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From 1D Nanofibers to 3D Nanofibrous Aerogels: 
A Marvellous Evolution of Electrospun  SiO2 
Nanofibers for Emerging Applications
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HIGHLIGHTS

• The synthetic strategies of electrospun  SiO2 nanofibers with diverse structures and their three‑dimensional (3D) assemblies are 
reviewed in detail.

• The brittleness‑to‑flexibility transition of  SiO2 nanofibers and the means of mechanical strengthening are discussed.

• The multifunctional applications of 3D  SiO2 nanofibrous aerogels are emphasized, and the challenges and opportunities for their 
future development are prospected.

ABSTRACT One‑dimensional (1D)  SiO2 nanofibers (SNFs), one of the most 
popular inorganic nanomaterials, have aroused widespread attention because of 
their excellent chemical stability, as well as unique optical and thermal charac‑
teristics. Electrospinning is a straightforward and versatile method to prepare 1D 
SNFs with programmable structures, manageable dimensions, and modifiable 
properties, which hold great potential in many cutting‑edge applications includ‑
ing aerospace, nanodevice, and energy. In this review, substantial advances in 
the structural design, controllable synthesis, and multifunctional applications of 
electrospun SNFs are highlighted. We begin with a brief introduction to the fun‑
damental principles, available raw materials, and typical apparatus of electrospun 
SNFs. We then discuss the strategies for preparing SNFs with diverse structures in 
detail, especially stressing the newly emerging three‑dimensional  SiO2 nanofibrous 
aerogels. We continue with focus on major breakthroughs about brittleness‑to‑
flexibility transition of SNFs and the means to achieve their mechanical reinforce‑
ment. In addition, we showcase recent applications enabled by electrospun SNFs, with particular emphasis on physical protection, health 
care and water treatment. In the end, we summarize this review and provide some perspectives on the future development direction of 
electrospun SNFs. 
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1 Introduction

Silica, also known as silicon dioxide  (SiO2), is a ubiqui‑
tous inorganic substance on the planet. The use of  SiO2 
is increasingly important in today’s world. It is no exag‑
geration to say that  SiO2 is an essential part of the modern 
industrial foundation, employed in many industrial areas 
from glass making to oil extraction: a full list of usages 
would take up many pages. The significance of  SiO2 is 
indisputable, and it is hard to imagine a world in which 
significant restrictions are imposed on its use [1–3]. Most 
strikingly, when the dimension of  SiO2 is reduced to the 
order of nanometer level, the surface effect and quantum 
size effect of nanomaterials will give it with unique ther‑
mal, optical, mechanical, and electronic properties, which 
significantly upgrade the performances of ceramic materi‑
als in the applications [4, 5]. In fact, Stöber first invented 
a method in 1968 for synthesizing monodispersed zero‑
dimensional (0D)  SiO2 particles with sizes as small as about 
50 nm [6]. Since then, researchers have carried out a series 
of work on this basis and made some progress in the fields 
of medicine, sensing, and catalysis [7–9]. However, these 
spherical  SiO2 nanoparticles are easy to agglomerate, easy 
to fall off from the substrates, and difficult to recycle, which 
lay thorny problems for their use. In addition, extremely fine 
particles are easy to be inhaled by the human body, and their 
biological toxicity will induce inflammation, tissue lesions, 
and even organ failure, thus posing serious threats to human 
health [10, 11]. Therefore, in order to effectively circum‑
vent the above adverse effects, many endeavors have been 
devoted to the development of desired  SiO2 nanomaterials 
with biosecurity, availability, scalability, and practicality.

Compared with 0D  SiO2 nanoparticles, one‑dimensional 
(1D)  SiO2 nanomaterials not only have higher surface 
activity, but also enhance the safety of use owing to their 
much larger aspect ratio [12]. In the past few decades, vari‑
ous state‑of‑the‑art manufacturing techniques have been 
explored to prepare different types of 1D  SiO2 nanomateri‑
als (e.g., nanorods, nanoribbons, nanotubes, nanowires, and 
nanofibers) [13–15]. Among these techniques, the electro‑
spinning is a simple and versatile approach for producing 
1D nanofibers from a wide variety of materials, with rep‑
resentative examples including metals, polymers, ceramics, 
and organic–inorganic composites [16–18]. Unlike other 
ways for generating 1D nanomaterials, the nanofibers 

obtained by electrospinning have obvious advantages in 
composition control, structure design, and function expan‑
sion [19–21]. Moreover, the electrospun nanofibers com‑
bine distinctive features such as fine diameter, large specific 
surface area, and high porosity, thus meeting the needs of 
diverse applications [22–24]. As for SNFs, in addition to 
the structural advantages brought by the nanofibers men‑
tioned above, it also has the characteristics of  SiO2 itself, 
such as stable chemical properties, high‑temperature resist‑
ance, low thermal expansion coefficient, high insulation 
performance, good biocompatibility, and unique optical 
nature [25–27]. These outstanding comprehensive capa‑
bilities endow it with broad application prospects in nan‑
odevices, flexible energy, tissue engineering, and indus‑
trial catalysis [28–30]. In 2002, the electrospun SNFs 
with diameter of 200 ~ 400 nm were prepared for the first 
time by using polymer/SiO2 composite as precursor [31]. 
Since then, it has aroused widespread research interest and 
continued to advance the area at an alarming rate. Recent 
developments in other electrospun ceramic nanofibers can 
be referred to in many review articles [32–34]. Unfortu‑
nately, to the best of our knowledge, there are no compre‑
hensive review articles focusing on electrospun SNFs.

In this review, we aim to present an overview of recent 
progress in electrospun SNFs including design, synthesis, 
and application (Fig. 1). The text of this article is divided into 
four parts: In the first part, we will make a brief introduction 
to the basic principle of preparing SNFs by electrospinning 
technology; in the second part, we give a comprehensive 
description of the synthetic strategies of SNFs with different 
structures, especially the newly emerging three‑dimensional 
(3D)  SiO2 nanofibrous aerogels; in the third part, we discuss 
the origin of the excellent flexibility of SNFs and feasible 
schemes to improve the mechanical properties of SNFs; and 
in the fourth part, we summarize the advanced applications 
of SNFs, including special protection, health care, and water 
treatment. Finally, some personal perspectives on the future 
development of electrospun SNFs are proposed.

2  Fundamentals of Electrospun SNFs

Electrospinning was initially developed as a technology 
for preparing nanofibers from polymer solutions [41]. 
By combining solgel chemistry with electrospinning, 



Nano‑Micro Lett.          (2022) 14:194  Page 3 of 39   194 

1 3

multifarious organic–inorganic composite nanofibers, 
and ceramic nanofibers can be obtained [42]. In order 
to produce well‑formed SNFs, a typical process consists 
of the following three steps: (1) preparation of a stable 
and homogeneous spinnable solution; (2) fabrication of 
precursor nanofibers via electrospinning under suitable 
conditions; and (3) formation of SNFs by calcination at 
high temperature to remove the organic components [43]. 
A typical spinnable solution should generally contain a 
Si precursor, a polymer, a solvent, water, and a catalyst. 
Si‑based metal alkoxides including tetraethyl orthosilicate 
(TEOS) [44–46] and tetramethyl orthosilicate (TMOS) 
[47, 48] are often chosen as Si precursors. However, the 
hydrolysis of TMOS produces methanol, a toxic sub‑
stance, which is why TEOS is preferred in most cases. 
Although a few examples of direct electrospinning inor‑
ganic sols without polymer addition were noted, the high 
hydrolysis rates and inapposite rheological properties of 
such systems present considerable challenges for the con‑
trol of electrospinning [49, 50]. The employed polymer 
plays a crucial part in not only adjusting the rheological 

properties of spinning dope, but strongly affects the mor‑
phology and structure of the obtained SNFs [51]. Polyvi‑
nyl pyrrolidone (PVP) [52] and polyvinyl alcohol (PVA) 
[53] are the most widely employed by virtue of their 
good solubility in water and compatibility with the Si 
precursor. In addition, a variety of other polymers, such 
as polyvinyl butyral (PVB) [54], polyacrylic acid [55], 
polyethylene oxide (PEO) [56], and polyacrylonitrile 
[57] are also used in some cases. Most notably, given that 
the Si precursors are based on highly electronegative Si 
atom, the nucleophilic attack on the central silicon atom 
by water or hydroxyl group is limited [58]. Therefore, it is 
necessary to add a proper amount of acid catalyst, such as 
hydrochloric acid [59], phosphoric acid [60], oxalic acid 
[61], and acetic acid [62] for accelerating the hydrolysis 
and condensation reaction.

The equipment of electrospinning is simple and readily 
available. It generally consists of four sections: a high‑voltage 
direct current power supply, a syringe pump, a spinneret with 
a small diameter metallic needle, and a grounded collector 
(Fig. 2a) [63, 64]. In a typical course of electrospinning, the 
spinning dope is pumped through the spinneret at a con‑
trollable speed, and the metallic needle (the inner diameter 
normally ranges from 0.21 to 1.26 μm) is electrified via the 
high‑voltage power supply. When the solution is squeezed 
to the tip of the metallic needle, it tends to form a spherical 
droplet due to the presence of surface tension, but its surface 
is quickly covered with charges from the applied voltage. The 
repulsive force of the same sign electric charges competes 
with the surface tension and makes the shape of the drop‑
let precarious. When the repulsive force is strong enough to 
exceed the surface tension, the droplet will be transformed 
into a cone, also known as Taylor cone, and a jet will eject 
from the tip of the cone. Then the charged jet undergoes an 
extremely rapid process of bending and whipping, during 
which it is constantly drafted and elongated toward the col‑
lector [65–67]. As illustrated in Fig. 2b, the typical jet pho‑
tograph has been captured by a camera, demonstrating that 
the drastic fluctuation and whipping of the jet happen during 
the electrospinning process [68]. Meanwhile, with the rapid 
evaporation of the solvent in the spinning process, the diam‑
eter of the jet drops sharply and finally solidifies to generate 
long and thin precursor nanofibers. More strikingly, some 
crucial parameters affecting the spinning process need to be 
paid enough attention. For example, the operating param‑
eters (e.g., the applied voltage, the feeding rate of solution, 

Fig. 1  Applications of electrospun SNFs with various structures 
in many fields. Different SNFs with core‑sheath [35], hollow [36], 
porous [37], hierarchical [38], aligned [39], and 3D‑assembled struc‑
tures [40]. Reproduced with permission from Ref. [35]. Copyright 
2013, American Chemical Society. Reproduced with permission from 
Ref. [36]. Copyright 2009, to the authors (Ming Zhou et al.). Repro‑
duced with permission from Ref. [37]. Copyright 2019, Elsevier. 
Reproduced with permission from Ref. [38]. Copyright 2014, The 
American Ceramic Society. Reproduced with permission from Ref. 
[39]. Copyright 2017, Elsevier. Reproduced with permission from 
Ref. [40]. Copyright 2018, American Association for the Advance‑
ment of Science
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the receive distance, and the motion state of collector) and 
the environmental parameters (e.g., the temperature and the 
relative humidity) have a significant impact on the quality of 
the resultant nanofibers. By optimizing these process param‑
eters, it is possible to obtain nanofibers with desired diameter, 
arrangement, and morphology [69, 70].

In order to obtain pure SNFs, the as‑spun  SiO2 precursor 
nanofibers need to be further calcined at high temperature. 
In the oxidation process of precursor nanofibers, the organic 

components in the hybrid nanofibers are gradually removed, 
accompanied by the decrease of nanofiber diameter (Fig. 2c) 
[71]. In particular, the surface morphology, chemical con‑
stitution, crystal structure, and mechanical properties of the 
SNFs can easily controlled by regulating the calcination 
parameters (e.g., heating temperature, heating rate, soaking 
time, and calcination atmosphere) [72, 73]. As an example, 
Fig. 2d presents the micromorphology of the final SNFs 
after calcination [74]. Most noteworthy was the flexibility 

Fig. 2  a Schematic diagram of basic apparatus for electrospinning [64]. Copyright 2019, American Chemical Society. b Photograph of typical 
jet movement during electrospinning [68]. Copyright 2007, Elsevier. c Schematic representation of general process for preparing electrospun 
SNFs [71]. Copyright 2012, The Royal Society of Chemistry. d Scanning electron microscope (SEM) image of SNFs after calcination in air. The 
inset is the macroscopic flexibility exhibition of SNFs [74].Copyright 2010, American Chemical Society
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of the SNFs, winding on a PET film without damage, and the 
excellent flexibility of ceramic nanofibers was demonstrated 
for the first time. Undoubtedly, it also breaks the traditional 
perception of brittle nature of ceramic materials and blurs 
the boundary between polymer materials and ceramic mate‑
rials. It is the controlled preparation of flexible SNFs that 
enables the rapid expansion of advanced applications based 
on them.

3  Structure Design of Electrospun SNFs

As well known, materials should be prepared with one or 
more properties integrated for different application require‑
ments. According to the widely recognized structure–perfor‑
mance relationship in materials science, we need to design 
the structure of materials more subtly, so that it is more 
conducive to the functional advantages [75, 76]. So far, a 
variety of structures have emerged on electrospun SNFs to 
explore different applications, and they can be grouped into 
six major categories: core‑sheath, hollow, porous, hierarchi‑
cal, aligned, and 3D‑assembled structure.

3.1  Core‑Sheath SNFs

The core‑sheath structure of nanofibers is an interesting 
design, realizing the transition from a single‑component 
structure to a multicomponent structure. In addition, due to 
the highly regulable nature of core‑sheath components, it 
has potential applications in electronic device, drug delivery, 
and tissue engineering [77–79]. There are two main methods 
for preparing core‑sheath SNFs: One is using coaxial elec‑
trospinning method, and the other is employing electrospun 
nanofiber as template.

