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Revisiting the Role of Physical Confinement 
and Chemical Regulation of 3D Hosts 
for Dendrite‑Free Li Metal Anode

Shufen Ye1, Xingjia Chen1, Rui Zhang2, Yu Jiang3, Fanyang Huang1, Huijuan Huang1, 
Yu Yao1, Shuhong Jiao1, Xiang Chen4, Qiang Zhang4 *, Yan Yu1,5 *

HIGHLIGHTS

• The two-dimensional nanoarray with excellent physical confinement is more promising to facilitate uniform  Li+ flow and electric 
field.

• Li3N with superior chemical regulation provides nucleation sites, accelerates the replenishment of consumed  Li+, and achieves 
dendrite-free morphology.

• The synergistic effect of physical confinement and chemical regulation achieves superior electrochemical performance at high current 
density and areal capacity.

ABSTRACT Lithium metal anode has been demonstrated as the most 
promising anode for lithium batteries because of its high theoretical 
capacity, but infinite volume change and dendritic growth during Li 
electrodeposition have prevented its practical applications. Both physi-
cal morphology confinement and chemical adsorption/diffusion regula-
tion are two crucial approaches to designing lithiophilic materials to 
alleviate dendrite of Li metal anode. However, their roles in suppress-
ing dendrite growth for long-life Li anode are not fully understood yet. 
Herein, three different Ni-based nanosheet arrays (NiO-NS,  Ni3N-NS, 
and  Ni5P4-NS) on carbon cloth as proof-of-concept lithiophilic frame-
works are proposed for Li metal anodes. The two-dimensional nanoar-
ray is more promising to facilitate uniform  Li+ flow and electric field. 
Compared with the NiO-NS and the  Ni5P4-NS, the  Ni3N-NS on carbon 
cloth after reacting with molten Li (Li-Ni/Li3N-NS@CC) can afford the strongest adsorption to  Li+ and the most rapid  Li+ diffusion 
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path. Therefore, the Li-Ni/Li3N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance 
(60 mA  cm−2 and 60 mAh  cm−2 for 1000 h). Furthermore, a remarkable full battery  (LiFePO4||Li-Ni/Li3N-NS@CC) reaches 300 cycles 
at 2C. This research provides valuable insight into designing dendrite-free alkali metal batteries.

KEYWORDS Li metal anodes; 3D carbon framework; Ni-based nanosheets; Physical morphology confinement; Chemical adsorption/
diffusion regulation

1 Introduction

Given the lightweight (0.534  g   cm−3), high theoretical 
capacity (3860 mAh   g−1), and ultralow redox potential 
(− 3.040 V versus standard hydrogen electrode) of Li metal, 
Li metal batteries (e.g., Li–S and Li–CO2 batteries) with 
low cost can realize extremely high theoretical energy den-
sity for satisfying the targets of future electric vehicles [1]. 
However, the application of lithium metal anode (LMA) is 
still grievously obstructed by unmanageable dendrite growth 
and infinite volume fluctuation, giving rise to the unavoid-
able side reaction, low Coulombic efficiency (CE), and even 
safety risks [2–6].

Some progress has been made to alleviate infinite volume 
expansion and form the dendrite-free LMA during cycling, 
such as adjusting the electrolyte formulations [7–15], con-
structing an artificial interface layer on LMA [16–19], and 
designing solid-state electrolytes [20–24]. Although these 
strategies can prevent the Li dendrite growth to some degree, 
the dramatical electrode volume change generated by “host-
less” Li plating/stripping still prevails and will destroy the 
solid electrolyte interface (SEI), which ineluctably facilitates 
dendrite growth and exacerbates the depletion of Li metal, 
especially at high current densities and cycling capacities 
[25–27]. The three-dimensional (3D) framework can reform 
the traditional nucleation and growth mode at the source, 
which not only can accommodate the large volume change 
but also can control the nucleation of  Li+ to obtain stable Li 
deposition and growth [28–31]. The 3D carbon frameworks 
with lightweight, flexibility, and abundant voids are the 
better option compared with widely investigated 3D metal 
foams. However, considering the inferior lithiophilicity of 
carbon-based skeletons, they are unattractive for manipulat-
ing Li nucleation and continuous Li growth to achieve high 
areal capacity and the long-cycle performance of LMA.

Inspired by selective Li nucleation/growth through het-
erogeneous seeds presented by Cui’s group [32], various 
lithiophilic materials (such as oxides [33–35], nitrides [36, 
37], and phosphides [38, 39]) have been embedded into 

