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HIGHLIGHTS

• The neuromorphic vision sensors for near‑sensor and in‑sensor computing of visual information are implemented using optoelectronic 
synaptic circuits and single‑device optoelectronic synapses, respectively.

• This review focuses on the recent progress, working mechanisms, and image pre‑processing techniques about two types of neuromor‑
phic vision sensors based on near‑sensor and in‑sensor vision computing methodologies.

ABSTRACT The latest developments in bio‑inspired neuromorphic 
vision sensors can be summarized in 3 keywords: smaller, faster, and 
smarter. (1) Smaller: Devices are becoming more compact by integrating 
previously separated components such as sensors, memory, and processing 
units. As a prime example, the transition from traditional sensory vision 
computing to in‑sensor vision computing has shown clear benefits, such 
as simpler circuitry, lower power consumption, and less data redundancy. 
(2) Swifter: Owing to the nature of physics, smaller and more integrated 
devices can detect, process, and react to input more quickly. In addition, 
the methods for sensing and processing optical information using various 
materials (such as oxide semiconductors) are evolving. (3) Smarter: Owing 
to these two main research directions, we can expect advanced applica‑
tions such as adaptive vision sensors, collision sensors, and nociceptive 
sensors. This review mainly focuses on the recent progress, working mechanisms, image pre‑processing techniques, and advanced features 
of two types of neuromorphic vision sensors based on near‑sensor and in‑sensor vision computing methodologies. 
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1 Introduction

The development of advanced optoelectronic vision sen‑
sors for enabling advanced image recognition of visual 
information and data pre‑processing will accelerate 
advances in machine vision and mobile electronics. In 
contrast to conventional sensory computing methods 
including analogue‑to‑digital signal conversion and 
digital‑logic computing tasks (i.e., von Neumann com‑
puting), neuromorphic vision computing can dramati‑
cally improve the energy efficiency and data processing 
speed by minimizing unnecessary raw data transmissions 
between front‑end photosensors and back‑end post‑pro‑
cessors (Fig. 1) [1–4]. Neuromorphic vision sensors are 
generally appropriately designed for neuromorphic vision 
computing tasks, such as denoising, edge enhancement, 
spectral filtering, and the recognition of visual informa‑
tion. Depending on whether in situ pre‑processing is pos‑
sible, the approaches can be divided into methods using 
near‑sensor and in‑sensor computing processors [5]. In 
a near‑sensor computing method, the image sensor for 
capturing visual information and in‑memory computing 
processor for pre‑processing the captured image exist sep‑
arately. An in‑memory computing processor can simul‑
taneously perform memory and computing tasks based 
on analog memory functions [6]. Neuromorphic vision 
sensors for in‑sensor computing can be built with single‑
element image sensors which allows the both reception of 
visual information and execution of in‑memory comput‑
ing processes in the same device. This is an ideal case for 
future vision‑computing systems in artificial intelligence 
machines and mobile electronic devices.

The neuromorphic vision sensors for near‑sensor and 
in‑sensor computing can be implemented using (i) opto‑
electronic synaptic circuits (OSCs) and (ii) single‑device 
optoelectronic synapses (OSs), respectively (Fig. 2) [7, 
8]. OSCs are designed for near‑sensor vision comput‑
ing (i.e., near‑sensor computing processors), and can be 
built by interconnecting a series of discrete functional 
units such as photosensors and electrical synapses (ESs). 
Artificial ESs are the most important components for 
performing both memory and computational tasks (i.e., 
in‑memory computing), and for improving the data pro‑
cessing speed and power consumption efficiency during 
image processing. The artificial synapses for in‑memory 

computing must have conductance switching capabili‑
ties and analog storage states. These analog memory 
functions can be evaluated according to the short‑term 
plasticity, long‑term potentiation, long‑term depression, 
paired pulse facilitation, paired pulse depression, spike 
time‑dependent plasticity, spike number‑dependent plas‑
ticity, and spike frequency‑dependent plasticity [9, 10]. 
The artificial ESs use positive and negative bias spikes as 
electrical programming means for exhibitory and inhibi‑
tory conductance updates. ESs are usually produced 
using two‑terminal memristors and three‑terminal tran‑
sistor device structures. Memristors generally benefit 
from high‑density arrays, easy fabrication processes, 
and high programming speeds. In contrast, transistor‑type 
ESs are emerging as a counterpart option, with advan‑
tages such as energy‑saving computing, uniform device 
performance, nondestructive readouts, linear/symmetric 
conductance switching, and high cyclic stability. Next, 
OSs were initially designed as optoelectronic in‑memory 
computing hardware for modulating conduction states by 
using optical signals as a programming means. However, 
OSs have recently attracted attention as neuromorphic 
vision sensors for in‑sensor computing, as they can per‑
form both optical sensing and in‑memory computing of 
visual information in one device (i.e., an in‑sensor com‑
puting processor). They can be fabricated using device 
structures of two‑terminal memristors and three‑terminal 
transistors. These OSs have unique functional sites for 
optical responses and conductance switching, depending 
on the device architecture. For memristor‑type OSs, the 
photoresponsive space is located between the transpar‑
ent conductive top electrode (TE) and metallic bottom 
electrode (BE). In the case of a transistor‑type OS, the 
photoresponsive layer is mainly located in the channel 
region between the source and drain electrodes, where 
there is an extra gate electrode to engineer the conduct‑
ance switching performance. Details of the various mate‑
rials and device structures of neuromorphic vision sen‑
sors, including the OSC and OS, will be reviewed below.