3.1.1  Coaxial Electrospinning Method

Coaxial electrospinning is thought to be an effective and 
widely used method to prepare core‑sheath nanofibers. Fig‑
ure 3a shows a schematic diagram for coaxial electrospin‑
ning. In a typical setup, a coaxial needle including two con‑
centric capillaries was used to generate a coaxial jet during 
electrospinning [64]. Two viscous liquids are injected into 
the inner and outer needles at adjustable speeds by two pro‑
grammable syringe pumps, and the desired coaxial jet can 
be obtained by applying appropriate voltage to the coaxial 

needle. Subsequently, after a series of complex processes 
of stretching, whipping, and solidification, the core‑sheath 
nanofibers with distinct core and sheath composition are 
formed by the jet [80]. Based on this conventional coaxial 
electrospinning technique, Cao et al. reported core‑sheath 
 TiO2/SiO2 nanofibers with controlled sheath thickness [81]. 
They designed TEOS/polyvinyl acetate (PVAc) solution 
as outer liquid and titanium isopropylate/PVAc solution as 
inner liquid and finally achieved effective regulation of  SiO2 
sheath thickness by controlling the feeding rate of outer liq‑
uid combined with subsequent calcination (Fig. 3b). Moreo‑
ver, Wang and colleagues also adopted the same spinning 
method, the difference being that they used  SiO2 spinnable 
solution as the core phase and  Al2O3 spinnable solution as 
the sheath layer phase [82]. After calcination, the synthe‑
sized nanofibrous membranes exhibited high strength, which 
was due to the dense core SNFs that played a decisive role 
in maintaining mechanical properties (Fig. 3c).

Although the fabrication of core‑sheath SNFs by coaxial 
electrospinning seems simple, the entire implementation 
process is quite complicated. Many technological parameters 
must be considered for a successful experiment, especially 
when a new combining form is required [83, 84]. Herein, 
we are supposed to pay enough attention to the following 
points. Firstly, the rheological properties of the core and 
sheath solutions need to be reasonably regulated to ensure 
that the liquid jets of the core and sheath can be stretched to 
the same extent during spinning, leading to the formation of 
core‑sheath nanofibers with high continuity and uniformity. 
Secondly, it needs to be determined that the core and sheath 
solution are not miscible, and the solvent of the core cannot 
be volatile. Otherwise, the solution of the core and sheath 
will inevitably mix during spinning, so it is difficult to obtain 
the nanofibers with distinct core‑sheath structure. Finally, 
the thicknesses of the core and sheath of the core‑sheath 
nanofibers should be carefully designed, such as adjust‑
ing the feeding rate of the core and sheath solutions or the 
inner and outer diameter of the coaxial needle, contribut‑
ing to improving their functionality without compromising 
mechanical properties as much as possible [85–87].

3.1.2  Template‑Based Method

Different from coaxial electrospinning method, the template‑
based method takes the nanofibers prepared by traditional 
single‑needle electrospinning as the core template, and then 



 Nano‑Micro Lett.          (2022) 14:194   194  Page 6 of 39

https://doi.org/10.1007/s40820‑022‑00937‑y© The authors

the core template is post‑processed to obtain core‑sheath 
nanofibers. This method is relatively easy to operate without 
considering the compatibility between different solution sys‑
tems compared with coaxial electrospinning method.

Based on this principle, Ma et al. reported an intrigu‑
ing core‑sheath SNFs that consisted of a nonporous  SiO2 
core and a mesoporous  SiO2 sheath [88]. More specifi‑
cally, the soft nonporous SNFs were fabricated via elec‑
trospinning first and then covered by a mesoporous  SiO2 
sheath formed by a modified Stöber method. The SEM and 
TEM images of the obtained core‑sheath SNFs are shown 
in Fig. 3d‑e. Due to the different electronic penetrability 
between the core and sheath layers, the core‑sheath struc‑
ture can be clearly identified. Based on the study men‑
tioned above, Chen and co‑workers took the highly flexible 
core‑sheath SNFs as the skeleton and muffled over with a 
sheath of  TiO2 nanoparticles, thus finally forming  SiO2@

TiO2 composite nanofibers [89]. As shown in Fig. 3f, the 
three‑layer structure of  SiO2@TiO2 composite nanofibers 
can be also obviously distinguished by comparison: dense 
 SiO2 core layer, mesoporous  SiO2 intermediate layer, and 
 TiO2 sheath layer. Furthermore, Li et al. developed  SiO2/
ZnO nanofibers by combining electrospinning and vapor 
deposition, in which the ZnO sheath was deposited on the 
electrospun SNFs by vapor transport [90]. This method 
could avoid the damage to core nanofibers caused by wet 
processing to a certain extent and bring forward a new 
perspective for design core‑sheath SNFs.

3.2  Hollow SNFs

Compared to solid SNFs, hollow SNFs have unique advan‑
tages in a range of applications such as filtering separation, 
thermal insulation, and hydrogen storage due to their unique 

Fig. 3  a Schematic illustration of coaxial electrospinning device [64]. Copyright 2019, American Chemical Society. b SEM photograph of the 
as‑spun  TiO2/SiO2 nanofibers before calcination. The inset is the corresponding transmission electron microscope (TEM) photograph [81]. Cop‑
yright 2013, Elsevier. c High‑resolution TEM photograph of the  SiO2/Al2O3 nanofibers after calcination. The inset is the selected area electron 
diffraction pattern of the part denoted by the circle [82]. Copyright 2014, The Royal Society of Chemistry. d SEM image of the SNFs. The inset 
is the high‑magnified SEM image of the corresponding single nanofiber cross section [88]. e TEM image of the SNFs. The inset is the magnified 
TEM image of the corresponding single nanofiber [88]. Copyright 2011, Elsevier. f TEM image of the  SiO2@TiO2 nanofibers [89]. Copyright 
2014, The American Ceramic Society
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open structure [91]. Two main methods have been adopted to 
prepare hollow SNFs. One is by sacrificing the template, and 
the other is by introducing phase separation during spinning.

3.2.1  Sacrificial Template Method

The so‑called sacrificial template method means that the 
core‑sheath nanofibers are first constructed, and then 
core component is selectively removed to produce hollow 
nanofibers. Of course, the construction method of hollow 
SNFs here is based on the previous section, that is, core‑
sheath SNFs formed by coaxial electrospinning method or 
template‑based method are post‑processed, respectively.

For the core‑sheath SNFs prepared by coaxial electro‑
spinning method, generally the core solution is appropri‑
ate polymer or mineral oil, which can be easily removed by 
subsequent high‑temperature calcination or extraction [92]. 
Chen et al. chose TEOS/PVP solution as sheath liquid and 
polymethylmethacrylate solution as core liquid for coaxial 
electrospinning [93]. The feeding rate of the solution was 
optimized during the spinning process, and then the as‑
spun nanofibers were sintered at 700 °C for 2 h to obtain 
continuous hollow SNFs with uniform size and smooth 
surface (Fig. 4a). Moreover, Katoch and colleagues used 
heavy mineral oil as the core layer and TEOS/PVAc as the 
sheath layer and then obtained the composite nanofibers by 
coaxial electrospinning technology [94]. The as‑fabricated 
nanofibers were immersed into octane to remove the mineral 
oil in the nanofibers and then calcined at 550 °C for 2 h to 
further remove organic components and residual solvents. 
Obviously hollow SNFs were formed after calcination, but 
significant pores were left on the walls of the SNFs due to 
polymer escape during calcination (Fig. 4b). As we all know, 
the existence of defects or pores in the nanofibers will have 
a negative impact on the mechanical properties, let alone 
these large pores (~ 45 nm) in the hollow SNFs, which is 
a serious threat. However, Zhan and co‑workers found that 
the hollow SNFs with micropore/mesopore walls were fab‑
ricated through coaxial electrospinning [95]. As illustrated 
in Fig. 4c, the wall of synthesized hollow SNFs presented 
3D worm‑like porous networks with the homogeneous small 
mesopores (6 ~ 7 nm). This is caused by the introduction 
of Pluronic 123 in the sheath inorganic sol, which forms 
micelles in the system and leads to the formation of worm‑
like pores.

For the core‑sheath SNFs prepared by template‑based 
method, the ultimate purpose is also to remove the core 
components. Zhou et al. took advantage of the conventional 
electrospinning technique to prepare well‑oriented and ultra‑
long PVP nanofibers [36]. These PVP nanofibrous arrays 
were then employed as template to synthesize directional 
hollow SNFs by plasma enhanced chemical vapor deposition 
combined with subsequent calcination process (Fig. 4d). It 
is worth mentioning that the inner diameter and wall thick‑
ness of hollow SNFs can be controlled, by simply adjust‑
ing the baking time of the polymer nanofibers as well as 
the coating time of the polymer nanofiber surface without 
sacrificing orientation degree and array length. Moreover, 
Müller and colleagues prepared firstly the PVA nanofibers 
via traditional electrospinning, then wrapped in a thin  SiO2 
sheath through gas phase mineralization, and followed by 
high‑temperature thermal decomposition of PVA core at 
550 °C (Fig. 4e) [96]. The hollow SNFs wall thickness was 
regulated by repeated feeding numbers of  SiCl4 and  H2O 
vapors, and the average wall thickness increased by 0.7 nm 
per cycle. Different from wet solgel dip‑coating process, the 
preparation of hollow SNFs by vapor phase mineralization 
of PVA nanofibers proved to be an ingenious method. This 
method can not only control the pore size and wall thickness 
independently, but also avoid the undesired fusion of hollow 
SNFs during wet solgel reaction.

3.2.2  Phase Separation Method

Phase separation method has also been employed for the 
preparation of hollow SNFs [97]. In a typical example, 
the hollow SNFs were fabricated by a straightforward two‑
step procedure [98]. Firstly, a partially hydrolyzed PVP/
SiO2 sol was prepared by precisely regulating the molar 
ratio of  H2O to TEOS. The solution was then transferred 
to a single‑needle electrospinning machine, and the hybrid 
nanofibers were collected with appropriate parameters. 
Secondly, the as‑spun nanofibers were placed in muffle 
furnace and stabilized at 200 °C for 2 h, then heated to 
600 °C and calcined for 3 h, and finally obtained pure hol‑
low SNFs. A possible explanation has been proposed for 
the formation of hollow SNFs. As illustrated in Fig. 4f, 
partially hydrolyzed TEOS was obtained by adding 
insufficient amount of water to the PVP/SiO2 system, so 
the blend solution system was made up of PVP, TEOS, 
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ethanol, and  SiO2. In the process of electrospinning, the 
ethanol content in the nanofibrous core was higher than 
that on the surface due to the rapid evaporation of ethanol 
with low boiling point. The solubility of TEOS in ethanol 
was higher than that of PVP in ethanol, so TEOS tends 
to gather in the center of the nanofiber under the effect of 
ethanol concentration gradient, while PVP was forced to 
migrate from the nanofiber core to the outer surface. The 
core‑sheath composite nanofibers with TEOS as the core 
and PVP/SiO2 as the sheath were obtained. It is also noted 
that the core component TEOS is a volatile liquid, so the 

nanofibers finally deposited on the receiving substrate were 
PVP/SiO2 composite hollow nanofibers. In this way, PVP 
can be completely removed from the composite nanofibers 
after high‑temperature calcination, and pure hollow SNFs 
were obtained (Fig. 4g‑h). Based on the phase separation 
effect, An and colleagues conducted a series of regulation 
on the volume ratio of TEOS to ethanol in the spinning 
dope and then prepared hollow SNFs by electrospinning 
and high‑temperature sintering [99]. These results suggest 
that phase separation method may be one of the most direct 
and effective methods to prepare hollow SNFs.

Fig. 4  a SEM image of hollow SNFs. The inset is the corresponding high magnified SEM image [93]. Copyright 2017, Elsevier. b SEM image 
of hollow SNFs after calcination [94]. Copyright 2011, The American Ceramic Society. c High‑resolution TEM of hollow SNFs [95]. Copy‑
right 2007, Elsevier. d Magnified SEM image of hollow SNFs [36]. Copyright 2009, to the authors (Ming Zhou et al.). e Schematic illustration 
of preparation of hollow SNFs [96]. Copyright 2013, Elsevier. f Schematic diagram of the formation mechanism of hollow SNFs [98]. g SEM 
image of hollow SNFs after calcination. The inset is corresponding energy dispersive X‑ray spectrum [98]. h TEM image of hollow SNFs after 
calcination [98]. Copyright 2010, The Royal Society of Chemistry
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3.3  Porous SNFs

In general, the nanofibers obtained by electrospinning are 
solid structures. However, porous nanofibers are required in 
many cases because of the significant increase in the spe‑
cific surface area. The increase in specific surface area will 
undoubtedly bring greater gains in catalysis, adsorption, fil‑
tration, and energy fields [100, 101]. Two approaches have 
been developed to generate porous SNFs: one by selectively 
removing components from the nanofibers, and the other by 
inducing phase separation of the polymer–solvent system 
during electrospinning.

3.3.1  Template Removal Pore‑Forming Method

It is a common method for synthesizing porous nanofib‑
ers by removing designed components from as‑fabricated 
nanofibers. Such predesigned components, often referred 
to as hard and soft templates, need to be easily removed 
without destroying the main nanofibers. Next, we will give 
typical examples to illustrate these two cases.

Firstly, an example is given to introduce how to realize the 
controllable preparation of porous SNFs by hard template 
method. Wu et al. prepared the polystyrene (PS) colloidal 
dispersions and then added it quantitatively into TEOS/PVP 
solution to obtain the precursor spinning solution [102]. The 
PS nanoparticles doped  SiO2/PVP hybrid nanofibers were 
generated by conventional electrospinning process. PS and 
PVP were then removed from the hybrid nanofibers during 
subsequent high‑temperature calcination (Fig. 5a). Here the 
PS nanoparticles are embedded into the  SiO2/PVP nanofibers 
as hard templates, so the finally obtained nanofibers retain the 
pores that fixed by PS nanoparticles before. As demonstrated 
in Fig. 5b, this was fully reflected in the surface morphology 
of the obtained porous SNFs, which possessed a hierarchi‑
cal porous structure of micropores (~ 3 nm) and mesopores 
(~ 50 nm). Furthermore, other rigid structural materials with 
specific shapes, such as  SiO2/TiO2 spheres and carbon spheres, 
have also been employed as hard templates to prepare porous 
SNFs [103, 104]. At the same time, it can be noted that the 
desired pore structure can be controlled by adjusting the size 
and content of the hard templates [105].

