Supporting Information for

Coordination-Effect-Promoted Durable Ni(OH)₂ for Energy-Saving Hydrogen Evolution from Water/Methanol Co-Electrocatalysis

Guodong Fu¹, Xiaomin Kang^{1, 2}, Yan Zhang¹, Xiaoqiang Yang¹, Lei Wang¹, Xian-Zhu Fu¹, Jiujun Zhang³, Jing-Li Luo¹ and Jianwen Liu^{1, *}

¹Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China

²School of Mechanical Engineering, University of South China, Hengyang, 421001, Hunan Province, P. R. China

³Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China

*Corresponding author. E-mail: jwliu@szu.edu.cn (Jianwen Liu)

S1 General Characterization

The XAS data were analyzed using Demeter version 0.9.26 [S1]. The Energy calibration was performed with a Ni-foil standard by shifting all spectra to a glitch in the incident intensity. Extended X-ray absorption fine structure (EXAFS) spectra were fitted using the FEFF 6.0 code.

S2 Electrochemical Measurements

The potential drop $(i\mathbf{R})$ loss due to the solution/system resistance were applied according to the equation:

$$E_{\rm corr} = E_{\rm mea} - i {\rm R} \tag{S1}$$

All potentials presented in this work were calibrated to the reversible hydrogen electrode (RHE) according to the equation:

$$E_{\rm RHE} = E_{\rm Hg/HgO} + 0.059 \rm{pH} + 0.098$$
 (S2)

The HER and MOR equations are as follows:

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

and

$$CH_3OH + 5OH^- \rightarrow HCOO^- + 4H_2O + 4e^-$$

Overall:

$$CH_{3}OH + OH^{-} \rightarrow HCOO^{-} + 2H_{2}$$

S3 Product Analysis

The faradaic efficiency (FE) of formate is calculated as follows:

$$FE_{formate} = \frac{4nF}{Q} \times 100\%$$
(S3)

Where *n* is the mol of the formate; *F* is the faraday constant, 96485 C mol⁻¹; and Q is the total charge passed (C).

The energy consumption saving percentage of hydrogen at different current densities is calculated as follows:

$$P_{energy \ saving} = \frac{U_{OER} - U_{MOR}}{U_{OER}} \times 100\%$$
(S4)

Where U_{OER} and U_{MOR} is the cell voltage of HER||OER cell and HER||MOR cell at certain current density, respectively.

The energy cost for generating the same amount of H_2 integrated with OER or MOR is calculated as follow:

$$E = UnF \tag{S5}$$

Where U is the cell voltage; n is the mol of H_2 ; F is the faraday constant, 96485 C mol⁻¹;

The reaction time for generating H₂ integrated with OER or MOR are calculated as follow:

$$t = \frac{nF}{I} \tag{S6}$$

Where I is the cell current density; n is the mol of H₂.

S4 Supplementary Tables and Figures

Table S1 Percentage contents for NiMoO₄ \cdot 0.75H₂O and LC–Ni(OH)₂ \cdot *x*H₂O calculated from the XPS peaks

Chemical state	Samples	Peak area	Peak ratio
H ₂ O	NiMoO ₄ ·0.75H ₂ O	38564.05	3.50
H_2O	LC–Ni(OH) ₂ ·xH ₂ O	32259.91	12.68
OH	NiMoO ₄ ·0.75H ₂ O	187840.24	65.75
OH-	LC–Ni(OH) ₂ ·xH ₂ O	197780.9	77.74
O ²⁻	NiMoO ₄ ·0.75H ₂ O	59298.47	20.76
O ²⁻	LC–Ni(OH) ₂ ·xH ₂ O	24358.78	9.58

Table S2 Comparison of the Tafel slopes and Potential at 100 mA cm⁻² of LC–Ni(OH)₂·*x*H₂O and the reported catalysts applied for the electrocatalytic oxidation in 1M KOH