carbon frameworks to reduce the overpotential of Li nuclea-
tion and regulate uniform Li nucleation/growth. Besides, 
some lithiophilic compounds can react with molten Li to 
produce Li-based compounds (like,  Li3N,  Li2O, and  Li3P) 
and metal, which facilitates the Li-ion transfer kinetics 
(e.g.,  Li+ conductivity ≈  10−3 S  cm−1 for  Li3N), and elec-
tron conduction [40–42]. Meanwhile, different morpholo-
gies of lithiophilic materials have been designed on the 
carbon matrix, like, zero-dimensional (0D) nanoparticles 
[43–46], one-dimensional (1D) nanowires [47–49], two-
dimensional (2D) nanosheets [33, 50, 51], etc. For example, 
Manthiram et al. [52] prepared the 0D  Mo2N nanoparticles-
modified carbon nanofiber (CNF) framework as a Li host, 
which operated over 1500 h at 6 mA  cm−2/6 mAh  cm−2. 
Wen et al. combined 1D  Cu3P nanowires with Cu foil as 
a 3D Li host, working stably over 450 h at 2 mA  cm−2/2 
mAh  cm−2 [38]. Yang et al. [33] reported that 2D MnZnO 
nanosheets/CNF infused with molten Li maintained 40 h at 
50 mA  cm−2 and 10 mAh  cm−2. Nevertheless, the modified 
Li anodes with high areal capacities (> 10 mAh  cm−2) can 
only be performed (< 1000 h) at limited current densities 
(< 10 mA  cm−2) [53–55]. Therefore, a rational design of 
lithiophilic material remains unclear for protecting Li metal 
anode toward practical application (especially at ultrahigh 
current density and areal capacity).

In this contribution, we synthesize three different Ni-
based nanosheets (NiO-NS,  Ni3N-NS, and  Ni5P4-NS) on 
carbon cloth as the proof-of-concept lithiophilic frame-
work to demonstrate the effect of physical morphology 
confinement and chemical adsorption/diffusion regulation. 
Finite element method (FEM) simulation confirms that 
compared with 0D nanoparticles and 1D nanowires, the 
carbon framework covered with 2D nanosheets provides 
promising physical confinement, homogenizing  Li+ flow, 
and lowering activation overpotential. Density functional 
theory (DFT) calculations reveal that  Li3N shows the low-
est ion diffusion energy barrier and the strongest adsorp-
tion energy toward  Li+ in comparison with  Li2O and  Li3P. 
 Li3N with superior chemical regulation provides nucleation 
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sites, accelerates the replenishment of consumed lithium 
ions, and achieves dendrite-free morphology. Benefiting 
from the guidance of theoretical simulations, the  Ni3N 
nanosheet  (Ni3N-NS) on carbon cloth after infiltrating 
with molten Li (denoted as Li-Ni/Li3N-NS@CC) delivers 
low overpotential (~ 34 mV) and outstanding long-cycle 
performance (a lifespan of 1000 h at a current density of 
60 mA  cm−2 and a capacity of 60 mAh  cm−2) in symmetri-
cal batteries. Moreover, the full battery (Li-Ni/Li3N-NS@
CC||LiFePO4) shows an average CE of 99.8% and remark-
able capacity retention (93.9% after 300 cycles at 2C) with 
a mass loading as high as 9.0 mg  cm−2.

2  Experiment Section

2.1  Synthesis of Ni‑Precursor‑NS@CC

Firstly, carbon cloth was annealed at 600 °C for 1 h in a 
muffle furnace. Secondly, 0.03 mol  NiCl2·6H2O, 0.15 mol 
urea, and 0.06 mol  NH4F were dissolved in 30 mL of deion-
ized water and thoroughly mixed under magnetic stirring. 
The solution was then transferred into a 50 mL Teflon-
lined stainless-steel autoclave and as-prepared carbon cloth 
was put into the solution. Then the autoclave was heated 
at 120 °C for 4 h. After heating, the sample was washed 
with anhydrous ethanol and deionized water. Finally, the 
sample was treated by vacuum drying at 60 °C to obtain 
Ni-precursor-NS@CC.

2.2  Synthesis of Ni‑Based Nanosheet Decorated on CC

The Ni-precursor-NS@CC was further heated in a muffle 
furnace at 400 °C for 1 h to obtain NiO-NS@CC. The Ni-
precursor-NS@CC was annealed at 350 °C for 2 h in  NH3 
gas to obtain  Ni3N-NS@CC. The Ni-precursor-NS@CC 
and excess sodium hypophosphite  (NaH2PO2·H2O) were 
separately placed in downstream and upstream of the tube 
furnace, respectively, and heated at 350 °C for 2 h under Ar 
atmosphere to obtain  Ni5P4-NS@CC. The weight ratio of 
 NaH2PO2·H2O and Ni-precursor-NS@CC was fixed at 10:1.

2.3  Fabrication of Composite Li Metal Anodes

A facile molten infusion method at 400 °C was applied to 
immerse molten Li into NiO-NS@CC,  Ni3N-NS@CC, and 
 Ni5P4-NS@CC to obtain Li-Ni/Li2O-NS@CC, Li-Ni/Li3N-
NS@CC, Li-Ni/Li3P-NS@CC, respectively. Li@CC electrode 
was obtained by immersing the carbon cloth after annealing at 
600 °C into molten lithium. The whole process was operated in 
an Ar-filled glove box  (H2O < 0.1 ppm;  O2 < 0.1 ppm).

2.4  Materials Characterization

The morphologies were characterized using tungsten filament 
scanning electron microscopy (SEM, JEOL, JSM-6360LA, 
CIQTEK-SEM3100). Phase structures of all samples were 
characterized by employing x-ray diffraction (XRD, Rigaku, 
TTR-III) with a Cu Kα radiation (λ = 0.15418 nm). The easily 
oxidized samples for XRD measurements were sealed in the 
Kapton film to avoid oxidation. The atomic force microscopy 
(AFM) images of metal anodes were detected by AFM in the 
glovebox (Bruker).