Secondly, porous SNFs can also be prepared by using some 
materials with no stationary rigid structure but confinement 
effect in a certain spatial range as soft templates. At present, 

the developed soft templates mainly include micelles formed 
by surfactant molecules, microemulsions, polymers, liquid 
crystals, and biological macromolecules [106, 107]. Among 
them, surfactants is one of the most common soft templates. It 
mainly relies on the interaction between surfactant molecules 
to form micellar aggregates with specific structures (e.g., 
spheres, rods, and vesicles) in 3D space. Meanwhile, inorganic 
components are assembled and arranged orderly at the micellar 
interface, and thus nanomaterials with specific structures can 
be obtained [108]. Wen and co‑workers used cetyltrimethyl 
ammonium bromide as a soft template to add it into  SiO2‑TiO2 
blend sol and obtained porous  SiO2‑TiO2 composite nanofib‑
ers with disordered porous structure after subsequent electro‑
spinning and high‑temperature calcination (Fig. 5c) [109]. 
Remarkably, the specific surface area of the resultant porous 
SNFs was up to 1032.6  m2  g−1, the mesoporous volume was 
0.46  cm3  g−1, and the bimodal pore sizes were mainly dis‑
tributed at 1.1 and 2.2 nm. In addition, Saha et al. reported a 
“polymer protective layer” strategy to uniformly disperse PVA 
in TEOS/F127 solution, using the negative charge carried by 
the hydroxyl group on the PVA molecular chain to neutralize 
the positive charge applied by the high‑voltage power supply 
(Fig. 5d) [110]. Therefore, a protective sheath was constructed 
on the outside of TEOS/F127 solution to avoid the damage of 
internal ordered micelles caused by high charge density dur‑
ing electrospinning. Finally, porous SNFs with highly ordered 
cubic channels were obtained. It is worth mentioning that the 
pore size distribution of porous SNFs presents a unimodal and 
narrow distribution of mesoporous size (~ 5.6 nm), and the 
large specific surface area is 298  m2  g−1 without the contri‑
bution of micropores. Through these examples, we can find 
that the porous nanofibers formed by hard template are more 
dependent on the physical properties of these templates, while 
the porous nanofibers formed by soft template are more sensi‑
tive to the spinning process.

3.3.2  Phase Separation Pore‑Forming Method

Phase separation in electrospinning, such as non‑solvent‑
induced phase separation and thermal‑induced phase separa‑
tion, has been proved to be an important means to fabricate 
porous polymer nanofibers [111]. However, a key challenge 
for preparing porous SNFs is to balance the gelation rate 
and phase separation rate. Wang and co‑workers reported 
the preparation of porous  TiO2‑SiO2 nanofibers by a typical 
electrospinning process based on a phase separation strategy 
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[112]. They confirmed that the repelling effect between 3D 
gel network and solvent, hydrolysis polycondensation reaction 
rate of metal alkoxides, and slow evaporation of high boiling 
point solvent during electrospinning may be the main reasons 
for phase separation and finally resulted in the formation of 

porous SNFs (Fig. 5e). Subsequent analysis found that the 
pores on the nanofibers showed a hierarchical structure of dis‑
ordered distribution of mesopores (~ 6.6 nm) and macropores 
(~ 83.6 nm). As is illustrated in Fig. 5f, macropores can be 
obviously observed from the morphology of the nanofibers. 

Fig. 5  a Schematic demonstration of fabrication procedure of the porous SNFs [102]. b SEM image of porous SNFs. The inset is the corre‑
sponding magnified SEM image [102]. Copyright 2014, Elsevier. c Schematic diagram of the preparation process of porous  SiO2‑TiO2 com‑
posite nanofibers [109]. Copyright 2013, The Royal Society of Chemistry. d Proposed mechanism of order mesoporous SNFs [110]. Copyright 
2013, The Royal Society of Chemistry. e Schematic illustration of the formation process of hierarchically porous  TiO2‑SiO2 nanofibers [112]. f 
SEM images of  TiO2‑SiO2 nanofibers. The inset is the corresponding magnified SEM image of single nanofiber cross section [112]. Copyright 
2017, The Royal Society of Chemistry
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Furthermore, Wu et al. also prepared  TiO2/SiO2/C nanofibers 
by electrospinning technique and subsequent carbonization 
treatment, which had good flexibility and hierarchical pore 
structure [113]. Due to the rapid evaporation of solvent‑rich 
phase during electrospinning, interconnected pores were left 
in the precursor nanofibers. In the later carbonization pro‑
cess, the polymer components of the precursor nanofibers 
were converted to carbon without much effect on the pores 
that have already formed. Based on the above content, we 
compare the differences between the two methods in Table 1, 
hoping to provide some reference for the subsequent design 
and preparation of porous SNFs. It is not difficult to find that 
the two methods have their own characteristics. The former 
usually produces SNFs with high specific surface area, while 
the latter has advantages in pore size regulation.

3.4  Hierarchical SNFs

1D electrospun SNFs have been widely studied in recent 
years due to their wide availability. Compared with SNFs 
with a monotonous nanostructure, the nanoarchitecture 
units with different morphologies and components on the 
nanofiber surface can not only improve the inherent perfor‑
mance, but also give it some new functional characteristics.

Hierarchical SNFs have attracted the attention of many 
researchers because of their adjustable composition, mor‑
phology, and interface. Certainly, the design of hierarchi‑
cal SNFs mainly involves the construction of nanoscale 
structural units on the nanofiber surface. These structural 
units can be roughly divided into the following three cat‑
egories according to their morphological characteristics: 0D 
nanostructures (e.g., nanoparticles and nanospheres), 1D 
nanostructures (e.g., nanowires, nanorods, and nanobelts), 

two‑dimensional (2D) nanostructures (e.g., nanoflakes and 
nanoplates). The morphologies of some representative 
examples are presented in Fig. 6. As we can see, secondary 
structures of various compositions, such as elemental met‑
als, metal oxides, carbides, and metal–organic frames, have 
been developed [114–122]. In a general way, there are two 
preparation strategies for these hierarchical SNFs: One is in 
situ growth of secondary nanostructures on the surface of 
precursor SNFs, and the other is the post‑treatment of SNFs 
in solution to generate secondary nanostructures through 
chemical reactions or self‑assembly.

3.4.1  In Situ Growth Method

In situ growth is a simple approach to prepare hierarchi‑
cal SNFs. Over the course of a typical process, the metal 
salts or metal nanoparticles are added to the spinning dope, 
and then the as‑spun nanofibers are obtained by electrospin‑
ning. These introduced additives are finally converted into 
secondary structures on the nanofibers by high‑temperature 
calcination. For example, Shan et al. prepared Cu‑doped C/
SiO2 nanofibrous membranes through electrospinning and 
carbonization reduction, and the as‑synthesized Cu nano‑
particles were uniformly distributed on the C/SiO2 nanofiber 
surface [55]. Wen and co‑workers fabricated Pd/SiO2 com‑
posite nanofibers by a combination of solgel electrospin‑
ning, high‑temperature calcination, and hydrogen reduction 
[123]. The synthesized Pd nanoparticles were homogene‑
ously and firmly fixed on the surface of the nanofibers. 
There is still a lot of room for development of the in situ 
growth method, which can regulate many factors including 
the addition of species, calcination atmosphere, and calcina‑
tion temperature.

Table 1  Comparison of preparation methods of porous SNFs

a Specific surface area; bPore volume; cPore diameter; dTemplate removal pore‑forming method; ePhase separation pore‑forming method; 
fTetrabutyl titanate

Methods Polymers Additives SSAa  (m2  g−1) Vpb  (cm3  g−1) Dpc (nm) Refs

TRPFMd PVP PS 506 / 3, 50 [102]
PEO CTAB 1032.6 0.46 1.1, 2.2 [109]
PVA F127 298 0.31 5.6 [110]

PSPFMe PVP TBTf 29.2 / 6.6, 83.6 [112]
PVP TBT 23.2 / 18.5, 93.4 [113]
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3.4.2  Liquid Phase Reaction Method

Liquid phase reaction method is one of the most widely 
used methods for nanomaterials synthesis, which can 
be combined with electrospinning technology to con‑
struct various nanostructure units (e.g., nanospheres, 
nanorods, and nanoplatelets) on the surface of SNFs. By 
combining electrospinning with hydrothermal method, 
Wang and colleagues achieved that a densely distributed 
layer of  MnO2 nanosheets covered on the SNFs [124]. 
It was found that different morphology structures were 
obtained by adjusting concentration of reactants, and 
the morphology structures from low to high concen‑
tration of reactants were nanowires, nanoflowers, and 
spike rods. In addition, Hu et al. impregnated SNFs into 

copper salt solution and obtained  SiO2‑CuO composite 
nanofibers through subsequent calcination process, on 
which CuO nanocrystals were deposited [119]. However, 
this impregnation method, which only relies on physi‑
cal adsorption, is not conducive to the tight binding of 
the secondary nanostructures to the nanofiber. Hong 
and co‑workers carried out zein dip‑coating process for 
SNFs, and massive metal ions were loaded in the zein 
immersion solution [114]. Herein the zein acted as an 
effective carrier and fixator of metal ions in the sub‑
sequent inert gas calcination process. Therefore, the 
resulting  NiFeO4 nanoparticles were embedded in the 
carbon layer and tightly anchored on the SNFs surface. 
Furthermore, successive ion layer adsorption and in situ 
polymerization methods have also been developed to 

Fig. 6  SEM images of hierarchical SNFs: a Nickel ferrite nanoparticles anchored onto SNFs [114]. Copyright 2015, American Chemical Soci‑
ety. b Boehmite nanoplatelets are anchored on the surface of SNFs [115]. Copyright 2012, American Chemical Society. c Polyaniline (PANI) 
coated on SNFs [116]. Copyright 2017, Elsevier. d CuO‑ZnO nanosheets deposited on SNFs [117]. Copyright 2022, Springer Nature. e PA66 
coated on SNFs [118]. Copyright 2021, IOP Publishing Ltd. f CuO nanocrystals decorated SNFs [119]. Copyright 2015, Springer Nature. g 
Ag nanoparticles modified SNFs [120]. Copyright 2021, Elsevier. h g‑C3N4/BiOI loaded on SNFs [121]. Copyright 2018, Elsevier. i ZIF‑8 
nanocrystals anchored on SNFs [122]. Copyright 2019, Elsevier
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prepare various hierarchical SNFs, such as  SiO2/PANI 
nanofibers,  SiO2@g‑C3N4/BiOI nanofibers, and BiOI/
SiO2 composite nanofibers [116, 121, 125].

3.4.3  Other Methods

Unlike the two methods introduced above, which need to go 
through relatively complicated steps, some simple methods 
for constructing hierarchical SNFs have also been gradually 
adopted. For example, Li et al. reported a strategy to syn‑
thesize hierarchical SNFs by combining electrospinning and 
electrospraying technology [126]. Interestingly, the prepared 
SNFs were composed of nanofibers and beaded structures. In 
addition, Zhou and colleagues employed SNFs modified by 
Au nanoparticles as the support carrier and uniformly depos‑
ited a layer of g‑C3N4 on the carrier nanofibers by means of 
vapor deposition. Finally, the desired g‑C3N4/SiO2‑Au ter‑
nary composite hierarchical nanofibers were obtained [127]. 
There is no doubt that the hierarchical structure formed by 
these novel methods brings greater benefits to their respec‑
tive applications. More methods of constructing hierarchical 
SNFs will be further explored in the future studies, aiming 
to achieve more efficient applications.

3.5  Aligned SNFs

In general, the electrospun SNFs are randomly arranged and 
disordered due to the limitation of bending instability of 
highly charged jet [128]. Therefore, even after calcination, it 
does not change its existence in the form of nonwoven mats. 
However, in many applications, such as electronic energy 
and optoelectronic devices, electrospun nanofibers with 
good alignment are particularly needed [129]. Well‑aligned 
nanofibers can be achieved by mechanical, electrostatic, or 
magnetic methods. Mechanical methods usually involve the 
use of a high‑speed rotating drum or disk collector, causing 
the nanofibers to be deposited in the direction in which the 
collector rotates [130]. The electrospun nanofibers can also 
be aligned by an array of electrodes. By specially design‑
ing a pair of electrodes spaced by an air gap to manipulate 
the external electrostatic field, a uniaxial arrangement of 
nanofibers along the gap can be obtained [131]. Moreo‑
ver, a small number of magnetic particles were added into 
the spinning solution and two parallel permanent magnets 
were introduced during electrospinning. In this manner, the 

magnetized nanofibers are driven in a parallel way along the 
magnetic field lines by an external magnetic field, result‑
ing in directional nanofibers as well [132]. However, there 
are few reports about the preparation of aligned SNFs by 
electrospinning. As depicted in Fig. 7a, Song and co‑work‑
ers fabricated continuous mullite nanofibers composed of 
 Al4B2O9 phase and amorphous  SiO2 phase by conjugated 
electrospinning technique [39]. It should be noted that the 
angle between the two metallic needles assembled on the 
syringes was 120°, and the distance between the two tips is 
20 cm. During electrospinning, a static voltage of + 3.5 and 
‑3.5 kV was applied to the two metal needles, respectively. 
After calcination at 1000 °C, the nanofibers with the aver‑
age diameter of 589 nm still maintained favorable alignment 
and continuous structure (Fig. 7b). In addition, the surface 
of nanofibers was covered with a thin amorphous  SiO2 layer 
by high‑resolution TEM micrograph (Fig. 7c). Although this 
method has achieved good results, the preparation conditions 
are relatively harsh, and more efficient and easily to imple‑
ment methods still need to be explored.

