. S21 Calculated charge density difference of CNTs|Ru

Fig. S22 Calculated charge density difference of Co@CNTs

Fig. S23 Chronopotentiometry test of Co@CNTs|Ru || Co@CNTs|Ru electrolyzer at 10 mA cm⁻²

Table S1 Co and Ru contents analysis by different methods for Co@CNTs and Co@CNTs|Ru composites

Elementereter	Co@CNTs	Co@C	NTs Ru
Element content	Со	Со	Ru
XPS (wt.%)	20.69 %	21.57 %	0.97 %
ICP-AES (wt.%)	25.64 %	25.90 %	1.04 %

Three different techniques (i.e., XPS and ICP-AES) were employed to study the Co and Ru content in both catalysts with and without the introduction of Ru.

Table S2 Comparison of the electrocatalytic activity for HER in 1.0 M KOH solution with other active electrocatalysts

Catalysts	η@10 mA cm ⁻² (mV)	Ru content (%)	Refs.
Co@CNTs Ru	10	1.04 wt%	This work
Ru-NC-700	12	2.04 wt%	[S1]
Ru/OMSNNC	13	1.0 wt%	[S2]
CoRu@Co ₄ N	13	—	[S3]
Ru NCs/BNG	14	75.9 wt%	[S4]
Ru/3DNPC-500	15	7.53 wt%	[S5]
Ru@MWCNT	17	12.8 wt%	[S6]
Ru@C ₂ N	17	28.7 wt%	[S7]
0.27-RuO ₂ @C	20	—	[S8]
4H/fcc Ru NTs	23	—	[S9]
Ru@NC	26	2.0 wt%	[S10]
RuCo@NC	28	3.58 wt%	[S11]
Ni@Ni ₂ P-Ru	31	—	[S12]
Ru ₁ Ni ₁ -NCNFs	35	28.2 wt%	[S13]
Ru-NGC	37	6.55 wt%	[S14]
CN _x @Ru/MWCNT	39	8.0 wt%	[S15]
CoRu@NC	45	2.04 wt%	[S16]
ah-RuO ₂ @C	63	_	[S17]
RuP _x @NPC	74	—	[S18]
$Ru/C_3N_4/C$	79	_	[S19]

Table S3 EIS calculation parameters of Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and 20% Pt/C electrode for HER in 1.0 M KOH solution

Sample	$\mathbf{R}_{s}\left(\Omega ight)$	Error (%)	$\mathbf{R}_{\mathrm{ct}}\left(\Omega\right)$	Error (%)	CPE	Error (%)
Co@CNTs	9.22	0.79828	72.66	2.6038	0.796	1.0529
Co@CNTs Ru	8.76	0.65447	24.51	1.72	0.925	0.425
CNTs	8.89	0.7032	96.38	1.2254	0.861	0.4421
CNTs Ru	8.62	1.0246	81.77	2.11	0.948	0.61498
20% Pt/C	9.10	0.9002	17.91	0.72575	0.582	0.10836

Table S4 Comparison of TOFs achieved by recently reported representative HER catalysts at 100 mV overpotential in 1.0 M KOH solution

