Supporting Information for

Construction of Ultrathin Layered MXene-TiN Heterostructure Enabling Favorable Catalytic Ability for High-Areal-Capacity Lithium-Sulfur Batteries

Hao Wang¹, Zhe Cui¹, Shu-Ang He¹, Jinqi Zhu¹, Wei Luo^{1, *}, Qian Liu² and Rujia Zou^{1, *}

¹ State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

² Department of Physics, College of Science, Donghua University, Shanghai 201620, P. R. China

*Corresponding authors. E-mail: <u>rjzou@dhu.edu.cn</u> (Rujia Zou), <u>wluo@dhu.edu.cn</u> (Wei Luo)

Supplementary Figures and Tables

Fig. S1 (a) SEM image of multi-layer MXene. (b) TEM image of few-layer MXene

Fig. S2 (a) SEM images of MF spheres, (b) SEM, (c) TEM and (d) HRTEM images of MF@MX

Fig. S3 The mean zeta potential of MF, MXene and MF@MX

Fig. S4 Raman spectrum of $Ti_3C_2T_x$ MXene

Fig. S5 (a-d) SEM images of MX-TiN spheres at different magnifications

Fig. S6 (**a**, **b**) TEM images of MX-TiN at different magnifications. (**c**) HRTEM image of the layered structure at the edge of MX-TiN sphere

Fig. S7 (a) XRD patterns of samples annealing under NH_3 for different time. (b) The comparison of TiN (200) peak during annealing process

Fig. S8 (a, b) SEM images of MX-TiN-2h (2 hours' annealing at Ar/NH_3) at different magnifications

Fig. S9 After annealing at Ar/NH₃ for 2 h, the XRD patterns show the single phase of TiN

Fig. S10 (a, b) SEM images of S/MX-TiN different magnifications

Fig. S11 XRD patterns of (a) S/MX-TiN composite and (b) S/MX-TiO₂ composite

Fig. S12 SEM image of S/MX-TiN composite and the corresponding elemental mapping of Ti, C, N, and S elements

Fig. S13 The XRD patterns of MX-TiO₂ correspond to the anatase phase (PDF#99-0008) and rutile phase (PDF#99-0090), respectively

Fig. S14 (a, b) SEM images of MX-TiO₂ at different magnifications. TiO₂ nanoparticles with a diameter of 20-40 nm can be clearly observed

Fig. S15 (**a**, **b**) TEM images of MX-TiO₂ at different magnifications. (**c**) HRTEM image of MX-TiO₂. HRTEM also confirmed that the crystal phase of MX-TiO₂ is a mixture of anatase and rutile, which corresponds to the XRD

Fig. S16 Raman spectroscopy for the as-synthesized of MX-TiN and MX-TiN-2h (single phase TiN)

Nano-Micro Letters

Fig. S17 XPS survey spectrum of MX-TiN

Fig. S18 Optimized configurations of different LiPS species (Li_2S_8 , Li_2S_6 , Li_2S_4 , Li_2S_2 , and Li_2S) on MX-TiN and pure $Ti_3C_2T_x$ MXene

Fig. S19 The Li_2S precipitation test of MX-TiN, MX-TiN -2h (single phase TiN) and MXene electrodes to evaluate the catalytic ability

Fig. S20 SEM images showing Li₂S deposition on (**a**) MX-TiN, (**c**) MX-TiO₂ and (**d**) MXene electrodes, (**b**) EDS mapping of Li₂S nucleation on MX-TiN electrode

Fig. S21 Potentiostatic charge profile of Li_2S decomposition on (a) MX-TiN, (b) MX-TiO₂, and (c) MXene

Fig. S22 Digital photo of S/MX-TiN cathodes at different potentials encapsulated in glass

Fig. S23 CV curves with different scan rates of (**a**) MX-TiO₂, (**c**) MXene cathodes at different scan rates. Corresponding I- $v^{0.5}$ linear fitting of (**c**) MX-TiO2 and (**d**) MXene cathodes

Fig. S24 Lithium-ion diffusion coefficient (D_{Li}^+) of S/MX-TiN, S/MX-TiO₂ and S/MXene cathodes

Randles-Sevcik equation, $I = 2.686 \times 10^5 n^{1.5} A D_{Li}^+ C v^{0.5}$

Where *F* is the faraday-constant ($F = 96500 \text{ Cmol}^{-1}$), *n* stands for the number of transferred electrons, *T* represents the degree Kelvin (K) of testing environment, *R* is universal gas constant ($R = 8.314 \text{ J} \pmod{K}^{-1}$), *A* is the area of electrode (cm⁻²), *C* represents the concentration of shuttle ion (mol cm⁻³, it is 1 for Li⁺), D_{Li}^{+} is the diffusion coefficient of Li⁺ and *v* is the scanning rate (mV s⁻¹). The diffusion coefficient of Li⁺ is easily to be work out according to the fitting slopes of *I* and $v^{0.5}$.

Fig. S25 Galvanostatic discharge-charge profiles of Li-S batteries with (**a**) S/MX-TiN, (**b**) S/MX-TiO₂ and (**c**) S/MXene cathodes at different current densities.