3.6  3D SNFs Assemblies

It is well known that traditional electrospinning can only 
produce densely deposited 2D nanofibrous membranes with 
macroscopic thickness of only a few hundred microns or 
less. There is no doubt that the application of these dense 
nanofibrous membranes in many fields, such as tissue engi‑
neering, filtration, and adsorption, is limited due to their 
thickness [133]. Electrospun nanofibers are expected to 
be an ideal building block for 3D nanofibrous assemblies 
due to their availability, extensibility, and easy regulation 
[134–136]. At present, there are two main methods to con‑
struct 3D nanofibrous assemblies by electrospun nanofibers: 
one was freeze‑drying method first reported by Si et al., and 
the other was lamellar stacking method recently discovered 
by Ding’s group [137, 138].

3.6.1  Freeze‑Drying Method

SiO2 aerogel, as a common  SiO2 monolithic material, has 
been widely studied since its discovery in the 1930s [139]. 
Although this kind of aerogel has excellent performance in 
some physical properties, such as low density, quite transpar‑
ency, and high porosity, its discontinuous pearl necklace‑like 
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intrinsic structure will inevitably lead to a catastrophic event 
of structural collapse when subjected to high stress or strain 
[140]. Therefore, Si et al. innovatively prepared ultralight 
and superelastic  SiO2 nanofibrous aerogel with a hierarchical 
and lamellar cellular structure [40]. As is shown in Fig. 7d, 
the primary pathways for the preparation of  SiO2 nanofi‑
brous aerogels are as follows: (1) the electrospun SNFs are 
dispersed into short, fragmented nanofibrous dispersion 
liquid; (2) the highly homogeneous and dispersed nanofi‑
brous slurry is assembled by cryogenic freezing to form a 

3D network structure; (3) the preformed network structure 
is freeze‑dried to sublimate the ice crystal template, and the 
composite pre‑aerogels are obtained; (4) the freshly prepared 
pre‑aerogels are calcined to generate robust cross‑linked 
networks, endowing the finally obtained  SiO2 nanofibrous 
aerogels with high elasticity and thermal stability. The SEM 
image in Fig. 7e showed the lamellar cellular structure of the 
carefully prepared aerogel, and a piece of 20  cm3 of aerogel 
stood freely on the tip of the feather, further highlighting its 
ultralight properties. Admittedly, this method for preparing 

Fig. 7  a Schematic illustration of conjugated electrospinning apparatus for collecting aligned nanofibers [39]. b SEM image of aligned nanofib‑
ers after calcination. The inset is the corresponding nanofiber diameter distribution diagram [39]. c High‑resolution TEM image of aligned 
nanofibers after calcination. The inset is the corresponding electron diffraction pattern [39]. Copyright 2017, Elsevier. d Schematic illustration of 
the preparation of  SiO2 nanofibrous aerogels via freeze‑drying method [40]. e SEM image of the aerogel prepared by freeze‑drying method. The 
inset is an optical photograph showing the ultralight property of aerogel [40]. Copyright 2018, American Association for the Advancement of 
Science. f Schematic presentation of the fabrication pathway of the  SiO2 nanofibrous aerogels via lamellar stacking method [141]. g SEM image 
of the aerogel prepared by lamellar stacking method. The inset is an optical photograph exhibiting the insulation property of aerogel [141]. 
Copyright 2021, The Royal Society of Chemistry
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novel aerogels opens the way to the synthesis of many attrac‑
tive materials. These aerogels play a key role in many fields, 
which will be detailed in the application section.

3.6.2  Lamellar Stacking Method

As we can see, the freeze‑drying method for the synthesis 
of ceramic nanofibrous aerogels combines the versatility of 
electrospinning with the simplicity of nanofibrous freezing 
casting, which can be thought as a milestone breakthrough 
in the development of 3D nanofibrous assemblies. How‑
ever, it was noted that the nanofibrous aerogels prepared 
by the above method were assembled by fragmented short 
nanofibers. Although cross‑linking effects were generated 
between nanofibrous lap joints, such point‑to‑point forced 
state could hardly resist strong stress or severe deformation 
[138]. In this case, Zhang and colleagues reported a novel 
strategy for fabricating  SiO2 nanofibrous aerogels [141]. As 
shown in Fig. 7f, compared with the freeze‑drying method, 
this method employed flexible SNFs as the starting mate‑
rial rather than short nanofiber dispersion liquid. The 3D 
preformed assembly was prepared by layered stacking of 
SNFs membranes in impregnation solution, and then the 
desired  SiO2 nanofibrous aerogel was finally obtained by 
subsequent freeze‑drying and calcination processes. Differ‑
ent from the nanofibrous aerogels prepared by freeze‑drying 
method, the  SiO2 nanofibrous aerogels prepared by lamel‑
lar stacking method are equipped with multi‑arched lamel‑
lar structure. These aerogels also showed excellent thermal 
insulation, which effectively protected flower from wilting in 
the heat (Fig. 7g). It is because of this special structure that 
aerogel resisted to external stress in a face‑contacting way, 
thus endowing it robust mechanical strength. Considering 
that this is a promising new method, it is expected that more 
novel nanofibrous aerogels with both mechanical strength 
and functionality will be prepared.

4  Mechanical Behavior of Electrospun SNFs

As mentioned above, most of the previous studies focused 
on the structure design and preparation of electrospun 
SNFs while ignoring their mechanical properties. However, 
more attention should be paid to the mechanical properties 
in the practical use, especially for the mechanical proper‑
ties of the requirements of the field, such as recyclable 

catalyst carrier, vibration‑resistant insulation sleeve, and 
water treatment separation membrane. The precursor 
nanofibers produced by electrospinning are usually xerogel 
nanofibers and then undergo an essential calcination pro‑
cess to obtain pure ceramic nanofibers. During the calcina‑
tion process, a series of complicated physical and chemical 
changes take place in the nanofibers, such as decomposi‑
tion of organic component, removal of solvent, thermal 
condensation of metal hydroxyl groups, and movement and 
rearrangement of atomic. The mechanical properties of the 
ceramic nanofibers will often deteriorate due to the uneven 
surface, pore defects, and grain coarsening caused by the 
above process [142, 143] Therefore, there is no doubt that 
a deep understanding of the mechanical behavior of elec‑
trospun SNFs is of great urgency for the development of 
materials with excellent mechanical properties to serve 
advanced applications.

4.1  Origin of Flexibility in SNFs

In 2002, Kim’s group prepared SNFs by electrospinning 
for the first time, which paved the way for the manufacture 
of other inorganic nanofibers [31]. Subsequently,  TiO2, 
 ZrO2, and  Al2O3 nanofibers have also been developed by 
this method [144–146]. However, these ceramic nanofibers 
basically showed the inherent brittleness characteristics of 
ceramic materials, which greatly reduced their use value. 
Until 2010, Ding’s group prepared flexible SNFs for the 
first time, but the flexibility mechanism of the nanofibers 
was not fully explained [74]. Recently, Cao and co‑workers 
accurately controlled the composition of  SiO2 sol and the 
amount of PVA and prepared electrospun SNFs with excel‑
lent flexibility [147]. It was observed that the synthesized 
SNFs membrane could be twisted and bent macroscopi‑
cally without any damage. Meanwhile, the single nanofiber 
at the microscale was also subjected to large bending defor‑
mation without brittle fracture, which fully demonstrated 
the superior flexibility of the SNFs (Fig. 8a). In order to 
further analyze the flexible mechanism of SNFs, they also 
studied the microstructure and crystal structure in detail. 
They found that the prepared SNFs were amorphous and 
no obvious grains were found, which was further confirmed 
by the X‑ray diffraction pattern (Fig. 8b‑c). On this basis, 
a reasonable explanation for the remarkable flexibility of 
amorphous SNFs was proposed. The amorphous  SiO2 is 
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considered as a continuous random network of relatively 
flexible  SiO4 tetrahedrons. The Si–O‑Si bond angles for 
amorphous  SiO2 exbibit a broad distribution from 120° to 
180° and mainly concentrated at 144° [148, 149]. When 
the single nanofiber was subjected to external bending 
stress, the Si–O‑Si bonds on the outer side of the nanofiber 
surface were stretched and the bond angles increased. At 
the same time, the Si–O‑Si bonds on the inner side of the 
nanofiber surface were compressed, and the bond length 
and bond angle decreased (Fig. 8d). Therefore, it is the 
switchable bond lengths and bond angles of Si–O‑Si bonds 
in the silicon oxygen tetrahedron network that may endow 
SNFs surprising flexibility.

4.2  Strengthening Strategies for SNFs

At present, the preparation of flexible SNFs is no longer a 
thorny problem, and the further application of it is often 
reported. However, we clearly realize that the tensile strength 
of the current electrospun SNFs is still low, which is difficult 
to meet the needs of practical application. Moreover, there 
is a strong ionic bond or covalent bond inside the ceramic, 
it is not easy to slip when impacted by external forces, and 
it is difficult to plastic deformation to offset part of the stress 
[150, 151]. Therefore, it is of great significance to strengthen 
ceramic nanofibers based on understanding the mechanical 
behavior of electrospun ceramic nanofibers.

Fig. 8  a Optical photograph of a flexible SNFs membrane. The inset is the SEM image of the corresponding flexible single nanofiber [147]. b 
TEM image of the SNFs [147]. c XRD spectrum for the SNFs [147]. d Plausible mechanism for the flexibility of SNFs [147]. Copyright 2022, 
American Chemical Society. e TEM image of the  SiO2/SnO2 nanofiber [161]. f High‑resolution TEM image of a selected area [161]. g Tensile 
strength and fracture toughness of  SiO2/SnO2 nanofibrous membrane [161]. Copyright 2017, American Chemical Society.h SEM image of the 
MMT@ZrO2‑SiO2 nanofibers. The inset is the corresponding optical image of soft nanofibrous membrane [164]. i TEM image of MMT@ZrO2‑
SiO2 nanofiber [164]. j Stress–strain curves of  ZrO2‑SiO2 and MMT@ZrO2‑SiO2 nanofibrous membranes [164]. Copyright 2021, American 
Chemical Society
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A great deal of studies showed that the mechanical prop‑
erties of oxide ceramic nanofibers largely rely on the intera‑
tomic bonding strength, microstructure, and surface mor‑
phology [152–154]. Specifically, the pore structures, crystal 
forms, grain size, and crystallinity of oxide ceramic nanofib‑
ers determine the microcrack propagation and stress distri‑
bution, which have a momentous effect on the mechanical 
properties of the nanofibers [155]. It is well known that the 
distribution of fine grains in nanofibers can increase the pro‑
portion of grain boundaries, so that the concentrated stress 
can be effectively dispersed [156]. Electrospun SNFs are 
usually amorphous at conventional calcination temperature 
(800 °C), so the  SiO2 phase is also often used as a doping 
component which were introduced to other ceramic materi‑
als which crystallized easily. The added  SiO2 phase inhibits 
grain growth, leading to multiphase ceramic nanofibers with 
a small grain size that exhibits a certain degree of flexibility 
at the macroscale [157–160].

Based on the above understanding of the mechanical 
behavior of ceramic nanofibers, some works were carried 
out to improve the mechanical properties of SNFs. It is 
acknowledged that the mechanical properties of macroscopic 
materials are closely related to the mechanical behavior of 
the underlying basic building units. Therefore, it is neces‑
sary to study the mechanical properties of single ceramic 
nanofiber. However, it should be admitted that the mechani‑
cal testing of single fiber at the nanoscale is a major chal‑
lenge, especially the process of preparing single nanofiber 
samples, so that most of the current works were limited to 
the mechanical properties of nanofibrous assemblies (e.g., 
2D nanofibrous membranes and 3D nanofibrous aerogels). In 
short, how to strengthen SNFs needs to be considered from 
the following aspects: (1) structural design; (2) interfacial 
interaction; (3) preparation process.

In terms of structural design, Shan et al. ingeniously 
designed a dual‑phase ceramic nanofiber, which was embed‑
ded in amorphous  SiO2 nanofiber matrix by  SnO2 crystal 
phase [161]. As can be seen from TEM micrograph in 
Fig. 8e‑f, the  SnO2 fine nanocrystals were randomly dis‑
tributed in the nanofiber and surrounded by amorphous  SiO2 
phase, which further proved the reliable preparation of dual‑
phase nanofibers. In fact, the obtained nanofibers can also 
be taken as classic brick–mortar structures by embedding 
 SnO2 nanocrystals (bricks) into the amorphous region of 
 SiO2 (mortar). Meanwhile, it can be observed from Fig. 8g 
that the tensile stress of the resultant nanofibrous membrane 

was up to 4.15 MPa with appropriate nanocrystalline dop‑
ing, which was more than 3 times higher than that of the 
pure SNFs membrane (0.89 MPa). Unfortunately, there is no 
in‑depth explanation for this phenomenon in their publica‑
tion. It is reasonable to speculate that this may be due to the 
heterogeneous distribution of nanocrystals in the amorphous 
matrix which restricts the stable development of the budding 
shear band. Even if some shear bands are present, they are 
blocked when they encounter fine grains and subsequently 
divide into several germinated shear bands. These embedded 
nanocrystals can slide and rotate only when high enough 
stress is applied, which effectively overcome the problem of 
instability fracture of amorphous materials caused by sof‑
tening effect and extension of shear bands, and ultimately 
enhancing the mechanical properties of amorphous materials 
[162, 163].

In addition to improving the mechanical properties of 
nanofibers from the perspective of single nanofiber struc‑
ture design, it is also an effective strategy to form stable and 
strong interface interaction between nanofibers. Mao and 
co‑workers impregnated the as‑prepared  ZrO2‑SiO2 nanofi‑
brous membranes in the montmorillonite (MMT) dispersion 
solution and successfully constructed cross‑linked MMT 
nanosheets between  ZrO2‑SiO2 nanofibers after subsequent 
calcination [164]. As is exhibited in Fig. 8h, the cross‑linked 
characteristic between nanofibers were confirmed, which 
resulted from in situ heat treating of MMT nanosheet on the 
nanofiber surface. Furthermore, the TEM image (Fig. 8i) 
showed that MMT nanosheets deposited well on the surface 
of  ZrO2‑SiO2 nanofibers, highlighting the robust interfa‑
cial bond between the MMT nanosheets and the  ZrO2‑SiO2 
nanofibers. As shown in Fig. 8j, benefiting from the cross‑
linked assembly of nanofibers and nanosheets, the tensile 
stress of the MMT@ZrO2‑SiO2 nanofibrous membranes 
(1.83 MPa) was higher than that of pure  ZrO2‑SiO2 nanofi‑
brous membranes (1.61 MPa). Moreover, the notable results 
can be obtained by improving the preparation process of 
electrospun SNFs. Zhang and colleagues found that ball 
milling of spinning sol and bending drafting of precursor 
nanofibers significantly improved the molecular structure 
order and reduced pore defects of precursor nanofibers, 
effectively enhancing the tensile strength of SNFs mem‑
branes [165]. In general, the above methods have made 
remarkable progress in the mechanical enhancement of 
SNFs, but there is still a certain gap from our expected goal. 
Fortunately, some clear strategies have emerged, and more 
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time and effort will ensure the reliable use of advanced SNFs 
in terms of mechanical properties.