Catalysts	Tafel (mV dec ⁻¹)	TOF (S^{-1})	Refs.
Co@CNTs	119.7	1.48	This work
Co@CNTs Ru	37.8	7.40	This work
CNTs	225.3	0.583	This work
CNTs Ru	62.1	2.10	This work
Pt/C	45.3	4.27	This work
Co-NiS ₂ NSs	43	0.55	Angew. Chem. Int. Ed., 2019 , 58, 18676
CoP/Ni ₅ P ₄ /CoP	43	1.22	Energy Environ. Sci., 2018, 11, 2246
Ni ₅ P ₄ pellet	98	0.79	Energy Environ. Sci., 2018, 11, 2246
Ni ₂ P pellet	118	0.04	Energy Environ. Sci., 2018, 11, 2246
Ni ₂ P	80	3.6	Energy Environ. Sci., 2018, 11, 2246
NiMo NPs	132	0.05	J. Am. Chem. Soc., 2013, 135, 9267
np-Cu ₅₃ Ru ₄₇	35	1.139	ACS Energy Lett., 2020, 5, 192
Ru@GnP	30	0.145	Adv. Mater., 2018, 30, 1803676
RhO ₂ clusters	30	4.2	Adv. Mater., 2020, 32, 1908521
Ru-NBC	36.19	1.12	Appl. Catal. B Environ., 2021, 285, 1197
Ru/OMSNNC	40.41	5.9	Adv. Mater., 2021, 33, 2006965
RuNi/CQDs	45	5.03	Angew. Chem. Int. Ed., 2020 , 59, 1718
Ru/Co@OG	22.8	6.2	Angew.Chem., 2021 , 133, 16180
HP-Ru/C	29	5.33	Appl. Catal. B Environ., 2021, 294, 1202
P-Ru-CoNi	69	3.1	Small, 2022 , 18, 2104323
Sr_2RuO_4	51	0.9	Nat. Commun., 2019, 10, 149
NiCo ₂ Px	34.4	0.056	Adv. Mater., 2017, 29, 1605502
Ni-MoS ₂	60	0.08	Energy Environ. Sci., 2016 , 9, 2789

Table S5 Comparison of the electrocatalytic activity for HER in $0.5 \text{ M H}_2\text{SO}_4$ solution with other active electrocatalysts

Catalysts	η@10 mA cm ⁻² (mV)	Ru content (%)	Refs.
Co@CNTs Ru	32	1.04 wt%	This work
Ru-GLC	35	62.0 wt%	[S19]
RuP ₂ @NPC	38	23.3 wt%	[S20]
Ru ₀ /TiO ₂	41	1.20 wt%	[S21]
Ru/CeO ₂	47	—	[S22]
NiRu@N-C	50	1.86 wt%	[S23]
Ni@Ni ₂ P-Ru	51	_	[S12]
Ru/NG-750	53	_	[S24]
RuNi/CQDs	58	1.42 wt%	[S25]
Ru-RuO ₂ /CNT	63	20.4 wt%	[S26]
s-RuS ₂ /S-rGO	69	_	[S27]
$Ru/C_3N_4/C$	70	_	[S28]
Ni-doped RuO ₂	78	_	[S28]
W+Ru/C	85	5.6 μg cm ⁻²	[S29]
Te@Ru	86	_	[S30]
1D-RuO ₂ -CNx	93	—	[S31]
Ru/MoS ₂ /CP	96	_	[S 32]

Ni@Ni ₂ P-Ru	99	_	[S12]
Ru@CN	126	3.18 wt%	[S33]
Cu _{2-x} S@Ru NPs	129	_	[S34]

Table S6 Comparison of the electrocatalytic activity for HER in 1.0 M PBS solution with other active electrocatalysts

Catalysts	η@10 mA cm ⁻² (mV)	Ru content (%)	Refs.
Co@CNTs Ru	63	1.04 wt%	This work
Ru-Ni ₂ P/NF	65	—	[S35]
Ru/3DNCN	66	29 wt%	[S36]
Ru@SC-CDs	66	_	[S37]
RuCo@CD	67	7.82 wt%	[S38]
Ru/OMSNNC	70	1.0 wt%	[S2]
3D RuCu NCs	73	—	[S39]
RuP NPs	80	21.4 wt%	[S40]
RuSA–N-Ti ₃ C ₂ Tx	81	1.1 wt%	[S41]
CuRu/CB	91	—	[S42]
Ru@CN-0.16	100	3.18 wt%	[S43]
Ru-NiFeP/NF	105	0.6 wt%	[S44]
$RuP_x@NPC$	110	_	[S45]
Ru-MoS ₂ /CC	114	0.27 wt%	[S46]
h-RuSe ₂	119	—	[S47]
RuNi@CN-700	143	0.1219 wt%	[S48]
Ru-S-Sb/antimonene	153	18.2 wt%	[S49]
Rh50Ru50@UiO-66-NH2	177	—	[S50]
Ru/C-2	188	2.34 wt%	[S51]
RuP ₂ @NC	196	3.85 wt%	[S52]

