Supporting Information for

Multi-Dimensional Composite Frame as Bifunctional Catalytic Medium for Ultra-Fast Charging Lithium-Sulfur Battery

Shuhao Tian^{1, #}, Qi Zeng^{1, #}, Guo Liu², Juanjuan Huang^{1, *}, Xiao Sun¹, Di Wang¹, Hongcen Yang¹, Zhe Liu¹, Xichao Mo², Zhixia Wang¹, Kun Tao², Shanglong Peng^{1, *}

¹ National & Locai Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China

² School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China

[#] Shuhao Tian and Qi Zeng contributed equally to this work.

*Corresponding authors. E-mail: <u>pengshl@lzu.edu.cn</u> (Shanglong Peng), <u>huangjj@lzu.edu.cn</u> (Juanjuan Huang)

S1 Preparation of Related Solutions and Testing Method

Materials characterizations: The structures and morphologies of the prepared samples were characterized by field-emission scanning electron microscopy (FE-SEM, Apero S) and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G2 F30). The crystal structure of the samples was identified by X-ray powder diffraction (XRD, Rigaku RINT2400 with Cu K α radiation). X-ray photoelectron spectroscopy (XPS) analysis was carried out using a Kratos Axis Ultra DLD instrument with Al K α probe beam.

Preparation of the Li₂S₆ and Li₂S₈ solution: Li₂S₆ and Li₂S₈ were selected as prototype of LiPS. The 0.5 M Li₂S₆ solution was prepared by mixing sulfur and Li₂S (5:1 in weight) in 1,3-dioxolane (DOL) and dimethoxymethane (DME) (1:1, v/v) mixed solvent, followed by stirring at 60 °C for 24 h. 1 M Li₂S₈ is also configured according to the above method, but the solvent is changed to ethylene glycol dimethyl ether. In adsorption and cell test, the difference between LiPS is whether to add 1 M LITFSI or not. In addition, Li₂S₆ and Li₂S₈ blank electrolyte is also configured.

LiPS adsorption tests: Add 20 mL Li_2S_6 (3 mM) to one side of the electrolyzer and 20 mL blank electrolyte to the other side, and sandwich the modified diaphragm in the middle of the electrolyzer. After the adsorption test, absorb the electrolyte on the blank side for UV-vis spectroscopy, and the active material can be used for XPS analysis.

Assembly and tests of symmetric cells: Dissolve 5 mg of active substance in 10 mL of ethanol, ultrasonic for 30 min, measure the corresponding solution with a pipette and drop it on carbon paper to prepare electrode materials. Add 20 μ L Li₂S₆ (0.5 M) to both sides of the diaphragm to assemble symmetrical batteries for electrochemical test, and the voltage window is -1 – 1 V. EIS measurements were conducted in the frequency range of 0.01 Hz to 10 kHz.

Li₂S precipitation measurement: The electrode material is prepared by the above method. The electrode material and lithium sheet are used to assemble the battery, and 20 μ L blank electrolyte is dripped on one side of the lithium sheet and 10 μ L Li₂S₈ (0.3 M) is dripped on one side of the electrode material. The lithium-catalyst batteries were galvanostatically discharged at 0.112 mA to 2.06 V, and then potentiostatically discharged at 2.05 V for 21,600 s.

Li₂S dissolution measurement: The electrode material is prepared by the above method. The electrode material and lithium sheet are used to assemble the battery, and 20 μ L blank

electrolyte is dripped on one side of the lithium sheet and 10 μ L Li₂S₈ (0.3 M) is dripped on one side of the electrode material. The lithium-catalyst batteries were galvanostatically discharged at 0.1 mA to 1.7 V, and then potentiostatically discharged at 2.35 V for 20000 s.

Lithium ion diffusion measurement: Cyclic voltammetry tests were carried out at different sweep speeds of 0.1 to 0.5 mV s⁻¹ (Figure 4b, S8 and S9) to study the lithium ion diffusion caused by different samples on the electrode surface. There is a linear relationship between the current density of two reduction peaks and one oxidation peak in lithium-sulfur battery and the square root of scanning rate, which can be fitted by Randles-Sevcik equation:

$$I_p = (2.69 \times 10^5) \cdot n^{1.5} \cdot A \cdot D^{0.5} \cdot C_{Li+} \cdot v^{0.5}$$
(S1)

where I_P is the peak current density, n is the number of electrons in the reaction, A is the active electrode area, D is lithium ion diffusion coefficient, C_{Li+} is the lithium ion concentration and v is the scanning rate [54].