2.5  Electrochemical Measurements

CR2032-type coin cells were assembled in an Ar-filled glove 
box  (H2O < 0.1 ppm;  O2 < 0.1 ppm). Li symmetrical batteries 
were assembled with two Li foils or two composite Li metal 
electrodes with a diameter of 10 mm. In symmetrical batteries 
and Li-Cu batteries, 1.0 M lithium bistrifluoro-methanesulfo-
nylimide (LiTFSI) in 1,3-Dioxolane (DOL) and Methoxym-
ethane (DME) (volume ratio 1:1) with 1% lithium nitrate was 
employed as the electrolyte. For consistency, the amount of 
the electrolyte for all batteries was approximately 80 μL. The 
 LiFePO4 (LFP) was employed as cathode while the fabricated 
composite Li metal electrode or pure Li foil was used as the 
anode in a full battery. The cathode diameter was 12 mm. The 
ratio of LFP, Super P and binder is 8:1:1. The electrolyte solu-
tion used in LFP full battery was 1.0 M  LiPF6 in ethylene car-
bonate (EC)/diethyl carbonate (DEC) (volume ratio 1:1) with 
5.0 wt% fluoroethylene carbonate (FEC) additive. The amount 
of electrolyte is fixed at 40 μL. All batteries use microporous 
polypropylene film (Celgard, 2400) as the separator.
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2.6  Electrochemical Measurements

To evaluate the CE in half cells, a certain capacity of Li 
was deposited on the working electrode, and then Li was 
stripped until the voltage rose to 1 V. The LFP full batteries 
were charge/discharge cycled between 2.4 and 4.2 V. Tafel 
plots and electrochemical impedance spectroscopy (EIS) 
test were performed through an electrochemical worksta-
tion (CHI 660D, Chenhua Instrument Company, Shanghai, 
China). The frequency range of EIS was 10 mHz–100 kHz, 
while the perturbation amplitude was 5 mV (versus the open 
circuit potential). The electrochemical performances of sym-
metrical cells and full batteries were measured using Neware 
testing instrument (BTS-610).

2.7  Computational Methods

All first-principles calculations were carried out based on 
the spin-polarized DFT framework by utilizing the Vienna 
Ab initio Simulation Package (VASP) 5.4.4 package [56, 
57]. The projector-augmented wave pseudopotential [58, 
59] was utilized to treat the core electrons, while the Per-
dew–Burke–Ernzerhof (PBE) exchange–correlation func-
tional of the generalized gradient approximation (GGA) 
[60] was used for describing the electron interactions. The 
electronic wave functions were expanded on a plane-wave 
basis set with a kinetic energy cutoff of 500 eV. The con-
vergence criterion for the electronic self-consistent cycle is 
fixed at 1 ×  10−5 eV. The Brillouin zone is sampled with 
a 0.03 × 2π Å−1 spaced Γ-centered k-point grid with the 
Monkhorst–Pack scheme [61]. The structures of crystal 
 Li2O,  Li3N, and  Li3P adopt the symmetry group of Fm-3 m 
(No. 225), P6/mmm (No. 191), and P63/mmc (No. 194), 
respectively, according to the experimental characteriza-
tion results, which were further optimized with the force 
convergence criteria of 0.01 eV Å−1. To determine the opti-
mal adsorption configurations of these secondary products 
toward  Li+, slab models of 3 × 3 supercell for  Li2O (111), 
3 × 3 supercell for  Li3N (001), 1 × 3 supercell for  Li3P (101) 
containing 81, 72, 72 atoms were built, respectively. For the 
nickel model, a four-layer 4 × 4 × 1 supercell including 64 
atoms in total was considered. Adsorption of lithium on 5 × 5 
graphene was calculated for comparison. A vacuum space 
of 15 Å along the z-direction was included to avoid inter-
actions between the periodic images. The atomic positions 

of the bottom half layers in slab models were fixed to their 
optimal bulk positions and the remaining atoms were fully 
relaxed until the maximum force on each atom was less than 
0.03 eV Å−1 during optimization. The DFT-D3 method of 
Grimme was applied to better describe the van der Waals 
interactions [62]. The adsorption energies ( E

ads
 ) of Li on 

different surfaces were calculated by the following equation:

where E
total

 , E
surf

 and E
Li

 are energies of the Li/surface, 
the pristine surface, and a Li atom in the lithium crystal, 
respectively.

The differential charge density distribution was drawn 
with an isosurface value of 0.002  e−/bohr3. The yellow sur-
face corresponds to charge accumulation and the blue one 
corresponds to charge depletion. Li-ion migration energy 
barrier calculations were performed with the climbing image 
nudged-elastic band (CI-NEB) method [63].

2.8  Finite Element Simulation

FEM was employed to investigate the distribution of Li-ion 
concentration and electric potential in with 2D nanosheets 
1D nanowires, or 0D nanoparticles electrodes based on 
COMSOL Multiphysics 5.5 platform with the physical mod-
ule “Tertiary Current Distribution, Nernst-Planck”.