5  Applications of Electrospun SNFs

Electrospun SNFs, as one of the most widely used 1D 
ceramic nanostructured materials, possess various predomi‑
nant features including high porosity, large specific surface 
area, and unique optical properties, which tremendously 
enhance the performance of their nanofibrous assemblies 
and greatly widen their application sphere. As we know, 
 SiO2 nanofibrous assemblies, especially 3D nanofibrous 
aerogels, are more convenient to deploy in many application 
scenarios and give full play to their performance advantages. 
In this section, we primarily focus on  SiO2‑based nanofi‑
brous aerogels related applications in physical protection, 
health care, and water treatment, and a lot of innovative 
works have been done in these crucial research areas in 
recent years.

5.1  Physical Protection

5.1.1  Thermal Insulation

SiO2 is a nontoxic and hard inorganic material widely 
distributed in nature. It is widely used in the field of heat 
insulation due to its characteristics of good refractory, low 
thermal conductivity, and stable chemical properties. Com‑
pared with the traditional  SiO2 aerogel insulation material 
with brittleness and poor mechanical properties, electrospun 
SNFs insulation material has obvious advantages such as 
good toughness, high porosity, and high thermal resistance, 
which has become a research hot spot in this field in recent 
years. Zheng et al. prepared hybrid SNFs/SiO2 aerogel mem‑
branes by impregnating SNFs with  SiO2 sol, then drying at 
room temperature [166]. The obtained hybrid membranes 
exhibited enhanced mechanical strength (more than 200% 
increase in tensile strength) and low thermal conductivity 
(0.021 W  m−1  k−1). But the material produced in this way 
still existed as a thin membrane, rather than as a block. Sub‑
sequently, Zhang and colleagues successfully synthesized 
SNFs reinforced  SiO2 aerogel composites by adding flexible 
 SiO2/SnO2 nanofibers into  SiO2 sol and subsequent solgel 
method and supercritical drying process [167]. Compared 
with traditional granular  SiO2 aerogel, the composites are 

equipped with decreased thermal conductivity from 0.034 
to 0.025 W  m−1  k−1 and improved Young’s modulus from 
35 to 70 kPa. This is because the added SNFs were well 
dispersed in the aerogel and bonded with the  SiO2 aerogel 
nanoparticles, enabling the skeleton of the aerogel compos‑
ites to withstand strong capillary force in the supercritical 
drying process.

Although the mechanical properties of nanofiber‑rein‑
forced  SiO2 aerogel have been improved, it is still difficult 
to meet the application requirements; especially, the resil‑
ience is not satisfactory. Si et al. created superelastic ceramic 
nanofibrous aerogels by freeze‑drying method to assemble 
random‑deposited SNFs into elastic nanofibrous aerogels 
[40]. The as‑fabricated  SiO2 nanofibrous aerogels showed 
the comprehensive properties of complete recovery at large 
compression strain, ultra‑low density, and good fire resist‑
ance. This work provided valuable reference for the prepara‑
tion of more ceramic nanofibrous aerogels, especially around 
the topic of improved the thermal insulation performance. 
Using a similar approach, Dou and co‑workers prepared 
 SiO2 nanofibrous aerogels with low thermal conductivity 
(0.02327 W  m−1  k−1) by combining  SiO2 nanoparticle aero‑
gels with SNFs [168]. The analysis showed that adding  SiO2 
nanoparticle aerogels can not only reduce the solid ther‑
mal conductivity by increasing the solid conduction path, 
but also reduced the gas thermal conductivity by filling the 
large pores on the cell wall of the nanofibrous aerogel. Fur‑
thermore, Dou et al. assembled nanoporous  SiO2 particle 
aerogel in a cellular  SiO2 nanofibrous framework by dip‑
coating  SiO2 nanofibrous aerogel with  SiO2 sol [169]. The 
introduction of  SiO2 particle aerogel formed  SiO2 particle 
networks with small pore size in the cellular nanofibrous 
framework, whose pore size (~ 4 nm) is less than the mean 
free path of air molecules (~ 75 nm), effectively inhibited the 
heat conduction of gas, so the thermal conductivity can be 
as low as 0.02196 W  m−1  k−1.

A series of  SiO2 nanofibrous aerogels through freeze‑dry‑
ing method have been prepared, which have excellent ther‑
mal insulation properties, but are not yet satisfactory in their 
mechanical properties. This was mainly because the nanofi‑
brous aerogel framework was assembled by short nanofibers 
in a point‑to‑point manner, which led to the limitation of its 
effective force area and difficulty in resisting large external 
stresses. Zhang and co‑workers prepared lamellar multi‑
arch structured  SiO2 nanofibrous aerogel by lamellar stack‑
ing method [141]. This special structural design enabled 
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aerogels to share the stress face‑to‑face during the load‑
ing process, thus maximizing the strength of the material. 
Therefore, the compressive strength of the obtained  SiO2 
nanofibrous aerogel can reach 160 kPa under 60% recover‑
able strain. As a significant contrast,  SiO2 nanofibrous aero‑
gel prepared by freeze‑drying method had a compressive 
strength of only about 10 kPa under 60% recoverable strain. 
The mechanical properties of the aerogel were significantly 
improved by this method, but the thermal conductivity of 
the aerogel was relatively high at 0.0389 W  m−1  k−1 due to 
the relatively close stacking between the nanofibrous mem‑
branes, so there is still room for improvement in the thermal 
insulation performance.

On this basis, Zhang et al. finally prepared fluffy and 
lamellar arched  ZrO2‑SiO2 nanofibrous aerogels by stack‑
ing  ZrO2‑SiO2 nanofibrous membranes layer by layer in 
the sol and further added a step of ultrasonic processing 
[170]. As a result of the ultrasonic disintegration effect, 
the dense  ZrO2‑SiO2 nanofibrous membranes were loose 
in the solution, which was crucial for the formation of 
highly fluffy nanofibrous aerogel in the subsequent ice‑
template process. The thermal conductivity of  ZrO2‑SiO2 
nanofibrous aerogel was as low as 0.0268 W  m−1  k−1 due 
to the low density and high porosity brought by the highly 
fluffy structure. However, the micron‑sized pores between 
the nanofibers in these aerogels did not mitigate the heat 
transfer of the air, so the insulation performance was not 
as good as expected. Therefore, Zhang and colleagues fur‑
ther impregnated  ZrO2‑SiO2 nanofibrous membranes into 
 SiO2 sol containing  SiO2 nanoparticle aerogels and then 
obtained the ceramic nanofibers–nanoparticles compos‑
ite aerogels through the ultrasound‑assisted ice‑template 
shaping process [171]. Benefiting from the lamellar, multi‑
arched, and leaf‑like nanofibrous‑granular binary networks 
of the novel nanofibrous aerogels, the thermal conductivity 
of  ZrO2‑SiO2 nanofibrous aerogels was significantly reduced 
to 0.024 W  m−1  k−1. Several key factors were found to be 
responsible for the excellent heat‑shielding performance. 
One was that the introduction of  SiO2 nanoparticle aerogels 
into the porous nanofibrous framework not only increased 
the solid thermal conduction path, but also locked more air 
into the nanopores, thus reducing the heat conduction of 
both solid and gas. The other was that the porous frame‑
work and arched structure of aerogel can effectively inhibit 
the heat conduction and heat convection of gas in the verti‑
cal lamellar direction (Fig. 9a‑b). As a proof of concept, an 

 ZrO2‑SiO2 nanofibrous aerogel with a thickness of 10 mm 
was placed on an iron block and exposed to a butane flame. 
After 5 min, the temperature at the bottom of the aerogel 
was only 67.7 °C, demonstrating excellent thermal insulation 
performance (Fig. 9c).

In summary, the application of electrospun SNFs in 
thermal insulation field has been widely studied and some 
gratifying progress has been made. For electrospun  SiO2 
nanofibrous materials that have been reported for thermal 
insulation, we summarize a Table 2 to better demonstrate 
their thermal insulation properties. With the continuous 
development of human civilization, the thermal insula‑
tion materials also put forward new major challenges. For 
example, the national defense industry, aerospace, and civil 
industries have special requirements for nanofibrous aerogel 
insulation materials with anti‑vibration shock, high strength, 
compressibility, stretchability, bendability, and other excel‑
lent properties, which have become an important direction 
for guiding the research of nanofibrous aerogel insulation 
materials in the future.

5.1.2  Sound Absorption

Electrospun SNFs not only play an important role in the 
field of heat insulation, but also show great potential in the 
application of sound absorption and noise reduction. Spe‑
cifically, their highly porous structure and good thermal 
stability lay a solid foundation for maintenance of outstand‑
ing sound absorption performance in a relatively confined 
environment, especially in vehicles and rooms. Zong et al. 
developed a simple and effective method to prepare flexible 
 SiO2 nanofibrous sponges for highly noise absorption [172]. 
The hierarchical structured sponge was composed of flex‑
ible electrospun SNFs and reduced graphene oxide (rGO), 
consisting of open cells, closed cell walls, and entangled 
networks (Fig. 9d). It was found that with the increase in 
rGO loading, the coverage region of rGO networks on the 
 SiO2 nanofibrous cell walls progressively increased, lead‑
ing to the decrease in nanofibrous cell walls connectivity in 
sponge. In other words, the nanofibrous cell walls structure 
of sponge underwent a series of changes from the first open 
cell walls to the semi‑open cell walls and then to the closed 
cell walls (Fig. 9e). It is conceivable that the internal struc‑
ture of a sponge has a decisive effect on its sound‑absorbing 
performance. As is shown in Fig. 9f‑g, further studies have 
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confirmed that the closed cell walls formed by a certain 
amount of rGo loading was the best for sound absorption 
performance, and the sponge possessed highest airflow 
resistance (6.7 ×  105 Pa s  m−2) and noise reduction coeffi‑
cient (NRC value of 0.27). This was because the closed cell 
wall structures in sponge can completely block noise propa‑
gation and make the noise dissipation need to go through a 
longer path, thus achieving the purpose of effective energy 
dissipation (Fig. 9e).

Although the ceramic nanofibrous sponge described 
above had excellent sound absorption properties, its appli‑
cation in extreme environments was seriously threatened 
because the loaded rGO was difficult to exist stably in 
high‑temperature oxidation environments. Therefore, 

Cao and co‑workers designed and prepared elastic  SiO2 
nanofibrous aerogels, which were assembled by immobi‑
lizing hexagonal boron nitride (h‑BN) flakes on electro‑
spun SNFs through freeze‑shaping technology [147]. In 
the freeze‑shaping process, h‑BN flakes were covered by 
sol networks and adhered to SNFs to form extraordinary 
multi‑scale 3D structure. It should be noted that the intro‑
duction of h‑BN not only increased the multiple reflection 
and friction of sound waves by creating a more tortuous 
hierarchical structure, thus consuming more energy, but 
also the good thermal conductivity of h‑BN helped dissi‑
pate sound energy in the form of friction heat generation. 
Benefits from a well‑designed structure, the as‑prepared 
nanofibrous aerogel had competitive sound absorption 

Fig. 9  a SEM image of  ZrO2‑SiO2 nanofibrous aerogel showing its hierarchical structure [171]. b Schematic demonstration of factors contribut‑
ing to thermal conductivity of the  ZrO2‑SiO2 nanofibrous aerogel [171]. c Optical and infrared thermal images showing temperature distribu‑
tions of the aerogel jetted by a butane flame [171]. Copyright 2022, American Chemical Society. d SEM image of ceramic nanofibrous aerogels 
exhibiting the hierarchically entangled networks [172]. e Schematic illustration of the sound absorption mechanism for closed cell walls [172]. 
f Effects of GO loading amount on noise reduction coefficient (NRC) and airflow resistance of the aerogel [172]. g Variation of the absorption 
coefficient of the relevant aerogels [172]. Copyright 2021, Springer Nature. h SEM image of Zr(OH)4@PVB/SiO2 nanofibrous aerogel showing 
its hierarchical structure [174]. i Mechanism of DMMP degradation by aerogel [174]. j Plots of DMMP conversion versus reaction time [174]. k 
Extracted chromatograms for the initial and 30 min DMMP challenges the aerogel. The inset is the molecular formula of the chemical substance 
of labeled peaks [174]. Copyright 2021, American Chemical Society
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performance with NRC value of 0.59. At the same time, 
as a high‑temperature resistant inorganic material, h‑BN 
is capable of remaining stable at relatively higher tempera‑
tures oxygenated environment compared to rGO, so this 
kind of nanofibrous aerogel has great application potential.

Although some progress has been made in the devel‑
opment of electrospun SNFs materials for fire proof and 
sound absorption in recent years, some problems still need 
to be considered. For example, it is true that the sound 
absorption performance of materials in low frequency 
band has been improved to some extent, but there is still a 
lot of room for improvement compared with the absorption 
coefficient in high frequency band. Therefore, it is still an 
urgent problem to prepare high‑efficiency sound‑absorb‑
ing materials in all frequency range. In addition, oxide 
ceramic nanofibrous materials are generally hydrophilic 
and easy to absorb moisture, which brings great challenges 
to maintain the sound absorption properties of materials 
with long‑term stability [173]. The proper solution of 
these problems will further enhance the practical applica‑
tion level of electrospun SNFs sound‑absorbing materials.