Tabl S7 EIS calculation parameters of Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and Pt/C electrocatalysts for HER in 0.5 M H₂SO₄

Sample	$\mathbf{R}_{s}\left(\Omega\right)$	Error (%)	$R_{ct}(\Omega)$	Error (%)	CPE	Error (%)
Co@CNTs	8.73	0.6244	76.08	1.4934	0.7877	1.6646
Co@CNTs Ru	7.082	0.7186	51.46	0.9938	0.9236	1.5938
CNTs	9.20	0.698	107.92	1.027	0.9872	2.2234
CNTs Ru	8.14	0.8274	79.95	1.2531	0.7005	1.942
20% Pt/C	7.62	0.665	53.55	0.8876	0.6894	1.36

Table S8 EIS calculation parameters of Co@CNTs, Co@CNTs|Ru, CNTs, CNTs|Ru and Pt/C electrocatalysts for HER 1.0 M PBS solution

Sample	$\mathbf{R}_{s}\left(\Omega\right)$	Error (%)	$R_{ct}(\Omega)$	Error (%)	CPE	Error (%)
Co@CNTs	37.11	1.9357	120.74	2.0772	0.962	1.0246
Co@CNTs Ru	39.0	1.4733	90.28	1.9376	1.053	1.0529
CNTs	45.6	2.3241	402.16	3.40	0.738	1.5547
CNTs Ru	40.23	2.0231	362.09	2.9002	1.509	1.72
20% Pt/C	35.07	1.5622	494.55	2.88	0.869	0.79828

Table S9 Comparison of TOFs achieved by recently reported representative HER catalysts at 100 mV overpotential in $0.5 \text{ M H}_2\text{SO}_4$ solution

Catalysts	Tafel (mVdec ⁻¹)	TOF (S ⁻¹)	Refs.
Co@CNTs	107	0.288	This work
Co@CNTs Ru	41.6	11.76	This work
CNTs	112	0.178	This work
CNTs Ru	89.17	1.352	This work
Pt/C	47.1	10.013	This work
CoP/Ni ₅ P ₄ /CoP	45	1.22	Energy Environ. Sci., 2018 , 11, 2246–2252

Ni@Ni ₂ P-Ru	35	1.1	J. Am. Chem. Soc., 2018 , 140, 2731–2734
Ni ₅ P ₄ pellet	33	3.5	Energy Environ. Sci., 2015 , 8, 1027–1034
Ni ₂ P pellet	38	0.015	Energy Environ. Sci., 2015, 8, 1027–1034
PtRu/RFCS-6h	27.2	4.03	Energy Environ. Sci., 2018, 11, 1232–1239
Ru@RFCS	60.5	0.215	Energy Environ. Sci., 2018 , 11, 1232–1239
PtRu/RFCS	46	0.375	Energy Environ. Sci., 2018, 11, 1232–1239
Ru-NBC-1	42.84	1.27	Appl. Catal. B Environ., 2021, 285, 1197
NiCo ₂ PX	59.6	0.021	Adv. Mater., 2017, 29, 1605502
$[Mo_3S_{13}]^{2}$	40	1	Nat. Chem., 2014, 6, 248–253
$MoS_{2(1-x)}P_x$	57	0.83	Adv. Mater., 2015, 28, 1427
Te@Ru-0.6/C	36	0.82	Chem. Commun., 2019 , 55, 1490–1493
Ru/C	97	0.036	Chem. Commun., 2019, 55, 1490–1493
Ru/NG	44	0.35	ACS Appl. Mater. Interfaces, 2017, 9, 4,
			3785–3791

Table S10 Comparison of TOFs achieved by recently reported representative HER catalys	sts at
100 mV overpotential in 1.0 PBS solution	