A three-dimensional domain with a size of 
4.0 × 8.0 × 8.0 μm3 is introduced. The surface of the current 
collector of the 2D nanosheets, 1D nanoarray nanowires and 
0D nanoparticles model consists of sheet-like, wire-like and 
ball-like protrusions, respectively. 2D- and 1D-based types 
of protrusions have the same protrusion height (3.0 μm) 
and distribution density. A constant current density of 
5.0 mA  cm−2 is applied in these galvanostatic models. The 
diffusion coefficient of Li ions is set as 1.5 ×  10−10  m2  s−1. 
The initial concentration of Li ions is set as 1 M.

3  Results and Discussion

3.1  Physical Morphology Confinement Analysis

In order to reveal the effect of morphologies on the physical 
confinement of lithium deposition, FEM simulation is car-
ried out to compare the  Li+ concentration, electrolyte elec-
tric potential, and current line distributions near carbon cloth 

(1)E
ads

= E
total

− E
surf

− E
Li
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covered with 2D nanosheets (Fig. 1a), 1D nanowires (Fig. 1b), 
and 0D nanoparticles (Fig. 1c). In case of the same deposition 
time,  Li+ will be deposited more uniformly on the carbon 
skeleton with 2D nanosheets than that of the carbon skeleton 
with 1D nanowires and 0D nanoparticles, as shown in Fig. 1d. 
Especially, even after 1200 s of deposition, the concentration 
of  Li+ nearly remains the same near the surface of the carbon 
skeleton coated with the 2D nanosheets, realizing dendrite-
free deposition. Conversely, the concentration of  Li+ shows 
a significant change around the carbon skeleton coated with 
the 1D nanowires and 0D nanoparticles, driving the growth 
of dendritic structures. Corresponding electrolyte electric 
potential and current line distribution (Fig. S1) give a further 
intuitive explanation. Considering that the electrode potential 
and the equilibrium potential for Li plating (vs.  Li+/Li) are 
both 0 V, the electrolyte electric potential near the nanoarray/
nanoparticle surface can be considered as the activation over-
potential for Li plating in this model [64–66]. Carbon skeleton 
with 2D nanosheets also shows the smallest activation over-
potential and the most uniform current line distribution than 
those of carbon skeleton with 1D nanowires and 0D nanopar-
ticles, realizing uniform local current density and dendrite-
free morphology for the nanosheet-based framework. Overall, 
FEM simulations show that the design of the 2D nanosheets 
is the most promising approach to inhibiting dendrite growth 
and achieving uniform deposition. With this idea in mind, 
carbon cloth decorated with Ni-based nanosheets after react-
ing with molten Li (Li-Ni/LimX-NS@CC (X = O, N and P)) 
is developed herein.

3.2  Preparation and Characterizations of Li‑Ni/
LimX‑NS@CC Electrodes

The fabrication process of the Li-Ni/LimX-NS@CC anode 
is schematically illustrated in Fig. 2a, mainly containing the 
growth of nanosheets and molten Li infusion. SEM images 
(Fig. S2) show that 2D Ni-precursor nanosheet (Ni-precur-
sor-NS@CC) arrays are grown vertically on carbon cloth 
via a hydrothermal method and the thickness of nanosheets 
(Fig. S3) is about 30 nm. After calcination in air, as exhib-
ited in Fig. S4, three main peaks at 37.24°, 43.24°, and 
62.58° in XRD pattern are related to the (111), (200), and 
(220) planes of crystalline NiO, respectively, and uniform 
NiO nanosheets are distributed on carbon cloth. When the 
annealing atmosphere is  NH3, four crystallization peaks in 

the XRD pattern (Fig. S5a) can be assigned to a hexagonal 
phase with the P6322 space group (PDF#10-0280), indicat-
ing that a pure  Ni3N phase is obtained. The  Ni3N inherits 
the nanosheet morphology of the Ni-precursor. However, 
the nanosheets after sintering display porous microstructures 
(Fig. S5b) owing to the atomic diffusion and grain growth 
at 350 °C [67]. Similarly, after the phosphidation process, 
the  Ni5P4 nanosheets (Fig. S6a) also show porous micro-
structures. All the diffraction peaks (Fig. S6b) except for the 
peak of carbon cloth at 25.8° are correlated to the standard 
hexagonal  Ni5P4 (PDF#18-0883) without any detectable 
crystalline impurity. The thermogravimetric analysis (TGA) 
was performed to evaluate the Ni content (6.49%) in the Ni-
precursor-NS@CC under air atmosphere (Fig. S7). And the 
loading of NiO,  Ni3N and  Ni5P4 is 8.25%, 7.09%, and 8.93%, 
respectively. And Table S1 shows the density and porosity of 
each electrode. Figure 2b–d shows that the nanosheet mor-
phology of three Ni-based compounds remains after reacting 
with molten Li. Molten Li fills the interstice between each 
nanosheet and the void of the carbon cloth framework (Fig. 
S8). After immersing these compounds in molten Li, con-
version reactions take place. Especially, NiO is reduced into 
Ni and  Li2O (Fig. S9). Similarly,  Ni3N is transferred into Ni 
and  Li3N (Fig. S10), and the presence of  Li3N is further con-
firmed by the Raman spectrum with a characteristic peak at 
ca. 580  cm−1 (Fig. S11) [68]. The specific capacity of molten 
Li in the Li-Ni/Li3N-NS@CC is evaluated by galvanostatic 
charging (Fig. S12), which shows the areal capacity of ~ 60 
mAh  cm−2. Figure S13 also shows the strong reducibility of 
molten Li, which can convert  Ni5P4 into  Li3P and Ni metal.