Cell assembly and measurements: CR2032-type button were assembled and sealed in a highpurity arogon-filled glovebox (H₂O, O₂ <0.01 ppm) Lithium foil (15.6 mm) was used as anode and S@C electrode as cathode. The electrolyte was prepared by dissolving 1 M LiTFSI and 2.0 wt% LiNO₃ in DME and 1,3-dioxolane (DOL) (1:1, v/v). The electrolyte amount added in the common cell is 40 μ L. The galvanostatic charge-discharge test was carried on a LAND battery tester in voltage range between 1.7 - 2.8 V. CV and EIS measurements (0.01-10⁵ KHz) were performed on the CHI-760E electrochemical workstation.

DFT calculations: All the spin-polarized density functional theory (DFT) calculations were performed by using the projected augmented wave (PAW) pseudopotentials, as implemented in the Vienna ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) form was employed. The cut-off energy was set to 450 eV and the convergence threshold was set to 10^{-5} and 0.02 eV Å⁻¹ for energy and force, respectively. The van der Waals (vdW) interactions between Ti₃C₂O₂ and Li₂S_n were dealt with using the Grimme's D3-type of the semiempirical method. A 4×4×1 k-mesh was employed for the Brillouin zone integrations, and a vacuum layer of 15 Å was employed to avoid interactions of neighbouring images. In addition, the climbing nudged elastic band method (CNEB) method was used for computing Li₂S decomposition barriers. To construct the surface slab models, (4×4) Ti₃C₂O₂ and the (111) surface of ($\sqrt{3} \times \sqrt{3}$) CoS₂ supercell were used with the total 202 atoms.

Fig. S1 a) SEM image of MX, **b-c**) SEM images of MX nanosheets, **d-e**) SEM images of MX@ Co(OH)₂, f) SEM image of MX@CoS₂

Fig. S3 a-c) A typical sectional view of the M/PP modified separator, d) top view

Fig. S4 a-c) A typical sectional view of the MCCoS/PP modified separator, d) top view

(a)

PP

M/PP

MC/PP

Oh

4h

8h

Fig. S5 Diffusion tests of Li₂S₆ with a) PP, b) M/PP, c) MC/PP, and d) MCCoS/PP separator

Fig. S6 a) XPS Co 2p and b) XPS S 2p spectra of MX@CoS2 after Li2S6 adsorption

Fig. S7 EIS spectra of the symmetric cells assembled using CP, MX, and MX@CoS₂

Fig. S8 a) XPS Co 2p and b) XPS S 2p spectra of MX@CoS₂ after Li₂S₆ adsorption

Fig. S9 EIS of Li–S battery based on the different separators

Fig. S10 CV curves of the Li–S batteries using (**a**) M/PP, and (**b**) MCCoS/PP separator at various temperatures. (**c**) Relation of Li_2S_4 conversion reaction with respect to temperatures of Li-S battery based on M/PP and MCCoS/PP separator

Fig. S11 a-c) CV curves of Li–S battery based on the different separators, **d-e**) CV curves of Li–S battery based on the different separators at various scan rates, **g-i**) Plot of CV peak of **g**) Peak 1 (S₈-Li₂S₄), **h**) Peak 2 (Li₂S₄-Li₂S), and i) Peak 3 (Li₂S-S₈) versus the square root of scan rates

Fig. S12 a) CV curves of Li–S battery based on the MCCoS/PP separator **b**) CV curves of Li–S battery based on the MCCoS/PP separator at different scan rates from 0.1 to 0.5 mV s⁻¹. **c**) Values of CV peak current (I_p)/square root of the scan rates ($v^{0.5}$) for the four different separators in the first (peak A: $S_8 \rightarrow Li_2S_x$) and second (peak B: $Li_2S_x \rightarrow Li_2S_2/Li_2S$) cathodic reduction processes and the anodic oxidation process (peak C: $Li_2S_2/Li_2S \rightarrow S_8$)