Catalysts	Tafel (mV dec ⁻¹)	TOF (S ⁻¹)	Refs.
Co@CNTs	153.1	0.52946	This work
Co@CNTs Ru	64.3	2.37076	This work
CNTs	203	0.33603	This work
CNTs Ru	94.2	1.09241	This work
Pt/C	77.5	1.359	This work
$Ru_{0.05}@MoS_2$	151	0.51	Appl. Catal. B Environ., 2021, 298, 120490
$Ru_{0.10}@MoS_2$	164	0.48	Appl. Catal. B Environ., 2021, 298, 120490
$Ru_{0.12}@MoS_2$	81.1	0.42	Appl. Catal. B Environ., 2021, 298, 120490
Ru/D-NPC	112.4	0.052	Appl. Catal. B Environ., 2022, 306, 121095
h-RuSe ₂	139	0.17	Angew. Chem., 2021 ,133, 7089–7093
RPC@RPC	41	1.1	Appl. Catal. B Environ., 2022, 305, 1210
Ru-RuO ₂ /C ₃ N ₄	92	0.033	Nano Energy, 2020 , 76, 10507
Co-Fe-P	138	0.0013	Nano Energy, 2018 , 56, 225
tubular CoP	77.35	0.08	Int. J. Hydrog. Energy, 2022 , 47, 181
RuCo@HCSs	59	1.24	ACS Sustainable Chem. Eng., 2019, 7, 18744
Ru@HCSs	62	0.78	ACS Sustainable Chem. Eng., 2019, 7, 18744
FeMoS ₄	128	0.1	Chem. Commun., 2017 , 53, 9000
RuCo@NC	133	0.44	Electrochimi. Acta, 2019 , 327, 134985
NiCo ₂ P _x	63	0.05	Adv. Mater., 2017, 29, 1605502

Supplementary References

- [S1] B.Z. Lu, L. Guo, F. Wu, Y. Peng, J.E. Lu et al., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10, 631 (2019). <u>https://doi.org/10.1038/s41467-019-08419-3</u>
- [S2] Y.L.Wu, X.F. Li, Y.S. Wei, Z.M. Fu, W.B. Wei et al., Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 33(12), 2006965 (2021). <u>https://doi.org/10.1002/adma.202006965</u>
- [S3] M.L. Zhang, J.L. Wang, Y.Q. Zhang, L. Ye, Y.Q. Gong, Ultrafine CoRu alloy nanoparticles in situ embedded in Co₄N porous nanosheets as high-efficient hydrogen evolution electrocatalysts. Dalton Trans. 50(8), 2973–2980 (2021). <u>https://doi.org/10.1039/D0DT04248J</u>
- [S4] S.H. Ye, F.Y. Luo, T.T. Xu, P.Y. Zhang, H.D. Shi et al., Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy **68**, 104301 (2020).