5.1.3  Toxics Degradation

Because of its stable chemical properties, high strength, and 
easy processing, electrospun SNFs are often combined with 
other inorganic nanofibrous materials to develop novel func‑
tional materials, especially when they are used to degrade 
some toxic substances to ensure people’s health, the results 
often show unexpected surprises. To take a typical exam‑
ple, Liao et al. elaborately designed a honeycomb‑like 3D 
nanofibrous aerogels composed of electrospun SNFs and 
Zr(OH)4@PVB nanofibers, in which Zr(OH)4 nanoflakes 
grew vertically and uniformly on the interconnected nanofi‑
brous skeleton (Fig. 9h) [174]. The electrospun SNFs in 
aerogels played an important role in the construction of 
mechanically strong and structurally stable nanofibrous cel‑
lular framework. It was also proved that insufficient SNFs 
led to the collapse of the resulting nanofibrous aerogel struc‑
ture, which unable to serve for subsequent applications in the 
form of self‑supporting 3D blocks. Moreover, the Zr(OH)4 
nanoflakes were evenly and stably embedded into the PVB 
nanofibrous template, which significantly expanded the 

Table 2  Comparison of properties of electrospun  SiO2 nanofibrous materials for thermal insulation

a SiO2/C nanofibrous aerogels (NFAs); bSiO2 NFAs were prepared via freeze‑drying method by combining SNFs with AlBSi matrices; cSiO2 
NFAs were prepared by integrating SNFs and Si–O‑Si bonding networks; dSiO2 composite nanofibers (CNFs); eSiO2 NFAs were fabricted using 
SNFs as the matrix and  SiO2 sol as high‑temperature nanoglue; fSiO2 NFAs were developed via lamellar stacking method through combin‑
ing SNFs with AlBSi matrices; gZrO2‑SiO2 nanofibrous membranes (NFMs); hSiO2 nanofiber/SiO2 aerogel (SNF/SA) membranes; iSiO2/SnO2 
nanofibers reinforced flexible  SiO2 aerogel composites  (SiO2‑SSNF); jSiO2 NFAs were synthesized by using SNFs and  SiO2 nanoparticle aero‑
gels as the matrix and  SiO2 sol as the high‑temperature nanoglue; kSiO2 NFAs were prepared by in  situ assembly of nanoporous  SiO2 aero‑
gels on a cellular structured  SiO2 fibrous framework; lZrO2‑SiO2 NFAs were fabricated via lamellar stacking method by combining flexible 
 ZrO2‑SiO2 nanofibers with  SiO2 sol solution; mZrO2‑SiO2 NFAs were designed by integrating  SiO2 granular aerogels and  ZrO2‑SiO2 nanofibers

Samples Maximum working temperature (°C) Thermal conductivity (25 °C, W  m−1  k−1) Refs

SiO2/C  NFAsa 350 0.023 [26]
SiO2  NFAsb 1100 0.025 [40]
SiO2  NFAsc 1100 0.024 [46]
SiO2  CNFsd 1000 0.0236 [103]
SiO2  NFAse / 0.0256 [140]
SiO2  NFAsf 1100 0.0389 [141]
ZrO2‑SiO2  NFMsg 1100 0.034 [159]
MMT@ZrO2‑SiO2 NFMs 1000 0.026 [164]
SNF/SA  membranesh / 0.021 [166]
SiO2‑SSNFi / 0.025 [167]
SiO2  NFAsj 1100 0.02327 [168]
SiO2  NFAsk 1000 0.02196 [169]
ZrO2‑SiO2  NFAsl 1100 0.0268 [170]
ZrO2‑SiO2  NFAsm 1100 0.024 [171]
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surface area and provided abundant active sites for catalyz‑
ing chemical warfare agents. The dimethyl methylphospho‑
nate (DMMP) was selected as a simulated nerve agent to 
analyze the possible mechanism of its degradation by aero‑
gel: firstly, the coordination between P = O and  ZrIV cati‑
ons, followed by nucleophilic substitution of hydroxyl group 
on the surface of nanoflakes (Fig. 9i). Further study found 
that when the aerogels contained 80 wt% Zr(OH)4@PVB 
nanofibers, the aerogels had the highest content of Zr(OH)4 
and also exhibited the best catalytic effect and 99% conver‑
sion within 20 min (Fig. 9j). The extraction chromatogra‑
phy also confirmed the catalytic degradation of DMMP by 
as‑prepared aerogel, and the final degradation product was 
methanol (Fig. 9k).

In addition to chemical warfare agents in war, there are 
also volatile organic compounds in daily life, such as for‑
maldehyde, toluene, and xylene, and prolonged exposure to 
these compounds can be extremely harmful to the human 
body. Cui et al. fabricated soft  SiO2‑TiO2 nanofibrous mem‑
branes by electrospinning, on which  MnO2 nanoparticles 
were in situ deposited [175]. It was found that the loading 
capacity of  MnO2 nanoparticles increased gradually with 
the increase in the number of synthesis cycles. Because the 
 MnO2 nanoparticles were fixed stably on the surface of the 
nanofibers, it has excellent catalytic oxidation effect on for‑
maldehyde gas. The formaldehyde removal efficiency of the 
prepared sample was nearly 100% within 20 min, and the 
sample still showed a formaldehyde removal efficiency of 
91.57% after 5 cycles of use. Moreover, Zhan and colleagues 
designed  SiO2‑doped mesoporous  TiO2 nanofibers and 
verified their excellent photocatalytic performance through 
degrading gaseous toluene under ultraviolet light [176]. The 
results show that  SiO2‑TiO2 composite nanofibers showed 
a toluene degradation efficiency of 90.6% under the appro‑
priate  SiO2 doping, which was far superior to pure  TiO2 
nanofibers (69.6%) and commercial Degussa P25 (70.5%). 
The strong coupling effect between the doped  SiO2 and the 
 TiO2 may reduce the photoexcitation level and reduce the 
difficulty of toluene degradation removal. At the same time, 
these catalysts were used for the removal of organic pol‑
lutants in the form of electrospun nanofibrous membranes, 
which effectively avoided the drawbacks of conventional 
powder catalysts such as easy agglomeration and difficult 
recovery.

Some progress has been made in the degradation of toxic 
substances by electrospun SNFs, especially when they were 

compounded with other functional nanomaterials, showed 
the robust synergistic effects that greatly improve the overall 
properties. However, in the face of increasingly complex liv‑
ing environment, all kinds of harmful substances to human 
health need to be considered, so it is particularly necessary 
to improve the simultaneous degradation performance of 
materials to a variety of toxic substances. In addition, for 
toxics in different states, such as gas, liquid, and aerosol, 
the structure of materials needs to be elaborately designed 
to meet the use requirements of different scenarios.

5.2  Health Care

5.2.1  Tissue Engineering

The natural bone extracellular matrix (ECM) is composed of 
60–70 wt% inorganic components and 10–30 wt% organic 
components and presents a network structure of nanofibers 
[177]. Electrospun SNFs not only can highly simulate the 
hierarchical structure of ECM, but also have biocompatibil‑
ity and low toxicity, showing greater osteogenic potential 
in bone tissue engineering applications [178]. Allo and co‑
workers firstly synthesized electrospun biomaterials by the 
combination of biodegradable polycaprolactone (PCL) and 
bioactive glasses (BGs), in which BGs were ternary inor‑
ganic phase including  SiO2, CaO, and  P2O5 [179]. The ter‑
tiary BGs used in study mimicked calcified tissue in bone, 
while the biodegradable PCL mimicked the nanofibrous col‑
lagen, a structure highly mimicked bone ECM that may pro‑
vide better conditions for bone tissue regeneration. Unfor‑
tunately, no quantitative characterization of the electrospun 
SNFs for bone tissue engineering applications was available 
in the publication. Toskas et al. employed chitosan (CTS), 
containing a small amount of PEO, and  SiO2 precursor sol to 
prepare composite biomaterials for bone tissue regeneration 
by electrospinning technology [180]. It was found that the 
nanofibrous membranes were beneficial to the adhesion and 
diffusion of osteoblasts, and the formation of hydroxyapa‑
tite was accelerated by impregnating modified simulated 
body fluids (SBF) after adding calcium ions. These hybrid 
nanofibers, composed of biocompatible polymers and  SiO2, 
took full advantage of these two materials to successfully 
create effective biomaterials for bone tissue engineering.

The abovementioned works did not involve calcination of 
the as‑spun nanofibers, and it is known that the conventional 
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preparation of ceramic nanofibers inevitably required calci‑
nation to remove organic components. Therefore, different 
calcination conditions had a great impact on whether the 
obtained nanofibers were suitable for bone tissue engineer‑
ing. Sakai and colleagues found in their study that apatite 
particles with a diameter of 10 μm were formed on the SNFs 
without calcination after soaking in SBF solution for 1 week 
[181]. Furthermore, with the increase in the calcination tem‑
perature, the diameter of the particles gradually decreases, 
and even no apatite particles were formed after calcination 
at 800 °C for 3 h. The study also proved that the apatite 
particles formed on SNFs could effectively promote the 
osteogenic differentiation of pre‑osteogenic cells, which also 
explained from the side that the obtained nanofibers by high‑
temperature calcination were not conducive to the applica‑
tion of bone tissue engineering. In addition to preparing 
biomaterials with a single inorganic component, Wang and 
co‑workers prepared electrospun  SiO2‑TiO2 hybrid nanofib‑
ers with different  SiO2 content and evaluated their osteo‑
genic potential [182]. The results showed that the resulting 
 SiO2‑TiO2 nanofibrous membrane enhanced the osteogenic 
differentiation of mesenchymal stem cells (MSC), especially 
when the average diameter of the nanofibers was larger and 
the crystallinity of the nanofibrous membrane was higher.

The electrospun SNFs prepared above were generally 2D 
nanofibrous membranes with pore sizes of several microns, 
which were adverse to the transport of nutrients and metabo‑
lites and difficult to provide enough space for cell growth. 
Wang et al. developed a 3D ceramic nanofibrous scaffold 
assembled by electrospun SNFs with CTS as the bonding 
site via freeze‑drying technology [183]. The resulting scaf‑
folds exhibited good elasticity, rapid deformation recovery, 
and excellent fatigue resistance and directly induced osteo‑
genic differentiation of human MSC in vitro. The study also 
confirmed that the superelastic scaffolds could adapt to the 
mandibular defects in rabbits and promoted the bone forma‑
tion of the calvarial defect in rats. In addition, the 3D scaf‑
folds with SNFs gradients possessed significant functional 
effects, resulting in stiffness gradients spatially and differ‑
entiation of human MSC into chondrocytes and osteoblasts.

Although the prepared SNFs/CTS scaffold had good 
biocompatibility and bone repair performance, only  SiO2 
showed limited biomineralization activity and was difficult 
to accelerate bone regeneration in osteoporosis. Wang and 
co‑workers further prepared bioactive glass  (SiO2‑CaO) 
nanofibers and combined them with CTS as cross‑linking 

agent to synthesize 3D nanofibrous scaffolds [184]. It was 
found that the scaffolds composed of  SiO2‑CaO nanofibers 
and CTS had superior mechanical properties. In addition, 
the scaffolds possessed continuous nanofiber‑assembled cell 
walls, which were structurally highly consistent with the nat‑
ural ECM (Fig. 10a). The excellent bone repair capability of 
obtained scaffolds was verified by cranial defect model in 
osteoporotic rats. Micro‑CT images of the bone defect site 2 
and 3 months after surgery showed that the host bones in the 
control group were slightly mineralized from the periphery 
inward, while the defect edge and center of the as‑prepared 
scaffolds were significantly mineralized (Fig. 10b). When 
theses scaffolds were used to repair osteoporotic calvarial 
defects in a rat, which showed significant improvement in 
new bone formation and vascular remodeling of osteoporotic 
bone defects. As is demonstrated in Fig. 10c, a lot of capil‑
laries were observed in both at the edges and in the center of 
defects implanted with scaffolds and MSC‑loaded scaffolds. 
This flexible nanofibrous scaffold, assembled by using flex‑
ible bioactive glass nanofibers as the construction blocks, 
could undergo elastic deformation and adapt to irregular 
shaped bone defects and then achieve perfect adaptation to 
the defects by self‑deploying behavior. This strategy will 
provide a pathway for the development of the next genera‑
tion of nanofibrous bone scaffolds, especially for irregularly 
shaped bone defects associated with osteoporosis.

As we can see, electrospun SNFs employed in bone tis‑
sue engineering have made progress in recent years. Bone 
tissue is a kind of dynamic load‑bearing connective tissue, 
which plays a crucial role in maintaining normal life activi‑
ties of organisms. Therefore, in the development of bone 
tissue engineering scaffold materials, it should not only be 
considered as the carrier of seed cells and growth factors, but 
also ensure that the scaffold has enough mechanical strength 
to support the growth of tissue. In addition, sufficient atten‑
tion should be paid to the degradation of scaffolds. Reason‑
able matching of scaffold degradation rate and new bone 
formation rate is of great significance for obtaining the best 
bone repair effect.

5.2.2  Protein Separation

The electrospun SNFs have good physical and chemi‑
cal stability, easy modification, and large surface area‑
to‑volume ratio, which are the main reasons for their 
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application in protein adsorption separation. Matthew and 
co‑workers synthesized the  SiO2/PVP composites nanofi‑
brous membranes and used them for binding/elution of 
plasmid deoxyribonucleic acid and bovine serum protein 
[185]. The experimental results showed that the nanofi‑
brous membranes had an effective binding ability to pro‑
tein molecules, which was closely related to the surface 
charge and pH value of protein molecules. Although this 
publication does not provide a quantitative characterization 
of the adsorption and separation efficiency of the nanofi‑
brous membranes for protein, it demonstrated that electro‑
spun SNFs were an important tool for efficient isolation 
and delivery of proteins. Moreover, Zhu et al. prepared a 

novel ordered mesoporous  SiO2/C composite nanofibers 
via electrospinning and followed by carbonization [186]. 
Benefiting from the highly ordered mesoporous structure, 
high specific surface area and pore volume of the result‑
ing composite nanofibers, the materials showed excellent 
adsorption performance for the extraction and prefractiona‑
tion of peptides from human serum.