In this review, we focus on the recent advances in neuro‑
morphic vision sensors for the machine vision computing 
systems essential to autonomous vehicles, intelligent robots, 
and mobile electronics. Section 2 provides an overview 
of the material design, device architecture, and operating 
mechanism of an OSC designed as a near‑sensor computing 
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processor for visual information. Section 3 details the mate‑
rial design, device architecture, and operating mechanism 
of a single‑element OS designed as an in‑sensor computing 
processor. Section 4 reviews the challenging evolution of 
neuromorphic vision sensors beyond conventional capabili‑
ties and imaging. Finally, the current status and problems of 
neuromorphic vision sensors are briefly summarized, and 
their prospects are discussed.

2  Neuromorphic Vision Sensor 
for Near‑Sensor Vision Computing

The OSCs designed for near‑sensor vision computing (i.e., 
near‑sensor computing processors) can be built by inter‑
connecting a series of discrete functional units, such as 
photosensors and ESs. The photosensors and photovoltaic 
transducers used in traditional visual sensory computing are 
interchangeable in OSCs. This can greatly reduce the bur‑
den of developing neuromorphic vision sensors for the imag‑
ing, recognition, and pre‑processing of image information. 
In a conventional sensory system, a logic‑based computing 
unit and digital memory unit are required for processing the 
acquired image information. However, in the case of an OSC, 
a single artificial ES with an in‑memory computing func‑
tion can replace them, thereby improving the data processing 
speed and power consumption efficiency when processing 
visual information. This section reviews the pioneering OSCs 
and neuromorphic image‑recognition results regarding near‑
sensor vision computing. Then, we take a closer look at the 
hardware configuration and operating mechanism of the ES, a 
key component of the near‑field sensor computing processor.

2.1  Neuromorphic Image Perception Using 
Optoelectronic Synaptic Circuit

OSCs can demonstrate neuromorphic image recogni‑
tion through a series of near‑sensor computing processes, 
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including image sensing in photosensors, photobias con‑
version in photovoltaic transducers, and bias‑driven in‑
memory computing in artificial ESs [11–14]. When the 
optical information from the incident image arrives in the 
individual OSC of each pixel of the neuromorphic vision 
sensor, each photosensor experiences a transient change in 
the channel conductance while receiving the optical input. 
The change in the light‑driven conductance of the photo‑
sensors is converted into the form of a bias signal in the 
photovoltaic transducer. Then, the ES experiences historical 
analog conductance switching depending on the frequency 
and intensity of the translated bias spike. Finally, by map‑
ping the switched conductance values of the ESs located 
in each pixel, well‑refined images can be acquired through 
neuromorphic vision perception with improved computing 
speed and power‑consumption conditions.

In a pioneering work, Shen et  al. [11] reported an 
OSC capable of the neuromorphic perception process‑
ing of ultraviolet (UV) light images. It was constructed 
by directly connecting a diode‑type photosensor using an 
 In2O3 thin film with a wide bandgap and a conductive fila‑
ment (CF) memristor‑type ES using Ni/Al2O3/Au layers 
(Fig. 3a). When the OSC was exposed to UV light, the 
partial voltage assigned to the photosensor unit decreased 
rapidly with light‑induced transient changes in the con‑
ductance of the  In2O3. Conversely, a sufficient residual 
voltage above the threshold was provided to the memris‑
tor device and induced analog switching and nonvolatile 
updating of the memristor conductivity with the Ni CF for‑
mation and growth (Fig. 3b). By mapping the conductance 
values of the memristors at each pixel, well‑refined visual 
data of the incident UV light images were obtained using a 
neuromorphic vision sensor array (Fig. 3c). However, this 
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approach cannot detect color image information because 
the  In2O3 semiconductor has a wider bandgap than the 
visible light energy. Therefore, it is disadvantageous to 
various image recognition.

To overcome this issue, several investigations have been 
conducted to develop OSCs for the near‑sensor computing 
of color image data [13, 14]. Color‑perceive neuromorphic 
vision sensors can be realized by interconnecting color‑
responsive photosensor with color‑inactive ES. Liu et al. 
[14] reported a color‑perceiving OSC fabricated using a 
color‑responsive photovoltaic divider and transistor‑type ES 
(Fig. 3d). Instead of directly connecting the photosensor and 
artificial synapse, they designed an advanced OSC similar 
to an inverter circuit configuration and arranged the pho‑
tosensor, load resistor, and artificial synapse in the proper 
positions. When the photovoltaic divider was exposed to 
color images, the color‑responsive photosensor experienced 
a temporary conductance change. In contrast, since the load 
resistor uses a color‑inactive semiconducting channel, the 
original conductivity of the load resistor can be maintained 
regardless of whether a color light irradiation. Depending 
on the ratio of the electrical conductivity between the pho‑
tosensor and load resistor, an appropriate output voltage was 
transferred from the photovoltaic divider to the region of 
the output voltage electrode connected to the gate terminal 
of the transistor‑type ES (Fig. 3e). The converted voltage 
signal then induced conductance switching for the artificial 
synapse, as electrical programming input. Here, it was con‑
firmed that the amplitude of the output voltage converted in 
the photovoltaic divider and the conductance value of the 
transistor‑type ES increased when the light signals having a 
shorter wavelength or a higher intensity were incident. How‑
ever, because only one photosensor is contained, both short 
wavelength but low intensity light and long wavelength but 
high intensity light caused small output voltage of similar 
range on the voltage divider. Therefore, it is a little difficult 
to recognize the difference between the above‑mentioned 
two images through this OSC‑type neuromorphic vision 
sensor. However, for high‑intensity incident light condi‑
tion, more energetic green image with shorter wavelength 
(λ = 550 nm) than NIR image (λ = 850 nm) could cause 
much higher output voltage in the photovoltaic divider, 
which generated higher conductance change of longer dura‑
tion for electrical ESs. Finally, green color image with high 
light intensity could be successfully perceived and memo‑
rized in the color‑responsive OSC designed for near‑sensor 