https://doi.org/10.1016/j.nanoen.2019.104301

- [S5] Y.L. Cao, H.P. Zhang, K.K. Liu, Q.Y. Zhang, K.J. Chen, Biowaste-derived bimetallic Ru-MoO_x catalyst for the direct hydrogenation of furfural to tetrahydrofurfuryl alcohol. ACS Sustain. Chem. Eng. 7(15), 12858–12866 (2019). <u>https://doi.org/10.1021/acssuschemeng.9b01765</u>
- [S6] D.H. Kweon, M.S. Okyay, S.J. Kim, J.P. Jeon, H.J. Noh et al., Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 11,1278 (2020). <u>https://doi.org/10.1038/s41467-020-15069-3</u>
- [S7] J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pHuniversal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). <u>https://doi.org/10.1038/nnano.2016.304</u>
- [S8] H.S. Park, J.C. Yang, M.K. Cho, Y.D. Lee, S.H. Cho et al., RuO₂ nanocluster as a 4in-1 electrocatalyst for hydrogen and oxygen electrochemistry. Nano Energy 55, 49– 58 (2019). <u>https://doi.org/10.1016/j.nanoen.2018.10.017</u>
- [S9] Q.P. Lu, A.L. Wang, H.F. Cheng, Y. Gong, Q.B. Yun et al., Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14(30), 1801090 (2018). <u>https://doi.org/10.1002/sml1.201801090</u>
- [S10] Z.L. Wang, K.J. Sun, J. Henzie, X.F. Hao, C.L. Li et al., Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angew. Chem. Int. Ed. 57(20),5848–5852 (2018). <u>https://doi.org/10.1002/anie.201801467</u>
- [S11] J.W. Su, Y. Yang, G.L. Xia, J.T. Chen, P. Jiang et al., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017). https://doi.org/10.1038/ncomms14969
- [S12] Y. Liu, S.L. Liu, Y. Wang, Q.H. Zhang, L. Gu et al., Ru modulation effects in the synthesis of unique rod-like Ni@Ni₂P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 140(8), 2731– 2734 (2018). <u>https://doi.org/10.1021/jacs.7b12615</u>
- [S13] M.X. Li, H.Y. Wang, W.D. Zhu, W.M. Li, C. Wang et al., RuNi nanoparticles embedded in n-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv. Sci. 7(2), 1901833 (2020). https://doi.org/10.1002/advs.201901833
- [S14] Q. Song, X.Z. Qiao, L.Z. Liu, Z.J. Xue, C.H. Huang et al., Ruthenium@N-doped graphite carbon derived from carbon foam for efficient hydrogen evolution reaction. Chem. Commun. 55(7), 965–968 (2019). <u>https://doi.org/10.1039/C8CC09624D</u>
- [S15] W.Y. Gou, J.Y. Li, W. Gao, Z.M. Xia, S. Zhang et al., Downshifted d-band center of Ru/MWCNTs by turbostratic carbon nitride for efficient and robust hydrogen evolution in alkali. Chemcatchem 11(7), 1970–1976 (2019). <u>https://doi.org/10.1002/cctc.201900006</u>
- [S16] Y. Xu, Y.H. Li, S.L. Yin, H.J. Yu, H.R. Xue et al., Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 29(22), 225403 (2018). <u>https://doi.org/10.1088/1361-6528/aab6c1</u>
- [S17] J.Q. Chi, W.K. Gao, J.H. Lin, B. Dong, K.L. Yan et al., Hydrogen evolution activity

of ruthenium phosphides encapsulated in nitrogen- and phosphorous-co doped hollow carbon nanospheres. ChemSuschem **11**(4), 743–752 (2018). <u>https://doi.org/10.1002/cssc.201702010</u>

- [S18] Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, Y. Han et al., High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138(49), 16174–16181 (2016). <u>https://doi.org/10.1021/jacs.6b11291</u>
- [S19] Z. Chen, J.F. Lu, Y.J. Ai, Y.F. Ji, T. Adschiri et al., Ruthenium/graphene-like layered carbon composite as an efficient hydrogen evolution reaction electrocatalyst. ACS Appl. Mater. Interfaces 8(51), 35132–35137 (2016). <u>https://doi.org/10.1021/acsami.6b09331</u>
- [S20] Z.H. Pu, I.S. Amiinu, Z.K. Kou, W.Q. Li, S.C. Mu, RuP₂-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56(38), 11559–11564 (2017). <u>https://doi.org/10.1002/anie.201704911</u>
- [S21] E. Demir, S. Akbayrak, A.M. Önal, S. Özkar, Titania, zirconia and hafnia supported ruthenium (0) nanoparticles: highly active hydrogen evolution catalysts. J. Colloid Interface Sci. 531, 570–577 (2018). <u>https://doi.org/10.1016/j.jcis.2018.07.085</u>
- [S22] T.T. Liu, S. Wang, Q.J. Zhang, L. Chen, W.H. Hu et al., Ultrasmall Ru₂P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 54, 3343–3346 (2018). <u>https://doi.org/10.1039/C8CC01166D</u>
- [S23] Y. Xu, S.L. Yin, C.J. Li, K. Deng, H.R. Xue et al., Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 6(4), 1376– 1381 (2018). <u>https://doi.org/10.1039/C7TA09939H</u>
- [S24] R.Q. Ye, Y.Y. Liu, Z.W. Peng, T. Wang, A.S. Jalilov et al., High performance electrocatalytic reaction of hydrogen and oxygen on ruthenium nanoclusters. ACS Appl. Mater. Interfaces 9(4), 3785–3791 (2017). <u>https://doi.org/10.1021/acsami.6b15725</u>
- [S25] Y. Liu, X. Li, Q.H. Zhang, W.D. Li, Y. Xie et al., A general route to prepare lowruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59(4), 1718–1726 (2020). <u>https://doi.org/10.1002/anie.201913910</u>
- [S26] M.T. Zhang, J.X. Chen, H. Li, P.W. Cai, Y. Li et al., Ru-RuO₂/CNT hybrids as highactivity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy 61, 576–583 (2019). <u>https://doi.org/10.1016/j.nanoen.2019.04.050</u>
- [S27] J. Yu, Y.N. Guo, S.S. Miao, M. Ni, W. Zhou et al., Spherical ruthenium disulfidesulfur-doped graphene composite as an efficient hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 10(40), 34098–34107 (2018). <u>https://doi.org/10.1021/acsami.8b08239</u>
- [S28] J. Wang, Y.J. Ji, R.G. Yin, Y.Y. Li, Q. Shao et al., Transition metal-doped ultrathin RuO₂ networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 7(11), 6411–6416 (2019). <u>https://doi.org/10.1039/C9TA00598F</u>
- [S29] U. Joshi, S. Malkhandi, Y. Ren, T.L. Tan, S.Y. Chiam et al., Ruthenium-tungsten