S2 Assembling, Electrochemical Tests, and Analysis of LIBs

The Ti₃C₂@CoS₂/CNTs and PVDF were mixed at a mass ratio of 9:1 and ground for 1 h, and then NMP was added for grinding for 0.5 h. The obtained samples were coated on aluminum foil and dried under vacuum at 60 °C for 24 h. The obtained sample was cut into electrode disks with a diameter of 12 mm. CR2032-type button were assembled and sealed in a high-purity arogon-filled glovebox (H₂O, O₂ <0.01 ppm). Lithium foil (15.6 mm) was used as anode and Ti₃C₂@CoS₂/CNTs electrode as cathode. The electrolyte was prepared by dissolving 1 M LiTFSI and 2.0 wt% LiNO₃ in DME and 1,3-dioxolane (DOL) (1:1, v/v). The electrolyte amount added in the common cell is 40 µL. The galvanostatic charge-discharge test was carried on a LAND battery tester in voltage range between 1.7 - 2.8 V. The applied current values are based on Li-S batteries to guarantee the accuracy of the data. That is, in the cycling performance test, the current density of the Li-S battery is set to 0.1C (for an average sulfur loading of 1.2 mg cm⁻², the actual current is about 0.227 mA), so on the Land CT2001A program-controlled test system, The current per cell is set to 0.227 mA. The test results are as follows (Fig. S13).

In this discussion, we assume that the capacity (C_{All}) of the Li-S battery comes from the active material sulfur (C_S) and the separator material Ti₃C₂@CoS₂/CNTs (C_H) , therefore,

$$C_{All} = C_S + C_H \tag{S2}$$

The masses of sulfur and Ti₃C₂@CoS₂/CNTs in Li-S battery are m_s and m_H , respectively. The specific capacities they contribute are SC_s and SC_H , respectively. In a typical calculation without considering the capacity contribution of Ti₃C₂@CoS₂/CNTs, the specific capacity of sulfur (*SC*) as shown in Fig. 5a, d in our manuscript is expressed as (All specific capacity calculations used in the manuscript are based on this formula),

$$SC = \frac{c_{All}}{m_S} \tag{S3}$$

However, the actual specific capacity of sulfur (SC_S) can be obtained by deducting the influence of the separator material,

$$SC_S = \frac{c_S}{m_S} = \frac{c_{All} - c_H}{m_S} = SC - SC_H \cdot \frac{m_H}{m_S}$$
(S4)

where $SC_H \cdot \frac{m_H}{m_S}$ is the additional capacity contributed by Ti₃C₂@CoS₂/CNTs. m_H and m_s are known for a certain battery. *SC* and *SC_H* have been given (Figs. 5a and S13). Additional capacity contributions can be easily calculated and deducted.

Fig. S13 a Cyclic performance, **b** rate performance of $Ti_3C_2@CoS_2$, **c** Cyclic performance, **d** rate performance of $Ti_3C_2@CoS_2/CNT_s$

Fig. S14 Rate performance of the different separators after removing the contribution of separator capacity

Fig. S15 rate performance of the different separators

Fig. S17 SEM images of the surface of lithium sheets after high current cycling of Li-S batteries equipped with **a** PP, **b** M/PP, **c** MC/PP, **d** MCCoS/PP

Fig. S18 Coulombic efficiencies of lithium-sulfur battery equipped with different separators

Fig. S19 Cyclic performance of the different separators after removing the contribution of separator capacity

Fig. S20 Photo of CNTs soaked in a Li₂S₆ solution after 12h

Fig. S21 Cyclic performance of CNTs as cathode material of Li-S battery

Nano-Micro Letters

Fig. S22 XRD patterns of Ti₃AlC₂, Ti₃C₂, Ti₃C₂ nanosheets and Ti₃C₂@ CoS₂

Fig. S23 a) XPS O 1s and b) XPS C 1s spectra of MX@CoS₂

Fig. S24 a-d) Photographs of the MCCoS/PP modified separator

Fig. S25 GITT of of Li-S battery based on PP and MCCoS/PP separator

Fig. S26 a-b) GITT charge-discharge profiles of Li–S battery based on PP and MCCoS/PP separator