Although the introduction of these electrospun SNFs 
based on 2D nanofibrous membrane promoted the actual 
performance of protein separation, their dense struc‑
ture led to problems such as high resistance of protein 
molecule adsorption and mass transfer and slow liq‑
uid penetration velocity, which limited the full play of 

Fig. 10  a SEM image of the  SiO2‑CaO nanofibrous scaffold [184]. b 3D reconstructed micro‑CT images of rat cranial bone defects [184]. c 
Quantitative analysis of regenerated blood vessels [184]. Copyright 2019, American Chemical Society. d SEM image showing the nanofibrous 
cell wall of the aerogel [187]. e Dynamic elution curve of the aerogel‑packed column after extracted lysozyme from egg white. The insets are the 
corresponding gel electrophoresis analysis of the obtained elution [187]. f The obtained chromatogram of the prepacked aerogel column [187]. 
Copyright 2019, Wiley–VCH. g SEM image of the cage‑like structured aerogel [193]. h Bactericidal kinetics of the as‑prepared aerogels against 
E. Coli [193]. i Biocidal assay against bacteriophage of the as‑prepared aerogels [193]. Copyright 2021, Wiley–VCH
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structural advantages of nanofibers. Fu and colleagues 
developed a highly carboxylated nanofibrous aerogels 
consisted of flexible electrospun SNFs and a functional 
polymer cladding layer [187]. The as‑prepared aero‑
gel presented a honeycomb‑like regular and intercon‑
nected nanofibrous framework, and PVA layers were 
observed to be stably coated on the cell walls of the 
framework (Fig. 10d). Due to the negatively charged 
carboxyl ligands on the carboxylated PVA layer, the cell 
walls could selectively adsorb positively charged pro‑
teins in the solution, thus endowing the carboxylated 
nanofibrous aerogel with good protein adsorption and 
separation ability. Further study proved that the aerogel 
could directly adsorb and extract lysozyme from egg 
white solution, and the concentration of lysozyme in 
eluting solution was up to 9 mg  mL−1 (Fig. 10e). When 
the carboxylated nanofibers aerogel were applied in the 
protein separation chromatography and purification sys‑
tem, the chromatographic curves showed that the aerogel 
had the advantages of high flux and low flow resistance 
(Fig. 10f). Moreover, Fu and co‑workers fabricated a 
highly phosphorylated nanofibrous aerogel through a 
combination of freeze drying and a non‑damaging sur‑
face modification technique [188]. In situ phosphoryla‑
tion modification realized stable cross‑linking of the 
aerogel and formed stable adhesion structure between 
flexible electrospun SNFs as the construction blocks 
and effectively improved its mechanical properties. The 
aerogel exhibited excellent static (3.3 ×  103 mg  g−1) and 
dynamic (1.8 ×  103 mg  g−1) protein adsorption capacity, 
with processing flux, was up to 1.5 ×  104 L  h−1  m−2 only 
driven by the buffer’s own gravity (~ 1 kPa).

It can be found that most of these materials were 
organic/inorganic hybrid nanofibrous materials, in which 
the organic components will inevitably swell in the long‑
term practical application. This will seriously affect the 
morphology, pore structure, and mechanical stability of 
the material, which will significantly reduce the adsorp‑
tion and separation performance of the material for pro‑
tein. In addition, the electrospun SNFs applied in the field 
of protein separation in current studies basically relied on 
surface modification or in situ blending methods and pay 
little attention to the importance of nanofibrous intrinsic 
structure. Therefore, continuous efforts should be made in 
the relationship between composition controlled nanofi‑
brous microstructure and their performance.

5.2.3  Antibiosis

Because of their excellent biocompatibility, good structural 
tunability, and easy surface modification, electrospun SNFs 
have impressive antibacterial performance. Wan et al. pre‑
pared composite nanofibrous membranes by combining 
electrospinning and surface modification technology [189]. 
The Ag nanoparticles with an average diameter of 50 nm 
were evenly and densely distributed on the SNFs modified 
by polydopamine. The results showed that the resulting 
nanofibrous membranes showed good antibacterial activity 
against Gram‑negative bacteria E. coli and Gram‑positive 
bacteria S. aureus due to the presence of Ag nanoparticles. 
Furthermore, Liu and co‑workers developed a superhydro‑
philic N‑halamine/SiO2 nanofibrous membranes through 
the combination of electrospinning technique and followed 
chlorination [190]. The obtained membranes exhibited the 
integrated properties of high active chlorine content, excel‑
lent re‑chlorination performance, and strong bactericidal 
ability, and only 10 mg nanofibrous membranes could kill 
3 ×  108 CFU  mL−1 E. coli and S. aureus within 3 min. In 
addition to grafting modification on the surface of nanofi‑
brous membrane, Shan et al. designed and prepared a new 
type of C/SiO2 nanofibrous antibacterial material supported 
by Co nanoparticles [191]. The metal Co nanoparticles 
with monodisperse distribution on the surface and inside 
of porous C/SiO2 nanofibrous membranes could effectively 
activate peroxymonosulfate and rapidly produce a large 
amount of reactive oxygen species, which could inactivate 
E. coli and S. aureus with a 7 log reduction within 3 min. 
The membranes also showed excellent dynamic bactericidal 
performance and could achieve high bactericidal efficiency 
of 99.99999% with flux up to 3.4 ×  104 L  m−2  h−1 only under 
gravity drive. It is worth mentioning that a novel spray steri‑
lizer based on nanofibrous membranes was designed, which 
could sterilize the solid surfaces conveniently and efficiently.

Although these membranes showed good antibacterial 
effects, their antibacterial function gradually decreased 
with the depletion of antibacterial ingredients. At the 
same time, the narrow and unconnected pore structure 
of the nanofibrous membrane makes it easy for bacteria 
to accumulate in the pore, resulting in a sharp decrease 
in the treatment flux. Wang et al. prepared a superelastic 
nanofibrous aerogel with rechargeable bactericidal prop‑
erties by electrospun SNFs and functional Si–O‑Si bond‑
ing networks [192]. The excellent structural stability and 
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persistent bactericidal activity of the obtained aerogels 
were attributed to the Si–O‑Si networks composed of 
rechargeable N‑halamine groups. Therefore, the aerogels 
had excellent bactericidal activity (6 log reduction against 
E. coli and S. aureus) and could effectively sterilize the 
bacteria‑containing sewage with ultra‑high throughput 
(5.76 ×  104 L  m−2  h−1). In addition, Wang and colleagues 
also developed a superflexible nanofibrous aerogel with 
antibacterial and antiviral functions targeting harmful 
microorganisms such as bacteria and viruses that may 
exist in the public health environment [193]. The aerogel 
was composed of electrospun SNFs, bacterial cellulose 
(BC) nanofibers, and hydrophobic Si–O‑Si binder. The 
SNFs formed the primary nanofibrous framework, and the 
BC nanofibers (with an average diameter of one order of 
magnitude lower than that of SNFs) formed the secondary 
nanonet on the  SiO2 framework (Fig. 10g). The Si–O‑
Si binder gave aerogels strong structural stability and 
hydrophobicity, and N‑halamine biocides grafted aerogels 
with renewable antibacterial and antiviral activity. As is 
demonstrated in Fig. 10h‑i, thanks to the numerous inte‑
grated advantages of the cage‑like nanofibrous aerogel, 
it not only showed high filtration efficiency (> 99.97%) 
and low pressure drop (189 Pa) toward  PM0.3, but also 
showed excellent antibacterial (6 log reduction against 
E. coli within 3 min) and antiviral activity (6 log reduc‑
tion against bacteriophage within 5 min). These positive 
results indicate that the prepared aerogel can be used as a 
scalable antibacterial and antiviral air filter, which means 
that it has great potential for health care.

At present, most of the researches on electrospun SNFs 
in antibacterial field focus on inactivating bacteria exist‑
ing in liquid environment, and the killing of pathogens 
and microorganisms in air environment is relatively rare. 
The continuing spread of the COVID‑19 in the world 
since 2020 has alarmed us and highlighted the importance 
of developing integrated nanofibrous filters with broad‑
spectrum biocidal activity as well as high efficiency fine 
particulate filtration performance. In addition, special 
attention should be paid to the recycling properties of 
these antibacterial materials in order to reduce the pres‑
sure on resources and the environment. Therefore, the 
future research of such materials should consider more 
convenient and easily scalable preparation methods com‑
bined with energy‑saving high‑performance regeneration 
means.

5.3  Water Treatment

5.3.1  Pollutant Removal

Due to their good chemical stability, high specific surface 
area and strong structural tunability, electrospun SNFs are 
ideal materials for removing many pollutants in wastewater, 
including antibiotics, heavy metal ions, organic dyes, and 
phosphates. Shan and colleagues prepared mesoporous elec‑
trospun SNFs with excellent flexibility, high specific surface 
area, and large pore volume [194]. By adjusting the content 
of polymer in the spinning solution, the phase separation 
degree of liquid jets was affected during the electrospin‑
ning process, and thus the nanofibers morphologies and 
pore structures were controlled. As presented in Fig. 11a, 
after calcination at 600 °C, the surface of the nanofibers 
was rough and wrinkled obviously. Some isolated particles 
and visible pores can be observed from the section dia‑
gram. Further analysis of the pore structure of the obtained 
nanofibers by calcination at different temperatures showed 
that the adsorption capacity of the samples was almost neg‑
ligible below 400 °C, indicating that there were almost no 
pores in the nanofibers. However, when the temperature was 
increased to 600 °C, the specific surface area increased to 
147.76  m2  g−1, the pore volume increased to 0.317  cm3  g−1, 
and the mesopore size concentrated at 10 nm (Fig. 11b‑c). 
Therefore, the nanofibrous membranes showed good adsorp‑
tion performance for tetracycline hydrochloride, and the 
maximum adsorption capacity was 9.4 mg  g−1 (Fig. 11d). 
These results were consistent with the total pore volume of 
the corresponding nanofibers, indicating that increasing the 
pore volume was beneficial to the adsorption of antibiotics. 
Especially, further analysis indicated that the synergistic 
effect of hydrogen bond and electrostatic attraction between 
the electrospun SNFs and tetracycline hydrochloride was 
responsible for such excellent adsorption performance. In 
addition, this highly porous electrospun SNFs had also been 
extended to many heavy metal ion adsorption applications, 
including  Pb2+,  Cu2+,  Cd2+, and  Cr4+, exhibiting good ion 
adsorption performance [195–198].

Through the functional modification of the electrospun 
SNFs, it had high catalytic degradation effect on organic 
pollutants in water. Wang et al. designed and fabricated 
a hierarchical electrospun SNFs on which CuO‑ZnO 
nanosheets were deposited [117]. The prepared nanofibrous 
membranes possessed large pore volume and mesoporous 
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size, and the maximum adsorption capacity for Congo red 
reached 141.8 mg  g−1. At the same time, the introduction 
of CuO‑ZnO nanosheets also enabled the fiber membrane 
showed good catalytic activity to 4‑nitrophenol and could 
degrade more than 96% of the pollutants within 90 s. More‑
over, Shi and colleagues developed  CuFe2O4 nanostructure 
functionalized electrospun SNFs [199]. Benefiting from 
uniformly distributed  CuFe2O4 particles, high specific sur‑
face area, and large pore volume, the membrane presented 
significantly improved Fenton‑like catalytic degradation 
activity. The resultant nanofibrous membranes possessed 
good catalytic performance for methylene blue, which could 

be degraded by 96% in 20 min, and the removal rate could 
reach 0.148  min−1. In addition, there were also some reports 
about the removal of phosphate and mercaptan from water, 
demonstrating the advantages of the application of electro‑
spun SNFs for the adsorption of various pollutants [200, 
201].

According to these reported works, electrospun SNFs 
have shown great potential in removing pollutants from 
water. While these advances are welcome, it is also impor‑
tant to recognize that there is still a lot of research to be 
done on this issue. For example, the water environment 
is increasingly severe and complex, facing the threat of 

Fig. 11  a SEM images of mesoporous SNFs [194]. b Nitrogen adsorption–desorption isotherms of mesoporous SNFs at various calcination 
temperature [194]. c The corresponding pore size distribution curves [194]. d Adsorption performance of relevant mesoporous SNFs [194]. Cop‑
yright 2021, Elsevier. e SEM image showing open cell geometry of the aerogels. The inset is the corresponding magnified SEM image revealing 
 SiO2 nanoparticles anchored on the nanofibers [203]. f Separation device of water‑in‑oil emulsions and the microscopic photographs of emul‑
sions before and after separation [203]. g Separation flux and saturated extent of separation of nanofibrous aerogels [203]. h Changes of the flux 
and flux recovery over 10 cycles [203]. Copyright 2015, American Chemical Society. i SEM image showing cellular architecture of the aerogel. 
The inset is the magnified SEM image displaying the CNTs networks in nanofibrous framework [208]. j Schematic illustration of multiple scat‑
tering and absorption of light [208]. k Evaporation rate versus solar light irradiation time under 1‑sun irradiation [208]. l The evaporation rate of 
as‑prepared aerogels in different salinity of brine under 1‑sun irradiation [208]. Copyright 2020, Wiley–VCH
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metal ions, pesticides, dyes, radioactive elements, and 
other types of pollutants, so it is particularly necessary 
to improve the efficient removal ability of materials for a 
variety of pollutants in the complex water environment. 
In addition, most of the materials currently prepared are 
applied in the form of 2D nanofibrous membranes, which 
will inevitably encounter problems of limited adsorption 
capacity and treatment flux. Therefore, the development of 
new‑type 3D nanofibrous materials for the removal of pol‑
lutants in water is another topic that is particularly worthy 
of research.