composite catalyst for the efficient and contamination-resistant electrochemical evolution of hydrogen. ACS Appl. Mater. Interfaces **10**(7), 6354–6360 (2018). <u>https://doi.org/10.1021/acsami.7b17970</u>

- [S30] X.D. Yang, Z.X. Zhao, X. Yu, L.G. Feng, Electrochemical hydrogen evolution reaction boosted by constructing Ru nanoparticles assembled as a shell over semimetal Te nanorod surfaces in acid electrolyte. Chem. Commun. 55(10), 1490–1493 (2019). <u>https://doi.org/10.1039/C8CC09993F</u>
- [S31] T. Bhowmik, M.K. Kundu, S. Barman, Growth of one-dimensional RuO₂ nanowires on g-carbon nitride: an active and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions at all pH values. ACS Appl. Mater. Interfaces 8(42), 28678–28688 (2016). <u>https://doi.org/10.1021/acsami.6b10436</u>
- [S32] J.L. Liu, Y. Zheng, D.D. Zhu, A. Vasileff, T. Ling et al., Identification of pHdependent synergy on Ru/MoS₂ interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale 9(43), 16616–16621 (2017). https://doi.org/10.1039/C7NR06111K
- [S33] J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). <u>https://doi.org/10.1039/C7EE03345A</u>
- [S34] D.H. Yoon, J.Y. Lee, B. Seo, B.Y. Kim, H. Baik et al., Cactus-like hollow Cu₂₋ _xS@Ru nanoplates as excellent and robust electrocatalysts for the alkaline hydrogen evolution reaction. Small 13(29), 1700052 (2017). <u>https://doi.org/10.1002/smll.201700052</u>
- [S35] C.B. Wei, X.M. Fan, X. Deng, L.Z. Ma, X. Zhang et al., Ruthenium doped Ni₂P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Energy Fuels 4(4), 1883–1890 (2020). <u>https://doi.org/10.1039/D0SE00010H</u>
- [S36] H. Li, M.T. Zhang, L.C. Yi, Y.J. Liu, K. Chen et al., Ultrafine Ru nanoparticles confined in 3D nitrogen-doped porous carbon nanosheet networks for alkali-acid Zn-H₂ hybrid battery. Appl. Catal. B 280, 119412 (2021). https://doi.org/10.1016/j.apcatb.2020.119412
- [S37] Y. Liu, Y.P. Yang, Z.K. Peng, Z.Y. Liu, Z.M. Chen et al., Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy 65, 104023 (2019). <u>https://doi.org/10.1016/j.nanoen.2019.104023</u>
- [S38] T.L. Feng, G.T. Yu, S.Y. Tao, S.J. Zhu, R.Q. Ku et al., A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J Mater. Chem. A 8(19), 9638–9645 (2020). <u>https://doi.org/10.1039/D0TA02496A</u>
- [S39] D. Cao, J.Y. Wang, H.X. Xu, D.J. Cheng, Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 16(37), 2000924 (2020). <u>https://doi.org/10.1002/sml1.202000924</u>
- [S40] J. Yu, Y.N. Guo, S.X. She, S.S. Miao, M. Ni et al., Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 30(39), 1800047 (2018). <u>https://doi.org/10.1002/adma.201800047</u>
- [S41] H.G. Liu, Z. Hu, Q.L. Liu, P. Sun, Y.F. Wang et al., Single-atom Ru anchored in

nitrogen-doped MXene ($Ti_3C_2T_x$) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A **8**(46), 24710–24717 (2020). <u>https://doi.org/10.1039/D0TA09538A</u>