Fig. S26 Galvanostatic discharge-charge profiles of Li-S batteries with (**a**) S/MX-TiN, (**b**) S/MX-TiO₂ and (**c**) S/MXene cathodes at 0.2 C during different cycles

Fig. S27 Galvanostatic discharge-charge performance of pure MX-TiN without sulfur loading. Specific capacity of pure MX-TiN of (**a**) 0.2C and (**b**) 5C over a voltage range of 1.7 -2.8 V. ($1C = 1672 \text{ mA g}^{-1}$)

Nano-Micro Letters

Fig. S28 CV profiles of pure MX-TiN over a voltage range of 1.7 -2.8 V at different scan rates

Fig. S29 (a) EIS of fresh cells with different cathodes, (b) corresponding equivalent circuit

Fig. S30 (**a**₁, **a**₂) SEM of fresh lithium metal, SEM images of corresponding lithium surface for (**b**₁, **b**₂) S/MXene (**c**₁, **c**₂) S/MX-TiO₂ and (**d**₁, **d**₂) S/MX-TiN cells after 50 cycles

Fig. S31 SEM images for (a) S/MXene, (b) S/MX-TiO₂ and (c) S/MX-TiN cathodes after 50 cycles

Fig. S33 Discharge-charge profiles of S/MX-TiN with a sulfur loading of 5.15 mg cm⁻² with the E/S ratio of 11.61 μ L mg⁻¹

Table SI Atomic ratio of MIA-TIN	Table S1	Atomic	ratio	of MX-TiN
----------------------------------	----------	--------	-------	-----------

Sample	Method	Ti	Ν	С	0	Ti/N
MV TN	EDS	24.93	11.87	42.78	20.41	2.10
IVIA-TIIN	XPS	23.22	11.50	27.90	37.79	2.02

Note that elements C and O are susceptible to environmental factors, so only the atomic ratio of Ti to N is considered. (The background of EDS test is conductive carbon paper, thus the content of C element is so high.)

Table S2BET specific surface area compared with other reported MXene-basedheterostructured materials

Materials	Specific Surface Area (m ² g ⁻¹)	Refs.
Sb/Na-Ti ₃ C ₂ T _x	44.9	[S1]
S-TC-1	50.16	[S2]
Fe _{x-1} Se _x /MXene/FCR	62.31	[S3]
TiO ₂ -Ti ₃ C ₂ T _x	64	[S4]
Ti ₃ C ₂ @iCON	66	[S5]
CoS NP@NHC	80	[S6]
Fe ₃ O ₄ /MXene-7	99.3	[S7]
Te-SnS ₂ @MXene	180.4	[S8]
N-MXene@MWCNT-MP	189.0	[S9]
OV-T _n QDs@PCN	198.2	[S10]
MX-TiN	213.08	This work

 Table S3 Impedance parameters simulated from the equivalent circuits

	S/MX-TiN	S/MX-TiO ₂	S/MXene
Re	2.33	2.10	2.85
R _{ct}	45.99	69.13	61.38

Supplementary References

- [S1] R. Zhao, H. Di, C. Wang, X. Hui, D. Zhao et al., Encapsulating ultrafine Sb nanoparticles in Na⁺ pre-intercalated 3D porous Ti₃C₂T_x MXene nanostructures for enhanced potassium storage performance. ACS Nano 14(10), 13938-13951 (2020). <u>https://doi.org/10.1021/acsnano.0c06360</u>
- [S2] J. Li, L. Han, Y. Li, J. Li, G. Zhu et al., MXene-decorated SnS₂/Sn₃S₄ hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. 380, 122590 (2020). <u>https://doi.org/10.1016/j.cej.2019.122590</u>
- [S3] J. Cao, L. Wang, D. Li, Z. Yuan, H. Xu et al., Ti₃C₂T_x MXene conductive layers supported bio-derived Fe_{x-1}Se_x/MXene/carbonaceous nanoribbons for highperformance half/full sodium-ion and potassium-ion batteries. Adv. Mater. 33(34), 2101535 (2021). <u>https://doi.org/10.1002/adma.202101535</u>
- [S4] L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO₂-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
- [S5] P. Li, H. Lv, Z. Li, X. Meng, Z. Lin et al., The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries. Adv. Mater. 33(17), 2007803 (2021). https://doi.org/10.1002/adma.202007803
- [S6] L. Yao, Q. Gu, X. Yu, Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkaliion batteries. ACS Nano 15(2), 3228-3240 (2021). https://doi.org/10.1021/acsnano.0c09898
- [S7] P. Zhang, N. Sun, R.A. Soomro, S. Yue, Q. Zhu et al., Interface-engineered Fe₃O₄/MXene heterostructures for enhanced lithium-ion storage. ACS Appl. Energy Mater. 4(10), 11844-11853 (2021). <u>https://doi.org/10.1021/acsaem.1c02649</u>
- [S8] H. Sun, Y. Zhang, X. Xu, J. Zhou, F. Yang et al., Strongly coupled Te-SnS₂/MXene superstructure with self-autoadjustable function for fast and stable potassium ion storage. J. Energy Chem. 61, 416-424 (2021). https://doi.org/10.1016/j.jechem.2021.02.001
- [S9] W. Bao, R. Wang, C. Qian, Z. Zhang, R. Wu et al., Heteroatom-doped Ti₃C₂T_x MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium-sulfur batteries. ACS Nano 15(10), 16207-16217 (2021). https://doi.org/10.1021/acsnano.1c05193
- [S10] H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived Ti_nO_{2n-1} quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. **33**(21), 2008447 (2021). <u>https://doi.org/10.1002/adma.202008447</u>