computing (Fig. 3f). However, there are several intrinsic 
problems, such as many parts, complex manufacturing 
processes, and low device density. For high‑resolution and 
on‑chip neuromorphic vision sensing, vertical‑integrated 
approaches are more advantageous than planar‑integrated 
approaches, owing to the feasibility of fabricating neuro‑
morphic vision sensors with a smaller chip size. However, 
this requires advanced processing technologies and device 
architectures.

2.2  Neuromorphic In‑Memory Computing Using 
Electrical Synapse

Artificial synapses have been designed as hardware pro‑
cessors for in‑memory computing, e.g., for simultaneously 
storing and computing incoming data. Artificial synapses 
with a biological information computing methodology 
(rather than conventional digital logic‑based computing) 
can dramatically improve the computing speed and power 
consumption efficiency of information processing for vast 
amounts of unstructured data such as images, videos, sound, 
and languages. Many artificial synapses have been steadily 
developed based on memristor‑ and transistor‑based device 
structures. As mentioned in the previous section, in OSCs, 
artificial ES devices represent the most important and essen‑
tial parts of the imaging and pre‑processing of the image 
information. This section reviews the device configurations 
and operating mechanisms of ESs.

2.2.1  Transistor‑Type Electrical Synapses

All transistor‑type ESs have traditional transistors includ‑
ing insulating gate dielectrics, semiconducting channels, 
and conductive three‑terminal electrodes (Fig. 4). How‑
ever, each transistor‑type ES has unique materials and/or 
a unique device design to perform conductance switching 
and analog conductance updating functions using electrical 
bias programming methods [9, 15]. Based on the operation 
mechanisms of transistor‑type ESs, they can be classified 
into electrolyte, floating gate (FG), and ferroelectric‑type 
ESs.

2.2.1.1 Electrolyte Transistor‑type ES Electrolyte transis‑
tor‑type ESs can be manufactured by introducing electro‑
lytes with high capacitance into the dielectric region. Those 
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electrolytes are synthesized by incorporating mobile cations 
into an insulating matrix via solution processes. Generally, 
mobile cations with small radii are used, such as protons 
 (H+), alkali metals  (Li+,  Na+, and  K+), and alkaline earth 
metal ions  (Ca2+ and  Mg2+). According to the matrix phase, 
electrolytes can be classified into liquid (ionic liquid), gel 
(ionic gel), and solid electrolytes (polymeric electrolyte and 
inorganic electrolyte) [16, 17]. When a positive bias input 
is applied to the gate terminal, the mobile cations in the 
electrolyte start to drift to the electrolyte/channel interface, 
owing to the positive bias‑induced electric field (Fig. 4a). 
The mobile cations accumulate near the electrolyte/channel 
interface, resulting in a nonuniform concentration distribu‑
tion of the mobile cations in the electrolyte (and creating a 
concentration gradient). In the case of n‑type channel tran‑
sistors, these sequentially accumulated metal cations pro‑
duce excitatory changes (i.e., potentiation) in the channel 
conductance with the formation of electron double layers 

and electrochemical doping reactions [18]. Even when the 
bias is no longer applied, the updated conduction state is 
maintained for a long time, as the diffusion process requires 
a significant amount of time for the concentration gradient 
of the mobile cations to dissipate. However, the mobile cati‑
ons accumulated at the electrolyte/channel interface gradu‑
ally return to their original uniform state when an opposite 
bias input is applied. Therefore, inhibitory conductance 
switching (i.e., depression) can be achieved can be achieved 
by applying a programming bias spike of opposite polarity 
to the gate terminal.