- [S42] J.K. Zhao, T. Pan, J.K. Sun, H.T. Gao, J.X. Guo, Cu-Ru nanoalloys on carbon black for efficient production of hydrogen in neutral and alkaline conditions. Mater. Lett. 262, 127041 (2020). <u>https://doi.org/10.1016/j.matlet.2019.127041</u>
- [S43] J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). <u>https://doi.org/10.1039/C7EE03345A</u>
- [S44] Y. Lin, M.L. Zhang, L.X. Zhao, L.M. Wang, D.L. Cao et al., Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 536, 147952 (2021). <u>https://doi.org/10.1016/j.apsusc.2020.147952</u>
- [S45] J.Q. Chi, W.K. Gao, J.H. Lin, B. Dong, K.L. Yan et al., Hydrogen evolution activity of ruthenium phosphides encapsulated in nitrogen-and phosphorous-Co doped hollow carbon nanospheres. ChemSusChem 11(4), 11743–752 (2018). <u>https://doi.org/10.1002/cssc.201702010</u>
- [S46] D. Wang, Q. Li, C. Han, Z.C. Xing, X.R. Yang, Single-atom ruthenium based catalyst for enhanced hydrogen evolution. Appl. Catal. B 249, 24991–24997 (2019). <u>https://doi.org/10.1016/j.apcatb.2019.02.059</u>
- [S47] Y.M. Zhao, H.J. Cong, P. Li, D. Wu, S.L. Chen et al., Hexagonal RuSe₂ nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem. Int. Ed. 133(13), 7089–7093 (2021). <u>https://doi.org/10.1002/ange.202016207</u>
- [S48] W. Wang, J.Q. Peng, L.H. Yang, Q.L. Liu, Y.F. Wang et al., Preparation of highly dispersed Ru-Ni alloy nanoparticles on an N-doped carbon layer (RuNi@CN) and its application as a catalyst for the hydrogen evolution reaction in alkaline solution. Int. J. Electrochem. Sci. 15, 11769–11778 (2020). <u>https://doi.org/10.20964/2020.12.63</u>
- [S49] Y. Li, J.X. Chen, J.H. Huang, Y. Hou, L.C. Lei et al., Interfacial engineering of Ru-S-Sb/antimonene electrocatalysts for highly efficient electrolytic hydrogen generation in neutral electrolyte. Chemcomm 55(73), 10884–10887 (2019). <u>https://doi.org/10.1039/C9CC05522C</u>
- [S50] Z.Q. Ding, K. Wang, Z.Q. Mai, G.Q. He, Z. Liu et al., RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values. Int. J. Hydrogen Energy 44(45), 24680–24689 (2019). <u>https://doi.org/10.1016/j.ijhydene.2019.07.244</u>
- [S51] H.X. Shi, L.B. Liu, Y.D. Shi, F. Liao, Y.Z. Li et al., Silicon monoxide assisted synthesis of Ru modified carbon nanocomposites as high mass activity electrocatalysts for hydrogen evolution. Int. J. Hydrogen Energy 44(23), 11817–11823 (2019). <u>https://doi.org/10.1016/j.ijhydene.2019.03.042</u>
- [S52] B.Y. Guo, X.Y. Zhang, J.Y. Xie, Y.H. Shan, R.Y. Fan et al., Ultrafine RuP₂ nanoparticles supported on nitrogen-doped carbon based on coordination effect for efficient hydrogen evolution. Int. J. Hydrogen Energy 46(11), 7964–7973 (2021). <u>https://doi.org/10.1016/j.ijhydene.2020.12.021</u>