Supporting Information for

Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries

Jiawen Li¹, Yuchen Ji¹, Haoran Song¹, Shiming Chen¹, Shouxiang Ding¹, Bingkai Zhang², Luyi Yang^{1, *}, Yongli Song^{1, *}, and Feng Pan^{1, *}

¹School of Advanced Material, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China

²Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China

*Corresponding authors. E-mail: <u>yangly@pkusz.edu.cn</u> (Luyi Yang);, <u>songyl@pkusz.edu.cn</u> (Yongli Song); <u>panfeng@pkusz.edu.cn</u> (Feng Pan)

Supplementary Figures and Tables

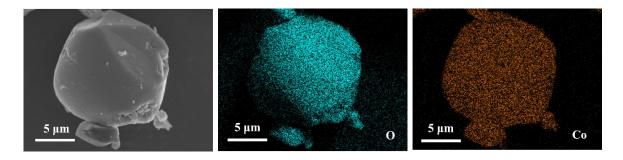


Fig. S1 EDS elemental maps of Co and O in a LCO particle

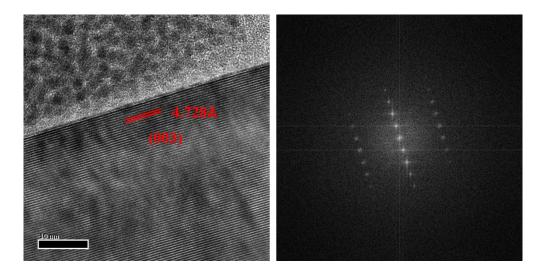
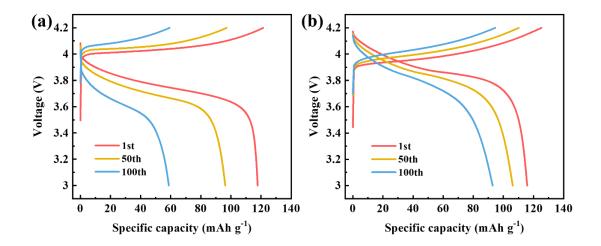
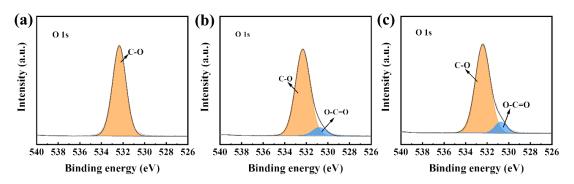




Fig. S2 TEM image and FFT pattern of LCO particle

Fig. S3 Charge/discharge profiles of **a** LCO/PEO-LiTFSI/Li, **b** LAF@LCO/PEO-LiTFSI/Li cell at 0.5 C

Fig. S4 O 1s from **a** pristine PEO-based SPE, PEO-based SPE surface after cycling with **b** LCO electrode and **c** LAF@LCO electrode. Cycled samples were obtained from the ASSLBs after 50 cycles in voltage range of 3.0-4.2 V

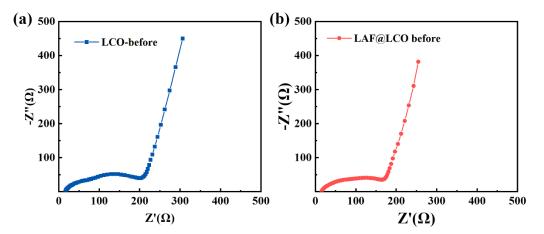
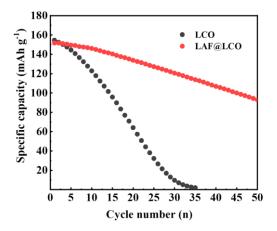
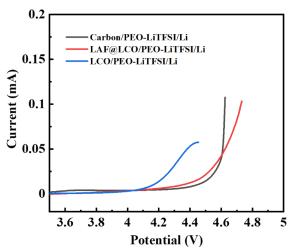




Fig. S5 EIS spectra of a LCO/PEO-LiTFSI/Li celland b LAF@LCO/PEO-LiTFSI/Li cell before cycling

Nano-Micro Letters

Fig. S6 The cycling performance of LCO/PEO-LiTFSI/Li and LAF@LCO/PEO-LiTFSI/Li cell, respectively. The cells were charged at a constant current of 1 C to 4.5 V, and followed by discharging to 3.0 V at 0.2 C at 60 °C

Fig. S7 Comparison of the linear sweep voltammogram of the carbon/PEO-LiTFSI/Li, LCO/PEO-LiTFSI/Li and LAF@LCO/PEO-LiTFSI/Li cell. The scan rate is 0.1 mV s⁻¹

Table S1 Performance of LCO cathode with different coating materials in PEO-based solidstate batteries

Coating material	wt% of Coating material	Cut off voltage	Capacity retention	Refs.
Li ₃ AlF ₆	2%	4.5 V	85%/20 cycles 68%/50 cycles	Nano-Micro Lett. 2022, 10912
lithium tantalate		4.5 V	85%/20 cycles	J. Mater. Chem. A, 2020, 8, 2769–2776
LAGP		4.5 V	80%/7cycles	ACS Energy Lett. 2020, 5, 826-832
Li ₃ PO ₄	5%	4.6 V	50%/9 cycles	Chem. Mater., 17, 8, 2005
PECA		4.45 V	40%/100 cycles	J. Electrochem. Soc., 2017, 164 (14), A3454- A3461
Al ₂ O ₃	3%	4.4 V	65%/100 cycles	Chem. Mater., 2005, 17, 23
Li ₃ PO ₄	5%	4.3 V	76%/20 cycles	Chem. Mater., 2005, 17, 8,
LATP		4.2 V	93.2%/50cycles (Coulomb efficiency<85%)	J. Power Sources 2018, 388 65–70
LATP		4.2 V	88%/50cycles	Adv. Funct. Mater. 2020, 30, 1909392
Li ₃ InCl ₆	15%	4.2 V	68.4%/200cycles	Nano Energy 2020, 76 105015
LiDFOB- PVC		4.2 V	71.5%/500cycles	Energy Storage Mater. 2020, 32 191–198
Li ₃ AlF ₆	2%	4.2 V	92.2%/50 cycles 80.2%/100 cycles	Nano-Micro Lett. 2022, 10912