5.3.2  Oil–Water Separation

Electrospun SNFs have unique advantages in the treatment 
of oily wastewater due to their high chemical stability, inter‑
connected pore channel, high porosity, and regulable sur‑
face properties. Li et al. synthesized the hierarchical nanofi‑
brous membranes composed of  SiO2 nanofibers/nanobeads 
via the combination of electrospinning and electrospraying 
[126]. Thanks to their good wettability and hierarchical pore 
structure, the nanofibrous membranes possessed excellent 
performances in the separation of oil‑in‑water emulsions. 
Especially for surfactant stabilized oil‑in‑water emulsions, 
the membranes showed a separation efficiency of 98.8% and 
a permeability flux of 2237 L  m−2  h−1. Furthermore, Zhang 
and co‑workers developed a taro leaf‑inspired nanofibrous 
membranes by anchoring BiOBr microspheres on  SiO2/
PANI nanofibrous substrates [202]. Due to the high porosity 
and submicron pore size of the resulting nanofibrous mem‑
brane, it can efficiently separate various oil‑in‑water emul‑
sions, showing high separation flux (a maximum value of 
6140 L  m−2  h−1) and high separation efficiency (total organic 
carbon content less than 5 mg  L−1). Notably, the BiOBr/
PANI heterojunction structure and 3D PANI conductive 
networks endowed the nanofibrous membrane visible light 
induced self‑cleaning properties. In addition, Zhang et al. 
also prepared another intriguing nanofibrous membrane by 
constructing periodic knots on electrospun SNFs and fur‑
ther encapsulating the shell of PANI [118]. The membrane 
could achieve efficient separation of oil‑in‑water emulsions, 
especially due to the synergistic effect of positive charge and 
spindle‑knot structure, and the filter cake could be removed 
during the separation process, thus guaranteeing the stability 
of water flux.

In any case, the abovementioned nanofibrous mem‑
branes used for oil–water separation will face the bottle‑
neck problems of low separation flux and limited separation 
efficiency. Si et al. reported a superelastic and superhydro‑
phobic nanofibrous aerogel through combining electrospun 
nanofibers and freeze‑drying technology [203]. The elec‑
trospun SNFs components in the aerogel fully ensured the 
stability of its overall shape and structure, and  SiO2 nano‑
particles were deposited on the nanofiber surface to further 
enhance the nanoscale roughness of the hierarchical aerogel 
(Fig. 11e). As a test of the separation performance of aero‑
gel to oil‑in‑water emulsion, oil quickly penetrated through 
aerogel when surfactant stabilized oil‑in‑water emulsion 
just touched the surface of aerogel, while water remained 
in the upper layer of aerogel. The results showed that the 
water content in the filtrate was less than 50 ppm, which 
signified that the purity of the oil collected after separation 
by aerogel was up to 99.995% (Fig. 11f). The study also 
found that with the increase of  SiO2 nanoparticles concentra‑
tion, although the separation flux of aerogel decreased, its 
separation saturation capacity increased significantly. This 
may be related to the fact that over time, the continuous 
accumulation of water droplets would change the channel 
from hydrophobic to hydrophilic and eventually blocked the 
oil transportation routes. In particular, the aerogel loaded 
with 2 wt%  SiO2 nanoparticles showed an admirable flux of 
350 ± 45 L  m−2  h−1 but an astonishing saturation capacity of 
7612 ± 480 kg  m−2 (Fig. 11g). As shown in Fig. 11h, after 
repeated separation experiment for 10 cycles, the aerogel 
can still efficiently separate oil–water emulsion, highlighting 
that aerogel also had excellent anti‑pollution performance. 
In addition, other organic/SiO2 hybrid nanofibrous aero‑
gels have been developed using similar methods and their 
applications in the field of oil–water separation have been 
explored [204, 205].

In fact, oil and water mixtures in real industrial production 
and daily life are characterized by complex composition, usu‑
ally containing proteins, organic dyes, heavy metal ions, and 
so on. Therefore, the design of multifunctional separation 
membrane has important practical significance for the com‑
prehensive treatment of oil–water mixture. It is a challenging 
project to equip the separation membrane with the functions 
of oily wastewater treatment, heavy metal ion adsorption, 
and organic matter degradation, and perhaps the coupling 
design of multilayer nanofibrous membrane is a feasible solu‑
tion. In addition, when high viscosity crude oil emulsion is 
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separated by high‑pressure drive, the pore structure is not 
stable enough because of the insufficient bond among the 
nanofibers, which seriously affects the separation efficiency 
of the emulsion. Therefore, how to improve the bond strength 
between nanofibers as much as possible without compro‑
mising the inherent high porosity and pore connectivity of 
nanofibrous materials is a work worthy of further study.

5.3.3  Solar Desalination

Solar evaporator is an effective method to treat highly saline 
water with clean and renewable energy and realize seawater 
desalination. Electrospun SNFs have good chemical durabil‑
ity and high porosity, which facilitates evaporation of water 
vapor from the pores between the nanofibers. Huang and 
colleagues fabricated core‑sheath structure and amphipho‑
bicity SNFs via coaxial electrospinning technology [206]. 
The  SiO2 nanoparticles on the nanofiber surface significantly 
increased the local roughness and improved the robustness 
of wetting resistance. It is found that in the presence of sur‑
factant, the resulting membrane had a good potential for 
seawater desalination. Furthermore, Sun et al. designed and 
prepared a novel nanofibrous membrane composed of forest‑
like carbon nanotubes (CNTs) deposited on deposited on 
porous electrospun SNFs [207]. The engineered CNTs were 
assembled into a dense, rough, and porous interfacial struc‑
ture with excellent moisture resistance to water in the air. 
Because of these characteristics, the as‑prepared nanofibrous 
membranes showed stable water vapor flux and excellent salt 
repulsion in thermal driven desalination experiments.

In the actual desalination process, the surface salinity of 
the evaporator often increases with evaporation. We also 
know that electrospun nanofibers are usually assembled into 
relatively dense 2D membranes, whose pore connectivity 
and quantity are not ideal, impeding salt transport from 
the surface of the evaporator to the outside. Dong and co‑
workers fabricated elastic  SiO2 nanofibrous aerogel which 
was then deposited on the nanofibrous framework by simple 
CNTs impregnation coating [208]. The obtained nanofibrous 
aerogel exhibited vertically arranged cells and porous cell 
walls, and CNTs were tightly encapsulated on the cell walls 
(Fig. 11i). The performance of solar evaporator is highly 
dependent on the absorption effect of the evaporator. By vir‑
tue of this ingenious design, light entered the cells, and when 
light hits the aerogel surface, most of the light was absorbed 
by CNTs deposited on the cell walls. Other scattered light 

was absorbed almost completely after hitting the cell wall 
several times (Fig. 11j). It was found that the evaporation 
rate of the as‑prepared aerogel could reach 1.5 kg  m−2  h−1 
within 15 min, which was in the same level with most mate‑
rials at present. However, it should be emphasized that the 
evaporation rate of the aerogel prepared has little change in 
the treatment of water with high salinity, while the evapo‑
ration rate of the conventional  SiO2 aerogel as the control 
group decreased significantly, proving that the well‑designed 
aerogel could effectively transport salt and prevent salt crys‑
tallization (Fig. 11k‑l). In addition, inspired by the micro‑
structure of reed leaves, Dong et al. prepared biomimetic 
hierarchical  SiO2 nanofibrous aerogel with parallel‑arrayed 
cells and hydrophobic surfaces [209]. Thanks to the advan‑
tages of this bionic structure, the resulting aerogel could 
work stably in high concentration of brine (saturated con‑
centration, 26.3%) under 6 sun, demonstrating its robust 
salt tolerance. Specifically, due to its high light absorption 
efficiency of 94.8%, the evaporation rate of the as‑prepared 
aerogel was 1.25 kg  m−2  h−1 under 1 sun irradiation.

Solar desalination is a sustainable and low‑energy strat‑
egy to alleviate the water crisis, and several studies have 
demonstrated the contribution of electrospun SNFs in this 
field. Although many researchers have made great efforts 
to improve the efficiency of solar desalination, it still needs 
to continue to advance the research work considering the 
practical application. How to effectively avoid salt crystalli‑
zation in the process of solar desalination is still an unavoid‑
able topic, which will have a vital impact on the long‑term, 
efficient, and stable operation of evaporator. In addition, 
the recovery and utilization of latent heat of water vapor 
condensation is expected to relieve the high dependence on 
solar illumination conditions, thus further improving the 
efficiency of water production.

6  Conclusions and Perspectives

In this review, we have summarized the advances in elec‑
trospun SNFs, covering the rational structure design from 
solid to core‑sheath, hollow, porous, hierarchical, aligned, 
and 3D‑assembled structure, and relevant synthetic strate‑
gies including coaxial electrospinning method, sacrificial 
template method, in situ growth method, freeze‑drying 
method and so on. Moreover, the mechanical behavior of 
electrospun SNFs was also discussed, with emphasis on 
the origin of superior flexibility and the effective means 
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of mechanical reinforcement. By virtue of their intrigu‑
ing characteristics such as regulable morphology, high 
porosity, modifiable surface, and chemical stability, elec‑
trospun SNFs demonstrated tremendous potential in many 
areas, especially in the fields of physical protection (e.g., 
thermal insulation, sound absorption, and toxics degrada‑
tion), health care (e.g., tissue engineering, protein separa‑
tion, and antibiosis), and water treatment (e.g., pollutant 
removal, oil–water separation, and solar desalination).

Although the great progress has been made, there are 
still many challenges in the design, preparation, and appli‑
cation of electrospun SNFs, and more work needs to be 
continued in the future. Some viewpoints are put forward 
here, which are expected to play a constructive role in 
promoting the rapid development of this field.

(1) At present, most reports focus on core‑sheath, porous, 
hierarchical structure of electrospun SNFs, and more 
attractive nanostructures are yet to be developed. For 
example, the widely reported spider‑web‑like 2D 
nanonets in electrospun polymer materials. These 
nanonets possess a highly porous structure with 
ultrafine diameters (10 ~ 40 nm) and small pore sizes, 
which hold great potential in energy, filtration, and 
protection applications [210]. Different from the 
preparation of polymer nanofibers, the preparation 
of SNFs involves a mixture of  SiO2 precursor sol 
and polymer solution spinning and then calcination. 
Therefore, the distinctions of spinning dope properties 
and the influences of calcination process should be 
concerned in the preparation of SNFs with 2D nano‑
structured networks.

(2) As a promising new material, electrospun  SiO2 nanofi‑
brous aerogel has been widely studied in recent years. 
As we have seen, several methods (e.g., freeze‑drying 
method and lamellar stacking method) have been devel‑
oped to prepare electrospun  SiO2 nanofibrous aerogel, 
and its application in many areas has been explored. 
However, it should be acknowledged that the current 
method of preparing  SiO2 nanofibrous aerogel is gener‑
ally cumbersome, time‑consuming, and energy inten‑
sive, especially involving the acquisition of staple 
slurry from electrospun SNFs and subsequent freeze 
drying. Recently, a novel approach to fabricate nanofi‑
brous aerogel using 3D reaction electrospinning has 
opened a new avenue for us [211]. The key to the suc‑
cess of this approach is to regulate the gelation rate of 
inorganic sol jet so as to realize the precise control of 
jet shape.

(3) The current tensile strength of flexible SNFs mem‑
branes is normally less than 5 MPa, while the com‑
pressive stress of  SiO2 nanofibrous aerogels prepared 
by freeze‑drying method is generally less than 20 kPa. 
These materials are still difficult to meet the require‑
ments of mechanical properties for some specific appli‑
cations. It is an urgent problem to further improve the 
mechanical properties of SNFs. The key to solve this 
problem lies in the fabrication of strong and tough 
single  SiO2 nanofiber. On this basis, building strong 
adhesion structure between nanofibers or improving the 
orientation of nanofibers might be effective strategies 
to enhance the mechanical properties of SNFs. In addi‑
tion, it is of great significance to establish theoretical 
models of the mechanical relationship between single 
nanofiber and nanofibrous assemblies in the future 
work, which could guide researchers to design SNFs 
with higher strength and better toughness.

(4) In the future, advanced applications of electrospun 
SNFs will go far beyond the scope of our discussion, 
and the existing wealth of results will continue to 
inspire us to create new materials. There is no need 
to elaborate on the characteristic advantages of  SiO2 
material itself, and more creativity can be generated 
from the aspects of structure, interface and multi‑scale 
assembly. For example, the construction of ordered 
hierarchical pores in SNFs will bring a significant 
driver for hydrogen storage, molecular separation, and 
gas capture. In addition, combining the fertile surfaces 
of SNFs with other specific materials promises infinite 
possibilities in the fields of sensing, electromagnetic 
shielding, and flexible energy. In short, more sub‑
stantial and effective applications of electrospun  SiO2 
nanofibrous materials are worthy of further study, and 
the road to the application library will never be limited.

(5) The large‑scale manufacture of electrospun SNFs 
is the cornerstone to realize their commercial value. 
Currently, most of the synthesis methods of functional 
SNFs (e.g., in situ growth method, liquid‑phase reac‑
tion method, and freeze‑drying method) are limited to 
laboratory research and are not suitable for large‑scale 
production. Although some polymer nanofibers could 
be manufactured on an industrial scale, the impact of 
different spinning solution systems on mass produc‑
tion is significant, especially for spinneret devices. 
Some auxiliary means can be well utilized, such as 
high‑speed airflow and rotary centrifugation, which 
are expected to significantly improve manufacturing 
efficiency. In addition, the continuity, uniformity, and 
efficiency of conventional multi‑needle electrospin‑
ning are seriously affected because of the electric field 
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disturbances between multiple needles and the faster 
gelation rate of  SiO2 precursor sol. Therefore, needle‑
less electrospinning is equipped with the advantages 
of simple construction, uniform electric field, and high 
efficiency, which is expected to become the main force 
of mass production of electrospun SNFs in the future.

Challenge goes together with chance, and difficulty coex‑
ists with hope. Even though there are many troubles to be 
faced in the future, there is no doubt that electrospinning 
technology is still the most powerful weapon to prepare 
advanced SNFs. In the future, the rapid development of 
SNFs will be realized through the cross‑fusion of multidis‑
ciplinary knowledge of materials science, material mechan‑
ics, and mechanical engineering. We firmly believe that the 
design, manufacture, and application of electrospun SNFs 
will have an exciting and bright future with continuously 
push.
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