According to many surveys, electrolyte transistor‑type 
ESs have been manufactured using a fluid ion liquid and 
sticky ion‑gel‑type electrolyte. Aqueous solvents and gel 
polymers are mainly utilized as matrices for ion‑liquid 
and ion‑gel electrolytes. Sun et al. reported an ionic liq‑
uid transistor‑type ES using 1‑Ethyl‑3‑methylimidazolium 
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bis(trifluoromethylsulfonyl)imide (EMIM‑TFSI) and an 
aqueous solvent. The conductivity of n‑type  MoO3 semi‑
conductors can be modulated to a more conductive (resis‑
tive) state through excitatory (inhibitory) updates, owing to 
the electrochemical doping reaction between the  MoO3 and 
protons (Fig. 4b) [19]. Park et al. [20] reported an ion‑gel 
transistor‑type ES using an ion‑gel electrolyte composed 
of EMIM‑TFSI and a gel matrix (Fig. 4c). The mechanical 
flexibility of the gel allowed for the reliable fabrication and 
operation of ion‑gel‑based ESs on plastic substrates [20–23]. 
With this flexible in‑memory computing device, tactile 
information from the human hand could be preprocessed 
directly, without the aid of an external computer device. 
However, liquid and gel electrolytes make it difficult to 
manufacture high‑density device arrays owing to their fluid 
and sticky mechanical properties, and their easy chemical 
modification makes it difficult to secure operational stabil‑
ity. To address these challenges, robust solid electrolytes 
containing insulating solid matrices such as polyethylene 
oxide (PEO), silica  (SiO2), and alumina  (Al2O3) have been 
actively explored. In practice, various electrolyte transistor‑
type ESs have been developed using a solid electrolyte with 
a combination of a solid matrix (polymeric and inorganic 
matrix) and mobile cations: PEO + Li,  SiO2 + H,  SiO2 + Li, 
etc., [24–27]. For example, Liu et al. [27] reported an all‑
solid‑state transistor‑type ES using an inorganic solid elec‑
trolyte comprising inorganic  SiO2 and  Li+ cations (Fig. 4d). 
Depending on the programming cycle of bias input, the 
channel conductivity of the n‑type  Nb2O5 semiconductor 
could be gradually modulated and exhibited a good linear 
update trend, owing to the use of the heavy  Li+ cations (as 
opposed to) light protons.

The computing performance of electrical synapses that 
serve as in‑memory computing hardware in OSC‑type near 
sensors can be evaluated based on the following factors: (i) 
programming speed, (ii) programming power, (iii) nonvola‑
tile storage capability, (iv) programmable number of con‑
ductance, and (v) linearity during conductance update. In the 
cases of electrolyte transistor‑type ESs, their performance 
will be affected by the matrix phase and mobile cationic 
species of the electrolyte layer. In terms of programming 
speed and programming power, using an electrolyte com‑
posed of a liquid matrix and small mobile cations is advan‑
tageous over using an electrolyte composed of a rigid solid 
matrix and relatively large cations. This is because small 
mobile cations can be easily drift from bulk region of the 

soft electrolyte (i.e., ionic liquid and ion gel) to the channel 
region when a programming bias is provided to enhance 
(i.e., potentiation) and decrease (i.e., depression) the channel 
conductance. Indeed, a longer programming time (i.e., slow 
programming speed) or higher programming bias conditions 
(i.e., high power consumption) are required to update the 
channel conductance when using a solid electrolyte. In con‑
trast, solid electrolyte is advantageous for nonvolatile stor‑
age of programmed conductance states. This is because the 
mobile cations accumulated on one side of the electrolyte by 
previous bias programming require a lot of time to return to 
their original position through the solid electrolyte. In fact, 
compared with the cases using the ionic liquid and ion‑gel 
electrolytes, the electrical synapse using the solid electrolyte 
showed stable retention of channel conductance updated by 
bias programming [24–27]. In addition, for circuit‑type neu‑
romorphic vision sensors, solid electrolyte‑based in‑memory 
devices are expected to be preferred because photosensors 
and other components must be closely connected for high‑
resolution image recognition among various electrolytes.

2.2.1.2 FG Transistor‑Type ES To date, the FG structure is 
the most widely used architecture for transistor‑based syn‑
apses, owing to its stable conductance switching and long‑
term retention characteristics [28, 29]. An FG transistor‑type 
ES can be fabricated by vertically stacking thick blocking 
dielectrics, metallic FGs, ultrathin tunneling dielectrics, 
and semiconductor channels (Fig.  5a). Here, the metallic 
FG region serves as a key part of the channel conductance 
switching. As in the other cases, electrical bias spikes of dif‑
ferent polarities are utilized as the programming sources for 
the excitatory and inhibitory conductance switching for in‑
memory computing tasks. When a negative (positive) bias 
is applied at the gate terminal, electrons (holes) are injected 
from the FG to the channel region via the Fowler–Nordheim 
tunneling process. Therefore, the channel conductance can 
be modulated to a more conductive state by undergoing an 
excitatory update with an increase in majority carriers. In 
contrast, when a positive (negative) bias programming input 
is applied, the majority carriers in the n‑type (p‑type) chan‑
nel region move to the FG region. Therefore, the semicon‑
ducting channel exhibits a more resistive electrical perfor‑
mance with the reduction of the majority carriers, achieving 
inhibitory programming.

For long‑term charge storage (i.e., nonvolatile storage), it 
is necessary to use metal material in a low‑dimensional form 
rather than a film form because the charge accumulated in 
the FG should be less lost through the internal leakage path. 
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Noble metals (e.g., Au, Pt, and Cu) are preferred as FG mate‑
rials due to their low chemical deformation during device 
fabrication and operation. Furthermore, ultra‑thin tunneling 
layers with wide band gap insulators (e.g.,  SiO2,  Al2O3, and 
 TiO2) between the FG and channel layers are required to 
maintain the modulated conductance for a long period of 
time. However, it is difficult to create a uniform ultrathin 
tunneling layer on the surfaces of metallic nanomaterials. 
To address these issues, some studies have proposed the 
intentional use of materials able to easily generate ultrathin 
oxide layers on their surfaces. Kim et al. [30] reported an FG 
transistor‑type ES using Al–Al2O3 core–shell nanoparticles 
(NPs) in the FG region. It was possible to spontaneously 
form a uniform ultrathin  Al2O3 tunneling layer between the 
Al NPs and channel layer, owing to the facile oxidation prop‑
erties. Owing to the electronic band alignment between the 
Al NP FG and InGaZnO (IGZO) and the n‑type semicon‑
ductor nature of IGZO, the device could be modulated into 
more conductive and resistive states by negative and positive 
bias programming inputs (Fig. 5b). Similarly, Jo et al. [31] 
reported an FG transistor‑type ES manufactured with  Ti3C2Tx 
MXene‑TiO2 core–shell nanosheets in the FG region using a 