Catalysts	Tafel scope (mV dec ⁻¹)	Potential @ 100 mA cm ⁻² (V vs RHE)	Raw materials	Refs.	
Pt-Co ₃ O ₄	138	1.53	methanol	J. Mater. Chem. A 2021, 9, 6316	
CNF@NiSe	24	1.44	methanol	J. Mater. Chem. A 2019, 7, 25878	
Ni/WC@C	_	1.46	methanol	Chem. Mater. 2022, 34, 959	
NiCo ₂ O ₄	_	1.43	methanol	J. Energy Chem. 2019, 29, 136	
$Ni_{1-x}Fe_xSe_2$	_	1.58	methanol	Small 2021 , <i>17</i> , 2006623	
HCl-modified Ni(OH) ₂	17.6	1.36	methanol	Appl. Catal. B 2021, 281, 119510	
S-NiCo-LDH	38.7	1.39	methanol	J. Mater. Chem. A 2022, 10, 1329	
Ni ₃ S ₂ CNFs	27.3	1.40	methanol	Nano Energy 2021 , 80, 105530	
Pt-NP/NiO-NS	27	1.41	methanol	Chem. Eng. J. 2021, 411, 128292	
Ru&Fe–WOx	32	1.50	methanol	Appl. Catal. B 2021, 296, 120359	

Mo-Co ₄ N	42	1.49	methanol	J. Mater. Chem. A 2021, 9, 21094
Cu ₂ Se/Co ₃ Se ₄	87	1.46	methanol	Appl. Catal. B 2021, 285,119800
h–NiSe/CNTs	39.2	1.43	methanol	Adv. Funct. Mater. 2021 , <i>31</i> , 2008812
Co(OH)2@HOS/CP	71	1.55	methanol	Adv. Funct. Mater. 2020 , <i>30</i> , 1909610
NiIr-MOF/NF	17.7	1.41	methanol	Appl. Catal. B 2022, 300, 120753
LC-Ni(OH)2·xH2O	28	1.39	methanol	This Work

Table S3 Parameter for EXAFS fitting

Sample	Path	Ν	S ₀ ²	σ^2 (10 ⁻³ Å ²)	e ₀ (eV)	R(Å)	R-Factor (%)	K-space range (Å ⁻¹)	R-space range (Å)
NiMoO4 • 0.75 H ₂ O Ni Kα	Ni–O	6	0.9(1)	6(1)	-1(1)	2.03(1)	2.4	3–15	1–4
	Ni–Ni	2		3(1)		2.96(1)			
	Ni-Mo	3		6(1)		3.48(1)			
	Ni–Mo	3		6(2)		3.82(2)			
Ni(OH)2 Ni Kα	Ni–O	6	0.9(1)	6(1)	-4(1)	2.06(1)	1.8	3–15	1–3.4
	Ni–Ni	6		6(1)	-4(1)	3.11(1)			
LC–	Ni–O	6		8(1)		2.04(1)			
$1(OH)_2$ $\cdot 2.75H_2$ O Ni Ka	Ni–Ni	1.5	0.9(1)	8(1)	-3(1)	3.07(1)	3.2	3–15	1–3.4
LC– Ni(OH)2	Ni–O	6		8(1)		2.04(1)			
·2.5H ₂ O Ni Kα	Ni–Ni	1.5	0.9(1)	6(1)	-3(1)	3.07(1)	3.9	3–15	1–3.4

Table S4 Selective distances (Å) for optimized LC–Ni(OH)_2 $\cdot 2.75H_2O$ and LC–Ni(OH)_2 $\cdot 2.5H_2O$