Fig. S27 Optimized structures of a,b) MX and c,d) MX@CoS₂

S**11**/S**14**

Fig. S28 Li₂S decomposition process of a-c) MX, d-f) MX@CoS₂

Table S1 Comparison of MCCoS/PP as separator of Li–S battery with state-of-the-art MX based materials

Host material	Capacity (mAh/g) (Low rate)	Capacity (mAh/g) (High rate)	Capacity retention (mAhg ⁻¹ /%) (cycles, low rate)	Decay rate (per cycle,%) (time, rate)
MCCoS/PP	1625.5	368.6	1002.3/61.7%	0.033%
This work	0.1C	20C	100 0.1C	1000 7C
S@MXene@PDA	1439	624	1044/73%	0.048%
[S1]	0.2C	6C	150 0.2C	770 2C
Ti ₃ C ₂ /S and Ti ₃ C ₂ interlayer [S2]	1062 0.2C	288 10C	632/60% 50 0.5C	0.252% 200 2C
Crumpled N-doped Ti ₃ C ₂ T _x /S [S3]	1144 0.2C	770 2C	950/83.1% 200 0.2C	
Porous N-doped Ti ₃ C ₂ T _x /S [S4]	1072 0.5C	792 3C	1014/94.6% 100 0.5C	0.094% 600 5C
Mo ₂ C/CNTs/S	1235	665	925/74.8%	0.18%
[S5]	0.1C	5C	250 0.1C	100 5C
Ti ₃ C ₂ T _x @ mesoporous C/S [S6]	1225.8 0.05C	544.3 4C		
Ti ₃ C ₂ T _x -1T-2H Mo ₂ S-	1194.7	677.2		0.07%
C/S [S7]	0.1C	2C		300 0.5C
CoS ₂ @NGCN/S	1546	525.3	900/-	0.075%
[S8]	0.1C	2C	100 0.1C	300 1C
CoS ₂ /HPGC/interlayer	1055	650	846/80.1%	0.07%
[S9]	0.2C	2C	250 0.2C	500 1C
TiN NM@C		304		0.059%
[S10]		10C		1000 4C
S/CoZn-Se@N-MX	1270	844	1016/80%	0.034%
[S11]	0.2C	3C	100 0.2C	2000 2C
PM-CNT- Separator	1105	677	801/72.5%	0.07%

[S12]	0.5C	2C	150 0.5C	500 1C
N-P $Ti_3C_2T_x/S$		819.5		
[S13]		2C		
PA-Mxene/CNT-50		668		0.025%
[S14]		2C		800 0.5C
OV-TnQDs@PCN/S		674	878/90%	0.012%
[S15]		2 C	100 0.1C	1000 2C
AB- CoS ₂	1108	475	650/59%	0.09%
[S16]	0.2C	4 C	150 0.2C	450 2C
N- Ti ₃ C ₂ T _x /C@PP	1363	675	1018/-	0.07%
[S17]	0.1C	2C	100 0.1C	500 0.5C
Ti ₃ C ₂ T _x /GO@PP		640		0.23%
[S18]		5C		300 1C
MPF13-550/PP	1235	593	721/61.7%	0.375%
[S19]	0.1C	2C	200 0.2C	200 2C
СМР	1415	728	992/70%	0.06%
[S20]	0.1C	2C	100 0.1C	600 1C