solution coating process. An ultrathin  TiO2 tunneling layer 
on the surface of metallic  Ti3C2Tx MXene could be uniformly 
generated through a simple oxidation reaction in the atmos‑
phere. In contrast to the Al NP FG/n‑type IGZO synaptic 
transistor, the device could be programmed to conductive and 
resistive states by positive and negative bias spikes. This was 
owing to the electronic band alignment between the MXene 
FG and pentacene, and the p‑type semiconductor properties 
of the pentacene. Generally, FG devices are advantageous 
for wide conductance switching ranges and nonvolatile 
long‑term storage. When operating as an in‑memory com‑
puting device, an FG device can exhibit a wide conductance 
dynamic range while strongly retaining its programmed con‑
ductance state. However, for the linear/symmetric conduct‑
ance update and energy‑saving image processing, problems 
such as abrupt conductance changes and relatively high oper‑
ating voltage conditions arising from the FG device‑based 
operation mechanism should be improved.

2.2.1.3 Ferroelectric Transistor‑Type ES A ferroelectric 
transistor‑type ES can be fabricated by introducing ferro‑
electric materials into the gate‑dielectric region [32]. Fer‑
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roelectric materials with spontaneous electrical polarization 
capability and multiple domains can provide nonvolatile 
analog memory functions. When an electrical bias spike is 
applied to the gate terminal, a portion of the randomly ori‑
ented ferroelectric region begins to align in the direction of 
the external electric field (Fig.  5c). The channel conduct‑
ance can be gradually updated by changing the polarization 
of the ferroelectric film. When a positive (negative) gate 
bias spike is applied, the n‑type semiconducting channel 
shows a gradual increase (decrease) in the channel conduct‑
ance (Fig.  5d). The updated channel conductance can be 
maintained owing to the spontaneous electrical polarization 
of the ferroelectric material. In contrast, an p‑type semicon‑
ducting channel exhibits a gradual inhibitory (exhibitory) 
modulation behavior with positive (negative) electrical pro‑
gramming signals.

Polymeric and inorganic ferroelectric materials such as 
Pb(Zr,Ti)O3 (PZT), zirconium‑doped hafnia (HZO), and 
poly(vinylidene fluoride) (PVDF) are widely used in the 
fabrication of ferroelectric transistor‑type ESs [33–35]. Lee 
et al. [34] reported an oxide‑ferroelectric transistor‑type ES 
using HZO (ferroelectric region) and n‑type IGZO (channel 
region). The HZO/IGZO ferroelectric transistor exhibited 
a counterclockwise hysteresis loop owing to the ferroelec‑
tric polarization switching of the HZO. The channel con‑
ductance of IGZO can also be modulated to potentiation 
(depression) states with positive (negative) bias inputs, 
owing to the spontaneous polarization of the HZO ferro‑
electric. Inorganic material‑based ferroelectric transistors 
can successfully perform essential channel conductance 
switching functions for in‑memory computing. However, 
problems remain, such as high power consumption, high‑
cost vacuum processes, and the rigid mechanical properties 
of inorganic materials. To address these problems, Park et al. 
[35] reported polymer‑based ferroelectric transistor‑type ES 
using a PVDF‑trifluoroethylene P(VDF‑TrFE) ferroelectric 
copolymer. Compared with conventional inorganic ferro‑
electrics, the P(VDF‑TrFE) ferroelectric copolymers are 
advantageous for the solution coating and low‑temperature 
processes, making them suitable for flexible electronic prod‑
ucts. Their ferroelectric performance can be optimized by 
phase transformations via thermal annealing. In the study, a 
P(VDF‑TrFE) film with excellent crystallinity and β‑phase 
domains exhibited the best spontaneous polarization, as the 
molecular dipoles were aligned perpendicular to the long 
axis of the polymer chain. The channel conductance of 
n‑type  MoS2 can be switched to more conductive or resistive 

states (potentiation and depression states) via the polariza‑
tion modulation of P(VDF‑TrFE) by positive and negative 
bias inputs, respectively.