Ni(OH) ₂ ·2	2.75H ₂ O	Ni(OH) ₂ ·2.50H	20
Ni ₁ -O ₁ : 2.10	Ni ₃ -O ₁₁ : 2.14	Ni ₁ -O ₁ : 2.10	Ni ₃ -O ₁₁ : 2.14
Ni ₁ -O ₂ : 2.19	Ni ₃ -O ₁₂ : 2.16	Ni ₁ -O ₂ : 2.15	Ni ₃ -O ₁₂ : 2.10
Ni ₁ -O ₃ : 2.06	Ni ₃ -O ₁₃ : 2.05	Ni ₁ -O ₃ : 2.06	Ni ₃ -O ₁₃ : 2.05
Ni ₁ -O ₄ : 2.06	Ni ₃ -O ₁₄ : 2.15	Ni ₁ -O ₄ : 2.04	Ni ₃ -O ₁₄ : 2.12
Ni ₁ -O ₅ : 2.05	Ni ₃ -O ₁₅ : 2.00	Ni ₁ -O ₅ : 2.05	Ni ₃ -O ₁₅ : 2.10
Ni ₁ -O ₆ : 2.14	Ni ₃ -O ₁₆ : 2.05	Ni ₁ –O ₆ : 2.21	Ni ₃ -O ₁₆ : 2.05
Ni ₂ -O ₃ : 2.05	Ni ₄ -O ₁₃ : 2.12	Ni ₂ –O ₃ : 2.01	Ni ₄ -O ₁₃ : 2.06
Ni ₂ -O ₇ : 1.99	Ni ₄ -O ₁₇ : 2.06	Ni ₂ –O ₇ : 2.05	Ni ₄ -O ₁₇ : 2.05
Ni ₂ -O ₈ : 2.32	Ni ₄ -O ₁₈ : 2.06	Ni ₂ –O ₈ : 2.25	Ni ₄ -O ₁₈ : 2.17
Ni ₂ -O ₉ : 2.07	Ni ₄ -O ₁₉ : 2.11	Ni ₂ –O ₉ : 2.05	Ni ₄ -O ₁₉ : 2.13
Ni ₂ -O ₆ : 2.13	Ni ₄ -O ₁₆ : 2.03	Ni ₂ –O ₆ : 2.16	Ni ₄ -O ₁₆ : 2.09
Ni ₂ -O ₁₀ : 2.06	Ni ₄ -O ₂₀ : 2.22	Ni ₂ -O ₁₀ : 2.06	Ni ₄ -O ₂₀ : 2.08

Note: The atomic index is the same as that in Fig. S9.

Table S5 Comparison of the cell voltage, current density and stability test time of the cell in the previous works and this work

No.	Cell	Cell Voltage (V)	Current density (mA cm ⁻²)	Electrolytes	Raw materials	Stability test time (h)	Refs.
1	Co(OH)2@HOS Co(OH)2@HOS	1.56	10	1 M KOH	methanol	20	Adv. Funct. Mater. 2020 , <i>30</i> , 1909610
2	Co _x P@NiCo–LDH Co _x P@NiCo–LDH	1.6	10	1 M KOH	methanol	20	J. Energy Chem. 2020 , <i>50</i> , 314
3	Ni(OH) ₂ /NF Ni(OH) ₂ /NF	1.56	20	1 M KOH	methanol	20	Appl. Catal. B 2021 , 281, 119510
4	MnO2/NF MnO2/NF	1.40	10	1 M KOH	urea	20	Angew. Chem. Int. Ed. 2016 , <i>55</i> , 3804
5	NiMoO–H ₂ NiMoO– Ar	1.55	100	1 M KOH	urea	50	Energy Environ. Sci. 2018 , <i>11</i> , 1890
6	Ni–WOx Ag NPs	2.16	100	1 M KOH	urea	10	Angew. Chem. Int. Ed. 2021 , <i>60</i> , 10577
7	Ni ₃ N-350/NF Ni ₃ N- 350/NF	1.51	100	1 M KOH	urea	25	ACS Sustain. Chem. Eng. 2020 , 8, 7414–7422
8	O–NiMoP/NF O– NiMoP/NF	1.40	20	1 M KOH	urea	10	Adv. Funct. Mater. 2021 , <i>31</i> , 2104951
9	Ni–NiO– Mo _{0.84} Ni _{0.16} /NF Ni– NiO–Mo _{0.84} Ni _{0.16} /NF	1.77	150	1 M KOH	urea	60	ACS Sustain. Chem. Eng. 2020 , 8, 7174–7181
10	$\begin{array}{l} W-NiS_2/MoO_2@CC \ \\ W-NiS_2/MoO_2@CC \end{array}$	1.4	100	1 M KOH	urea	24	Chem. Eng. J. 2022, 432, 134274
11	1% Cu: α -Ni(OH) ₂ 1% Cu: α -Ni(OH) ₂	1.6	11	1 M KOH	urea	40	J. Mater. Chem. A 2019 , <i>7</i> , 13577-13584
12	NiClO-D Pt/C	1.7	100	1 M KOH	urea	1	Angew. Chem. Int. Ed. 2019 , <i>58</i> , 16820
13	$\begin{array}{c} CoMn/CoMn_2O_4 \ \\ CoMn/CoMn_2O_4 \end{array}$	1.68	100	1 M KOH	urea	17	Adv. Funct. Mater. 2020 , <i>30</i> , 2000556
14	Ni(OH)2/CuO NWs/CF Pt/C/NF	1.42	20	1 M KOH	urea	150	Small method 2022 , <i>6</i> , 2101017
15	Ni ₄ Mo–MoO ₂ LC– Ni(OH) ₂ :xH ₂ O	2	>500	6 M KOH	methanol	50	This work