To prove the excellent stability of the Li-Ni/LimX-
NS@CC electrode (taking the Li-Ni/Li3N-NS@CC as 
an example), in situ XRD was performed to observe the 
phase change during the stripping/plating process. The 
in situ XRD patterns (Fig. 2e–f) show that no new phase 
is formed and the peaks of Ni metal do not change dur-
ing the electrochemical deposition and dissolution pro-
cess. The  Li3N peaks are not detected, which should be 
masked by stronger Be peaks. Furthermore, the ex situ 
XRD reveals that the  Li3N phase remains after 20 cycles 
and different stripping capacities (Figs. S14 and S15), 
demonstrating that the  Li3N phase is very stable dur-
ing electrochemical cycles. Therefore, the  LimX phases 
will not change during the electrochemical stripping and 
plating process, which is beneficial for regulating Li 
deposition/dissolution.
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3.3  Chemical Adsorption/Diffusion Regulation Analysis

DFT calculations were further conducted to reveal the 
chemical regulation effect of Ni/LimX on lithium adsorp-
tion and diffusion. The adsorption energies (Figs. 3a–e 

and S16) of a Li atom absorbed on  Li2O,  Li3N,  Li3P, Ni, 
and carbon cloth are 0.712, − 2.26, − 0.178, − 1.257, and 
0.435 eV, respectively. The  Li+ diffusion energy barri-
ers in  Li2O,  Li3N, and  Li3P crystals were also evaluated 
(Figs. 3f–h and S17–S19). The optimized  Li+ diffusion 

Fig. 1  Schematic illustrations of  Li+ plated on the carbon cloth decorated with a 2D nanosheets, b 1D nanowires, and c 0D nanoparticles. d The 
simulated results of  Li+ concentration distribution in the electrolyte near 2D nanosheets, 1D nanowires, and 0D nanoparticles after different Li 
plating times



Nano-Micro Lett.          (2022) 14:187  Page 7 of 17   187 

1 3

paths in  Li2O,  Li3N, and  Li3P crystals are illustrated in 
Fig. 3f–h, and the corresponding diffusion energy barriers 
(Fig. 3i) are estimated to be 0.141, 0.016, and 0.113 eV, 
respectively. Therefore, the difference in the electrochemi-
cal behavior of Ni/LimX nanosheets decorated on carbon 
cloth (schematically shown in Fig. S20) toward Li plating 

is summarized in Fig. 2j–l. Since the adsorption energy of 
 Li3N and Ni to Li atom is larger than that of  Li2O and  Li3P, 
the Li ions are uniformly distributed around the Ni/Li3N 
nanosheets (Fig. 2j). In addition, the high  Li+ conductivity 
in  Li3N is also conducive to achieving the uniform alloca-
tion of  Li+ on the electrode surface [42, 69]. Contrastingly, 

Fig. 2  a Schematic diagram of the fabrication procedure of the Li-Ni/LimX-NS@CC. The SEM images of b the Li-Ni/Li2O-NS@CC, c the 
Li-Ni/Li3N-NS@CC, and d the Li-Ni/Li3P-NS@CC. e In  situ XRD patterns of the Li-Ni/Li3N-NS@CC electrode during the discharge and 
charge process. f Mountain-like peak images of Ni
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 Li2O provides the strongest repulsion to Li atom and the 
lowest  Li+ conductivity, resulting in uneven Li deposi-
tion in the Li-Ni/Li2O-NS@CC electrode (Fig. 2k).  Li3P 
delivers middle  Li+ conductivity and adsorption energy, 
which also leads to rough Li deposition in the Li-Ni/Li3P-
NS@CC electrode (Fig. 2l). Therefore, it is theoretically 
predicted that the Li-Ni/Li3N-NS@CC electrode with high 
ionic conductivity and strong lithiophilicity is beneficial 
to suppressing dendrite growth and stabilizing Li metal 
anodes.