Comparing the computing performance of ESs, in terms 
of nonvolatile storage of the programmed conductance state, 
the electrolyte transistor‑type ESs show unstable proper‑
ties in programmed conductivity state. This is because the 
mobile cations accumulated at the channel/electrolyte inter‑
face by the drift process during bias programming prefer to 
return to their original position after programming through 
the spontaneous diffusion process. In fact, most ionic liq‑
uid‑based transistor‑type ESs exhibit almost volatile storage 
characteristics owing to the use of liquid matrix. In con‑
trast, FG and ferroelectric transistor‑type ESs mainly exhibit 
much longer nonvolatile retention performances of the pro‑
grammed conductance state. Transfer of charge trapped in 
the floating gate through the tunneling barrier to the channel 
region is an involuntary process that requires external forced 
action. Therefore, the programmed conductance state can 
be maintained for a long time if there are no additional high 
voltage programming attempts. Likewise, reorienting the 
direction of polarized domains in ferroelectric materials is 
an involuntary process requiring external bias programming 
signal. FG and ferroelectric‑type ES are disadvantageous for 
low power and high speed operation compared to electrolyte 
transistor‑type ES. This is because conductance switching 
methods, such as tunneling of charge carriers and reorienta‑
tion of ferroelectric domains, require higher voltage condi‑
tions and programming time compared to that using drift of 
mobile cations in the electrolyte.

2.2.2  Memristor‑Type Electrical Synapses

All memristor‑type ESs have a simple two‑terminal device 
configuration consisting of individual electrodes in the 
upper and lower regions, and an active layer in the middle 
region. However, each type of memristor‑type ES has unique 
operational strategies for having conductance switching and 
analog conductance update functions. According to the oper‑
ation mechanism, they can be classified into electrochemi‑
cal metallization (ECM), valence change (VC), and phase 
change (PC) memristor‑type ESs [36, 37].

2.2.2.1 ECM Memristor‑Type ES ECM memristor‑type 
ESs can be fabricated by introducing active and inert met‑
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als on each side electrode and insulating or semi‑insu‑
lating dielectrics in the active layer (Fig.  6a). For ECM 
memristors, the growth and rupture of CFs through elec‑
trochemical redox reactions are the main causes of con‑
ductance switching behavior. Generally, various insulat‑
ing and semi‑insulating materials (e.g.,  SiO2  Ta2O5,  Ag2S, 
and  Cu2S) can be used in the active layer [38–40]. Elec‑
trochemically active metals (e.g., Ag or Cu) and inactive 
metals (e.g., Pt and Au) are mainly introduced into the TE 
and BE, respectively. For example, if there is Ag in the TE 
and an inert metal in the BE. When a sufficiently positive 
bias is applied to the TE, Ag is ionized into  Ag+ by the 

oxidation reaction triggered at the interface between the 
TE and the active layer. The  Ag+ ions move toward the 
BE, owing to the bias‑induced electric field. Subsequently, 
Ag starts to accumulate at the interface between the active 
layer and the BE by causing a reduction reaction with the 
electrons supplied from the BE. Owing to the continuous 
accumulation of Ag atoms, Ag‑based CFs begin to form 
near the interface, and gradually grow toward the opposite 
electrode. The growth of the CF induced by the positive 
electrical bias spike progressively increases the conduc‑
tivity of the memristor‑type ES. In contrast, the conduct‑
ance can be switched to a lower state under a negative bias 
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spike owing to the rupture of the CF. For example, Jang 
et al. [41] reported an ECM memristor‑type ES using an 
inorganic perovskite active layer. In this device structure, 
a  (Cs3Bi2I9)0.4–(CsPbI3)0.6 perovskite active layer and 
polymethyl methacrylate (PMMA) insulating layer were 
laminated between a Pt BE and Ag TE (Fig.  6b). This 
memristor‑type ES showed essential synaptic behaviors 
through the ECM mechanism of Ag cations‑based CFs. 
Electrical potentiation and depression operations were 
demonstrated by applying positive and negative program‑
ming pulses.

2.2.2.2 VC Memristor‑Type ES For the fabrication of VC 
memristors, inert metals (e.g., Pt, TiN, and Au) or con‑
ductive oxides [e.g., InSnO (ITO) and InZnO (IZO)] have 
been employed at the TE and BE electrodes (Fig.  6c). 
Various metal oxides (e.g.,  TiOx,  TaOx,  WOx,  SrTiO3, and 
 Pr0.7Ca0.3MnO3) [41, 42] and perovskites (e.g.,  MAPbBr3, 
 CsPbBr3, and  Cs3Cu2I5) [43, 44], including weakly bonded 
anions, can be utilized in the active layer of VC memris‑
tor‑type ESs. When a bias is applied to a material in which 
cations and anions are weakly coupled, highly charged ani‑
ons  (XM−) and anion voids (VX) can be generated inside the 
active layer [45]. When a positive bias is applied to the TE, 
a large number of bias‑induced  XM− ions (e.g.,  O2

−,  Br−, 
and  I−) and VX (e.g., VO, VBr, and VI) appear in the active 
layer. Subsequently, the  XM− ions migrate to the TE, creat‑
ing an anion‑rich compositional region at the interface of 
the active layer and TE. Therefore, the metal cations located 
in the anion‑rich compositional region experience a change 
in the valence state, leading to a new compositional interfa‑
cial layer. Furthermore, the VX migrates to the opposite elec‑
trode, leading to the growth of conical VX CFs and a higher 
conductive conduction state. In contrast, when a negative 
bias spike is applied to the BE, the  XM− and VX gradually 
return to the active layer, leading to inhibitory conductance 
switching. In other words, for VC memristors, the forma‑
tion and rupture of interfacial layers with locally different 
compositions according to VCs of the metal cations in the 
active layer are the main causes of the conductivity switch‑
ing behaviors. For example, Tseng et al. [46] reported a VC 
memristor‑type ES using  HfOx/TaOx bilayers (Fig.  6d). It 
showed synaptic potentiation and depression behaviors from 
stimulation with electrical positive and negative bias pulses, 
respectively. Here, the excitatory response was attributed to 
the generation of VO‑based CFs in the metal oxide bilayer, 
whereas the inhibitory response was owing to the cleavage 
of VO‑based CFs.