Fig. S1 a, b SEM image of the NiMoO₄· 0.75 H₂O. **c, d** TEM image of the NiMoO₄· 0.75 H₂O. **e** HADDF image of the NiMoO₄· 0.75 H₂O. **f, g** Elemental mapping of the NiMoO₄· 0.75 H₂O

Fig S2. a, b SEM image of LC–Ni(OH)₂·xH₂O–10. **c, d** TEM image of LC–Ni(OH)₂·xH₂O–10. **e** HADDF image of LC–Ni(OH)₂·xH₂O–10. **f, g** Elemental mapping of LC–Ni(OH)₂·xH₂O–10

Fig. S3 a, b SEM image of LC–Ni(OH)₂·*x*H₂O–20. **c, d** TEM image of LC–Ni(OH)₂·*x*H₂O–20. **e** HADDF image of LC–Ni(OH)₂·*x*H₂O–20. **f, g** Elemental mapping of LC–Ni(OH)₂·*x*H₂O–20

Fig. S4 XPS survey spectra of **a** NiMoO₄· H₂O, **b** LC–Ni(OH)₂·xH₂O–10, **c** LC–Ni(OH)₂·xH₂O–20, **d** LC–Ni(OH)₂·xH₂O

Nano-Micro Letters

Fig. S5 Cycle voltametric curve of LC-Ni(OH)₂·xH₂O in 1M KOH

Fig. S6 a, b SEM image and **c** Raman spectra of LC–Ni(OH)₂·*x*H₂O after 100000s stability test. **d** ICP-OES for the ratio of Mo, Ni and O of LC–Ni(OH)₂·*x*H₂O before and after 100000s stability

Fig. S7 a The standard curve for formate at the concentration of 1.0, 2.5, 5.0, 7.5 and 10.0 M. **b** The correlation of the concentration between concentration(mM) and the peak area (a.u.) for formate. **c** The ion chromatography spectra for formate at different potentials. **d** LSV curve for LC–Ni(OH)₂·xH₂O in 1 M KOH with different methanol concentrations (0.2-0.7M)

Fig. S8 CV curve of **a** Ni foam, **b** Ni(OH)₂, **c** NiMoO₄· 0.75H₂O, **d** LC–Ni(OH)₂·xH₂O–10, **e** LC–Ni(OH)₂·xH₂O–20, **f** LC–Ni(OH)₂·xH₂O at different scan rate

Fig. S9 a LSV curve of different reconstruction time of $LC-Ni(OH)_2 \cdot xH_2O$ catalysts in 1 M KOH and 0.5 M methanol. **b** Linear fitting of the electrochemically active surface area for different samples

Fig. S10 Optimization of lattice parameters for **a** LC–Ni(OH)₂·2.75H₂O and **b** LC–Ni(OH)₂·2.50H₂O. Optimized structures for **c** LC–Ni(OH)₂·2.75H₂O and **d** LC–Ni(OH)₂·2.50H₂O

Fig. S11 EXAFS fitting results (line) and experiment data (point) of Ni K edge in *k*-space and *R*-space for different samples

Fig. S12 a Illustration of Ni(OH)₂ with 6 fold Ni-Ni coordination as indicated by the cycle. **b** Illustration of LC–Ni(OH)₂·2.75H₂O with average 1.5 fold Ni-Ni coordination. The cycle indicates 2 fold coordination whereas the cycle indicates 1 fold Ni-Ni coordination

Fig. S13 a, b SEM image of Ni₄Mo-MoO₂. c XRD of Ni₄Mo-MoO₂

Supplementary References

[S1]B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537-541 (2005). <u>https://doi.org/10.1107/S0909049505012719</u>