3.4  Electrochemical Performance of the Li‑Ni/
LimX‑NS@CC Electrodes

To examine the electrochemical stability of the Li-Ni/LimX-
NS@CC electrodes, symmetrical batteries are assembled 
using an ether-based electrolyte. Obviously, at the current 
density of 1.0 mA  cm−2 and the capacity of 1.0 mAh  cm−2, 
the Li-Ni/Li3N-NS@CC symmetrical battery displays stable 
and ultralong cycling for 2000 h with an admirable small 
overpotential of 19.4 mV (Fig. S21). In contrast, the pure 

Fig. 3  Adsorption model structure and differential charge density of Li atom on a  Li2O, b  Li3N, c  Li3P, and d Ni. The yellow and cyan regions 
represent electron accumulation and depletion, respectively. e The corresponding adsorption energy of a Li atom on crystal surfaces. The opti-
mized diffusion path through f  Li2O, g  Li3N, and h  Li3P. i The comparison plot of the corresponding energy barrier. Illustrations of the working 
mechanism of j Ni/Li3N, k Ni/Li2O, and l Ni/Li3P for lithium ion deposition
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Li symmetrical battery exhibits sharp voltage fluctuation 
and a high overpotential of 113 mV after 100 h, which can 
be attributed to the unstable SEI layer and continuous side 
reaction [70, 71]. The symmetrical batteries with the Li-Ni/
Li2O-NS@CC and the Li-Ni/Li3P-NS@CC electrode can 
also deliver stable cycling, respectively, but their voltage 
hysteresis (39.9 mV for Li-Ni/Li2O-NS@CC electrode and 
33.4 mV for Li-Ni/Li3P-NS@CC electrode) are relatively 
higher than that of the Li-Ni/Li3N-NS@CC. In addition 
to ether-based electrolytes, the Li-Ni/Li3N-NS@CC sym-
metrical battery can also achieve stable cycling perfor-
mance in carbonate-based electrolytes at 1 mA  cm−2 and 
1 mAh  cm−2 (Fig. S22). Compared with pure Li symmetric 
battery, the smaller overpotential of Li-Ni/Li3N-NS@CC 
symmetric battery in carbonate electrolyte indicates more 
uniform Li stripping/plating on Li-Ni/Li3N-NS@CC elec-
trode. As the current density is increased to 2 mA  cm−2 and 
the areal capacity is raised to 5 mAh  cm−2 (Fig. 4a), the 
Li-Ni/Li3N-NS@CC symmetrical battery still shows a small 
overpotential (~ 21.9 mV) for 1100 h. Conversely, the pure 
Li symmetrical battery exhibits serious voltage oscillation 
after 340 h. The overpotential of the Li-Ni/Li3P-NS@CC 
and the Li-Ni/Li2O-NS@CC symmetrical cells begins to 
increase after cycling for 400 h possibly due to the low  Li+ 
conductivity and unsuitable adsorption energy. The Li@CC 
symmetrical battery (Fig. S23) exhibits short circuit after 
40 h, indicating that both morphology and composition are 
effective for stable Li plating and stripping. Furthermore, the 
symmetric battery with the Li-Ni/Li3N-NS@CC electrode 
displays superior rate performance under increasing current 
densities up to 10 mA  cm−2 with 5 mAh  cm−2 (overpoten-
tial ≈ 80 mV, Fig. 4b), while the symmetrical batteries with 
other electrodes suffer from a short circuit at the low current 
density of 2 mA  cm−2. Figure 4c shows that the symmetri-
cal battery with the Li-Ni/Li3N-NS@CC electrode impres-
sively displays small overpotential and long-term stability 
for 1000 h at ultrahigh current density (60 mA  cm−2) and 
areal capacity (60 mAh  cm−2). Meanwhile, the batteries with 
pure Li show poor cyclability and become short circuit at 
60 mA  cm−2 (~ 10 h for pure Li electrode), indicating den-
drites pierce the separator. Importantly, such an outstand-
ing long-cycle performance (60 mA  cm−2, 60 mAh  cm−2) 
greatly exceeds that of the most published Li metal anodes, 
as shown in Fig. 4d [33, 69, 72–80].

The lowest hysteresis of the Li-Ni/Li3N-NS@CC 
symmetrical cell is mainly ascribed to the excellent 