Generally, ECM and VC devices have high scalabil‑
ity, ultra‑low operating voltages, and wide conductance 
switching ranges owing to similar CF‑based operational 

mechanisms. Therefore, it is expected that ECM and VC 
ESs will provide advantages such as high pixel density, low 
power consumption, and a wide sensing dynamic range in 
OSCs for neuromorphic image processing. However, in the 
future, the serious problems arising from CF‑based oper‑
ating mechanisms must be addressed, including device‑to‑
device non‑uniformity, nonlinear and asymmetric conduct‑
ance update characteristics, and performance differences 
during repeated cycle operations [47].

2.2.2.3 PC Memristor‑Type ES The reversible resistive‑
to‑conductive phase transition of PC materials is a major 
switching principle for PC memristor‑type ESs (Fig.  6e). 
They can be fabricated by introducing phase‑change mate‑
rials (e.g.,  Ge2Sb2Te5 (GST) and Li‑incorporated  MoS2) 
between two metallic electrodes [48–50]. Their conduct‑
ance can be modulated by controlling portions of the con‑
ductive and resistive phases using an electrical bias input. 
For GST, the individual crystalline and amorphous phases 
represent conductive and insulating electrical characteris‑
tics, respectively. A crystallization of the amorphous region 
can occur when the local heat generated by the electrical 
bias exceeds the crystallization temperature. In contrast, 
when the temperature exceeds the melting point, the crys‑
talline region melts and is quenched into the amorphous 
phase. Therefore, the conductivity of PC memristors can be 
modulated by engineering localized thermal heating under 
appropriate electrical bias conditions for excitatory and 
inhibitory conductivity updates. For Li‑incorporated  MoS2, 
the individual 1T′ and 2H phases of  MoS2 exhibit conduc‑
tive and semiconducting electrical properties, respectively 
(Fig.  6f) [50]. In particular, the 1T′ phase can be formed 
by electrochemically intercalating Li into the 2H phase by 
applying an electrical bias. Therefore, the ratio of the 1T′ 
and 2H phases can be modulated by reversibly inserting and 
extracting Li using an electrical programming bias. Accord‑
ingly, the conductance of the  MoS2 device can be gradually 
increased and reduced by applying electrical positive and 
negative bias pulses, respectively, resulting in potentiation 
and depression behaviors.

3  Neuromorphic Vision Sensor for In‑Sensor 
Vision Computing

Originally, OSs were developed as optoelectronic in‑
memory computing devices for using optical signals as 
programming means, with the advantages of high‑speed 
signal transmission and wide bandwidth. However, 
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recently, the OS has been attracting increased attention 
as a neuromorphic vision computing processor for the in‑
sensor computing of visual data. It can act as an all‑in‑one 
neuromorphic vision sensor for simultaneously perform‑
ing image reception and memory computing tasks on the 
same device. Several innovative OS‑type neuromorphic 
vision sensors have been developed. This section reviews 
pioneering OSs and the perception performance of neuro‑
morphic vision sensors for in‑sensor vision computing. It 
then examines the hardware configurations and operating 
mechanisms of OSs in detail.

3.1  Neuromorphic Image Perception using 
Optoelectronic Synapse

An all‑in‑one neuromorphic vision sensor should be able 
to simultaneously perform image sensing and neuromor‑
phic in‑memory computing during the vision computing of 
image data. Therefore, it must include functional areas for 
photosensing, conductance switching, and analog update 
functions [51–56]. When visual information arrives in the 
OS array, each OS with a light‑absorbing site experiences 
a change in the channel conductance. In contrast to conven‑
tional photosensors, which exhibit transient conductance 
changes to light inputs, OSs can maintain altered conduct‑
ance states after the light input has ended. Several resources 
are available for maintaining the changed conductance. Fur‑
thermore, the altered conductance state can be addition‑
ally updated via following image exposures, owing to the 
existence of the analog conductance states. By mapping the 
updated conductance values of the OS array, an incident 
image can be captured and converted into a more refined 
image.

Chai et al. [54] were the first to discuss the promising 
potential of OSs as neuromorphic vision processors for the 
in‑sensor computing of image data. In their study, a neu‑
romorphic vision sensor capable of the in‑sensor comput‑
ing of UV light images was fabricated using a memristor‑
type OS with a Schottky diode structure of ITO/MoOx/
Pd (Fig. 7a). Upon exposure to UV light, the  MoOx film 
underwent a phase transformation into  HyMoOx, which is 
more electrically conductive owing to the light‑induced 
proton ions  (H+) of the inner water molecules. This led to 
an excitatory increase in the conductance state from the 
optical input. Thus, this memristor‑type OS could exhibit a 

UV‑light‑driven conductance switching function and exci‑
tation conductance update behavior under repeated light 
exposures (Fig. 7b). The original image could be recognized 
by reading the switched conduction states of the individual 
devices in the OS array. In addition, by iteratively recogniz‑
ing the incident image in the neuromorphic vision preproc‑
essor, a well‑refined image could be successfully obtained 
through image sensitivity and noise minimization (Fig. 7c).