Supplementary References

- [S1] Y. Yao, W. Feng, M. Chen, X. Zhong, X. Wu et al., Boosting the electrochemical performance of Li–S batteries with a dual polysulfides confinement strategy. Small 14(42), 1802516 (2018). <u>https://doi.org/10.1002/smll.201802516</u>
- [S2] Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti₃C₂ nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12(3), 2381-2388 (2018). <u>https://doi.org/10.1021/acsnano.7b07672</u>
- [S3] W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). <u>https://doi.org/10.1002/aenm.201702485</u>
- [S4] Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao et al., Rational design of porous nitrogendoped Ti₃C₂ MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 70, 104555 (2020). <u>https://doi.org/10.1016/j.nanoen.2020.104555</u>
- [S5] L. Lv, C. Guo, W. Sun, Y. Wang, Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo₂C-based MXene nanosheets for lithium–sulfur batteries. Small 15(3), 1804338 (2019). <u>https://doi.org/10.1002/smll.201804338</u>
- [S6] W. Bao, D. Su, W. Zhang, X. Guo, G. Wang, 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26(47), 8746-8756 (2016). <u>https://doi.org/10.1002/adfm.201603704</u>
- [S7] Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang et al., Rational design of MXene/1T-2H MoS₂-C nanohybrids for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28(38), 1707578 (2018). <u>https://doi.org/10.1002/adfm.201707578</u>
- [S8] S. Seo, D. Park, S. Park, D. Kim, "Brain-coral-like" mesoporous hollow CoS₂@Ndoped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29(38), 1903712 (2019). https://doi.org/10.1002/adfm.201903712
- [S9] Q. Hu, J. Lu, C. Yang, C. Zhang, J. Hu et al., Promoting reversible redox kinetics by separator architectures based on CoS₂/HPGC interlayer as efficient polysulfidetrapping shield for Li–S batteries. Small 16(34), 2002046 (2020). <u>https://doi.org/10.1002/smll.202002046</u>

- [S10] X. Huang, J. Tang, T. Qiu, R. Knibbe, Y. Hu et al., nanoconfined topochemical conversion from MXene to ultrathin non-layered tin nanomesh toward superior electrocatalysts for lithium-sulfur batteries. Small 17(32), 2101360 (2021). <u>https://doi.org/10.1002/smll.202101360</u>
- [S11] Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33(33), 2101204 (2021). https://doi.org/10.1002/adma.202101204
- [S12] D. Xiong, S. Huang, D. Fang, D. Yan, G. Li et al., Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium–sulfur batteries. Small 17(34), 2007442 (2021). <u>https://doi.org/10.1002/smll.202007442</u>
- [S13] C. Wei, M. Tian, Z. Fan, L. Yu, Y. Song et al., Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti₃C₂ MXene framework toward advanced Li–S full batteries. Energy Storage Mater. 41, 141-151 (2021). <u>https://doi.org/10.1016/j.ensm.2021.05.030</u>
- [S14] B. Zhang, C. Luo, G. Zhou, Z. Pan, J. Ma et al., Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium–sulfur batteries with a high sulfur loading. Adv. Funct. Mater. **31**(26), 2100793 (2021). <u>https://doi.org/10.1002/adfm.202100793</u>
- [S15] H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., MXene-derived Ti_nO_{2n-1} quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. **33**(21), 2008447 (2021). <u>https://doi.org/10.1002/adma.202008447</u>
- [S16] P. Zeng, L. Huang, X. Zhang, Y. Han, Y. Chen, Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS₂ modified separator: mechanism research and performance improvement. Appl. Surf. Sci. 427, 242-252 (2018). <u>https://doi.org/10.1016/j.apsusc.2017.08.062</u>
- [S17] G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li et al., In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309-1318 (2019). <u>https://doi.org/10.1016/j.cej.2019.05.119</u>
- [S18] P. Liu, L. Qu, X. Tian, Y. Yi, J. Xia et al., Ti₃C₂T_x/graphene oxide free-standing membranes as modified separators for lithium–sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 3(3), 2708-2718 (2020). <u>https://doi.org/10.1021/acsaem.9b02385</u>
- [S19] L. Lin, M. Qi, Z. Bai, S. Yan, Z. Sui et al., Crumpled nitrogen-doped aerogels derived from MXene and pyrrole-formaldehyde as modified separators for stable lithiumsulfur batteries. Appl. Surf. Sci. 555, 149717 (2021). <u>https://doi.org/10.1016/j.apsusc.2021.149717</u>
- [S20] N. Li, W. Cao, Y. Liu, H. Ye, K. Han, Impeding polysulfide shuttling with a threedimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp. 573, 128-136 (2019). <u>https://doi.org/10.1016/j.colsurfa.2019.04.054</u>