lithiophilicity, and fast mass migration, which can also 
be affirmed by electrochemical impedance spectroscopy 
measurements (EIS) (Figs. 4e and S24). The SEI resist-
ance (RSEI) and charge transfer resistance (Rct) of the sym-
metric batteries are analyzed using the equivalent circuit 
in Fig. S25. After 20 cycles, the RSEI of the Li-Ni/Li3N-
NS@CC anode maintains the lowest, facilitating fast mass 
migration and dendrite‐free plating/stripping in the Li-Ni/
Li3N-NS@CC electrode [47, 81, 82]. The Rct (Fig. S26) 
of the Li-Ni/Li3N-NS@CC anode still maintains the low-
est value due to the lowest  Li+ diffusion energy barrier of 
 Li3N [83]. Exchange current density (I0) obtained from 
the Tafel plot can reflect charge transfer kinetics between 
the electrode and electrolyte components. Based on Tafel 
plots in Fig. S27, the calculated results (Fig. 4f) show that 
the exchange current density of the Li-Ni/Li3N-NS@CC 
(I0 = 4.59 mA  cm−2) is the largest than that of the Li-Ni/
Li3P-NS@CC (I0 = 3.11  mA   cm−2), the Li-Ni/Li2O-
NS@CC (I0 = 2.59 mA  cm−2) and the pure Li electrode 
(I0 = 0.46 mA  cm−2), demonstrating that the SEI on the 
Li-Ni/Li3N-NS@CC electrode can drastically achieve fast 
 Li+ transfer kinetics. Figures 4g and S28 exhibit the CE 
of various electrodes and typical charge–discharge curves, 
respectively. The CE value for pure Li foil slips sharply 
after 80 cycles, while the battery with the Li-Ni/Li3N-
NS@CC electrode maintains a high CE value (97.6%) for 
over 225 cycles (Fig. 4g). To further prove the superior-
ity of the Li-Ni/Li3N-NS@CC electrode, the CE of the 
Li-Ni/Li3P-NS@CC and the Li-Ni/Li2O-NS@CC elec-
trodes was also investigated, which starts to drop after 
100 cycles for the Li-Ni/Li2O-NS@CC electrode and after 
125 cycles for the Li-Ni/Li3P-NS@CC electrode. Figure 
S28 exhibits that the voltage curves of Li plating/strip-
ping for the second cycle. The voltage hysteresis of the 
Li-Ni/Li3N-NS@CC electrode (26 mV) is much smaller 
than that for the Li-Ni/Li3P-NS@CC electrode (34 mV) 
and Li-Ni/Li2O-NS@CC electrode (57 mV), which can 
be ascribed to the appropriate Li binding energy of  Li3N/
Ni. These results may lead to the ultra-flat deposition of 
Li, further inhibiting the overgrowth of SEI during the 
long-term cycle [3, 84]. Overall, the Li-Ni/Li3N-NS@CC 
electrode affords the advantages of the least resistance, the 
highest exchange current density and the lowest Li voltage 
hysteresis, indicating its great potentiality as Li hosts to 
inhibit Li dendrite formation and improve Li metal battery 
performances.
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3.5  Morphology Evolutions of the Li‑Ni/Li3N‑NS@CC 
Electrode

The morphology evolutions of the Li-Ni/Li3N-NS@CC elec-
trode during the process of stripping/plating under various 

areal capacities are intuitively explored. When 5 mAh  cm−2 
is stripped, a small part of carbon fibers is exposed in the 
Li-Ni/Li3N-NS@CC electrode (Fig. 5a), revealing that the 
stripping process of lithium metal is from top to bottom. 
The surface morphology of carbon fibers (Fig. 5b) shows 

Fig. 4  a Voltage–time profiles of symmetrical batteries with the Li-Ni/Li2O-NS@CC, the Li-Ni/Li3N-NS@CC, the Li-Ni/Li3P-NS@CC, and 
pure Li electrodes at 2 mA  cm−2, 5 mAh  cm−2. b The rate performance of the above electrodes obtained at different current densities, respec-
tively. c The voltage–time profiles of symmetrical batteries with the Li-Ni/Li3N-NS@CC and pure Li electrodes at 60 mA  cm−2, 60 mAh  cm−2. 
d Long-cycle performance comparison of symmetrical battery with the Li-Ni/Li3N-NS@CC electrode and other published works recently. e The 
comparison of RSEI of the above electrodes after cycling. f The comparison of exchanging current density among various samples. g A com-
parison of CE of Li||Cu batteries based on the Li-Ni/Li2O-NS@CC, the Li-Ni/Li3N-NS@CC, the Li-Ni/Li3P-NS@CC and pure Li electrodes at 
1 mA  cm−2, 1 mAh  cm−2 (counter electrode: Cu foil)
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Fig. 5  SEM images of the Li-Ni/Li3N-NS@CC electrode after stripping a, b 5 mAh  cm−2, c, d 10 mAh  cm−2, e, f 20 mAh  cm−2 and replating 
g, h 20 mAh  cm−2. Operando observation of the Li plating on i pure Li and j Li-Ni/Li3N-NS@CC electrode and the scale bar is 100 µm. SEM 
images of k pure Li and l Li-Ni/Li3N-NS@CC electrodes after 20 cycles at 5 mA  cm−2 and 5 mAh  cm−2. AFM images of m pure Li and n the 
Li-Ni/Li3N-NS@CC electrodes after cycling, respectively. Schematic illustration of the Li stripping/plating behavior of o pure Li foil and p the 
Li-Ni/Li3N-NS@CC electrodes
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that the nanosheets are fully infiltrated with Li metal. With 
the stripping capacity increased to 10 mAh  cm−2, more car-
bon fibers are manifested (Fig. 5c–d). When Li stripping 
capacity is further raised to 20 mAh  cm−2, the nanosheet 
array (Fig. 5e–f) becomes evident, indicating the marvelous 
structure stability. The SEM images (Fig. S29) of Li-Ni/
Li2O-NS@CC and Li-Ni/Li3P-NS@CC electrodes after 
stripping 20 mAh  cm−2 exhibit uneven Li exfoliation mor-
phologies, demonstrating  Li3N with high ion conductivity 
is conducive to uniform exfoliation of lithium metal [38]. 
Subsequently, 20 mAh  cm−2 of Li metal is redeposited onto 
the Li-Ni/Li3N-NS@CC electrode, and the smooth and flat 
surface without Li dendrite can be observed (Fig. 5g–h), 
which is assigned to uniform nucleation and fast ion migra-
tion. The stripping/plating process of the Li-Ni/Li3N-NS@
CC is thus schematically illustrated by the insets in Fig. 5b, 
d, f, h. Furthermore, the in situ process of  Li+ plating in the 
Li-Ni/Li3N-NS@CC and pure Li electrodes was recorded by 
operando optical microscopy. For pure Li electrodes, small 
Li dendrites start to grow on the surface of the pure Li elec-
trode after only 5 min (Fig. 5i). After plating for 30 min, 
the Li dendrites are overflowed at the sides of the pure Li 
electrode. While the surface of the Li-Ni/Li3N-NS@CC 
electrode remains smooth and dendrite-free morphology is 
discerned during the whole deposition process (Fig. 5j). In 
Fig. 5k, dendritic Li materializes on pure Li electrode after 
20 plating/stripping cycles at 5 mA  cm−2 with a specific 
capacity of 5 mAh  cm−2. Contrastingly, the smooth top-view 
morphology of the Li-Ni/Li3N-NS@CC electrode is sus-
tained when tested under the same condition (Fig. 5l). AFM 
image shows that the top surface (Fig. 5m) of pure Li is 
rough, while the Li-Ni/Li3N-NS@CC electrode (Fig. 5n) has 
a smooth and uniform surface. Figure 5o–p schematically 
summarize the  Li+ deposition/dissolution behavior of pure 
Li foil and the Li-Ni/Li3N-NS@CC electrodes, respectively. 
The Li-Ni/Li3N-NS@CC electrode with uniform  Li+ flow, 
fast ion transfer kinetics of  Li3N, and abundant lithiophilic 
sites displays uniform lithium stripping/plating on the car-
bon fibers and dendrite-free morphology. Contrastingly, for 
pure Li electrodes,  Li+ prefers to deposit in pits and  Li+ 
localized deposition drives massive Li dendrite growth, 
impeding the cyclic stability of LMA.

3.6  Applicability of the Li‑Ni/Li3N‑NS@CC Electrode 
in Full Battery

To highlight the applicability of the Li-Ni/Li3N-NS@CC 
electrode, the cyclic stability (Fig. 6a) of full batteries cou-
pled with  LiFePO4 (LFP) cathode was conducted at 2C (1 
C = 170 mA  g−1). It is noted that the mass loading of LFP is 
about 9 mg  cm−2 and the fixed amount of electrolyte used in 
each cell is 40 µL. Significantly, Li-Ni/Li3N-NS@CC||LFP 
battery demonstrates stable cycling performance with 93.9% 
retention after 300 cycles, which exceeds that of the pure 
Li||LFP battery (decaying rapidly after 60 cycles). Porous 
Li dendrite (Fig. S30a) is observed on pure Li foil after 
40 cycles in full battery, while a compact and smooth Li 
(Fig. S30b) strips/plats on Li-Ni/Li3N-NS@CC electrode. 
The typical voltage profile (Fig. S31) of the Li-Ni/Li3N-
NS@CC||LFP battery shows a smaller polarization voltage 
(460 mV) during the 10th cycle than that (787 mV) of the 
pure Li||LFP battery. Figure 6b displays that the Rct value 
(133 Ω) of the Li-Ni/Li3N-NS@CC||LFP battery is lower 
than that (271 Ω) of the pure Li||LFP battery, illustrating 
fast  Li+ migration in the Li-Ni/Li3N-NS@CC electrode. 
Moreover, the Li-Ni/Li3N-NS@CC||LFP battery reveals a 
better rate capability than that of the pure Li||LFP battery 
(Fig. 6c). Specifically, the discharge capacities of the Li-Ni/
Li3N-NS@CC||LFP battery are 161, 158, 156, 151, and 142 
mAh  g−1 at 0.1, 0.3, 0.5, 1, and 2 C respectively, higher than 
those of pure Li||LFP (155, 151, 148, 141, and 115 mAh  g−1, 
shown in Fig. 6d–e). These results indicate that Li-Ni/Li3N-
NS@CC electrode enables Li metal batteries with signifi-
cantly enhanced cyclic stability and rate performance. 

4  Conclusions

Physical morphology confinement and chemical adsorp-
tion/diffusion regulation have been proposed to optimize 
Ni-based compounds decorated carbon cloth as the host 
for Li metal anodes. Finite element simulations prove that 
compared with 1D nanowires and 0D nanoparticles, the 2D 
nanosheets deliver the best physical morphology confine-
ment effect. Furthermore, DFT calculations and in/ex situ 
experimental results demonstrate that  Li3N with the strong-
est adsorption energy and the lowest diffusion energy bar-
rier can facilitate the uniform  Li+ flux and manipulate the 
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uniform  Li+ nucleation. As a result, the Li-Ni/Li3N-NS@CC 
electrode can realize uniform  Li+ nucleation and a long lifes-
pan (1000 h) at 60 mA  cm−2/60 mAh  cm−2 with a dendrite-
free morphology. Moreover, the full battery paired with the 
Li-Ni/Li3N-NS@CC electrode displays better cycle stability 
than the full battery with a pure Li anode. The emphasis of 
this work is on optimizing Ni-based lithiophilic compounds 
for protecting Li metal anode. The combined experimental 
and computational approach used in this work is also exten-
sively appropriate to exploit other lithiophilic compounds 
for LMA systems.
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