Similarly, Sun et al. [55] proposed a neuromorphic vision 
sensor using a transistor‑type OS with a heterogeneous 
channel (HC) structure (Fig. 7d). The HC transistor‑type 
OS was constructed by vertically stacking carbon nanotubes 
(CNTs) and a  CsPbBr3 quantum dot (QD) photoabsorber. 
The HC structure containing  CsPbBr3 QD/CNT had func‑
tional regions essential for photonic conductance switching 
behaviors, such as a photoresponsive layer for light absorp‑
tion  (CsPbBr3 QD), high‑mobility conduction pathway for 
charge transportation (CNT), and a heterogeneous interface 
for the nonvolatile storage of photocharges  (CsPbBr3 QD/
CNT). Hence, the conductance state could be updated to 
different conductance states depending on the light intensity 
and exposure cycles (Fig. 7e). In addition, when performing 
neuromorphic recognition of an input image, the transistor‑
type OS showed a superior photosensitive imaging ability 
relative to the memristor‑type OS, showing the advantage of 
clear image recognition even with weak and faint image pat‑
terns (Fig. 7f). Their work provided an excellent foundation 
for using OSs as all‑in‑one neuromorphic vision sensors. 
However, their OS is difficult to distinguish and recognize 
various color images due to the limited photosensing spec‑
tral range of the  CsPbBr3 QD photoabsorber (main light 
wavelength: 516 nm).

To solve this issue, Park et al. [56] reported a color‑per‑
ceiving OS fabricated using an HC structure, including a 
multicolor‑responsive QD layer (Fig. 7g). Generally, a sin‑
gle‑type QD seldom provides clear color sensing selectivity 
to HC structures. In contrast, a mixed layer of red, green, 
and blue QDs could introduce an excellent multicolor sens‑
ing capability to the HC structure. Here, red CdSe (optical 
bandgap: 1.86 eV), green CdSe (optical bandgap: 2.15 eV), 
and blue CdS (optical bandgap: 2.73 eV) QDs covered with 
 Sn2S6

4− ligands were used to make the mixed QD layer. Fur‑
thermore, their color‑selective photoresponse could be easily 
manipulated by controlling the mixing ratio. Overall, the 
mixed QD/IGZO‑based OSs exhibit multicolor‑responsive 
conductance switching properties (Fig. 7h), which can be 
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considered as important functions for neuromorphic color 
vision computing processers. In addition to multicolor rec‑
ognition, it is also possible to selectively switch the color 
recognition modes (nonvolatile modes for red–green–blue, 
green–blue, and blue light detection) by controlling the gate 

terminal condition. Ultimately, by using an HC transition‑
type neuromorphic vision sensor with a mixed QD layer, 
it is possible to selectively recognize and extract a desired 
image from an input image according to the user’s intention 
(Fig. 7i).
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behaviors, and f imaging and pre‑processing of single color pattern images. g–i Neuromorphic multicolor vison sensor: g device schematic of 
the transistor‑type OS, h color‑driven conductance switching behaviors, and i imaging and pre‑processing of mixed color patterns. a–c Repro‑
duced with permission from Ref. [54]. Copyright @ 2019, Springer Nature. d–f Reproduced with permission from Ref. [55]. Copyright @ 2021, 
Springer Nature. g–i Reproduced with permission from Ref. [56]. Copyright @ 2022, Wiley‑VCH
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3.2  Transistor‑Type Optoelectronic Synapses

Most transistor‑type OSs have similar device architectures 
including insulating gate dielectrics, semiconducting chan‑
nels, and conductive three‑terminal electrodes. However, 
depending on the device structure, each transistor‑type OS 
plays its own role in performing the conductance switch‑
ing and analog conductance update functions using opto‑
electronic programming [57, 58]. To date, three types of 
transistor‑based OSs with unique photoresponsive regions 
have been designed: (i) HC, (ii) FG, and (iii) non‑stoichi‑
ometric semiconductor channel (NSC).

3.2.1  HC Transistor‑Type OS

HCs consist of photoabsorbers, high‑mobility semicon‑
ductors, and hetero‑interface regions for light reception, 
charge transportation, and photocharge storage, respectively 
(Fig. 8). High‑performance photoabsorbers, such as perovs‑
kites, organic materials, and metal chalcogenides (which 
have been highlighted as high‑efficiency solar cell absorbers) 
are preferentially used, owing to their superior sensitivity 
and low power consumption during vision information pro‑
cessing. Crystalline nanoscale semiconductors or amorphous 
oxide semiconductors with high mobility are suitable for 
semiconductor regions to obtain excellent image sensitivity. 
HC structures can be classified as straddled gaps (type I), 
zigzag gaps (type II), and broken gaps (type III) [59]. In type 
I HC structures with Fermi level (EF) alignment, the conduc‑
tion band energy edge of smaller bandgap materials (ECS) 
is lower than the conduction band energy edge of wider 
bandgap materials  (ECW), while the valence band energy 
edge of smaller bandgap materials (EVS) is higher than the 
valence band energy edge of wider bandgap materials (EVW). 
That is, ECW > ECS and EVW < EVS. When light is irradiated, 
photogenerated electrons and holes in the wider or smaller 
bandgap materials spontaneously can migrate to the smaller 
bandgap material side and disappear rapidly through recom‑
bination process. Therefore, the type I HC structure is more 
suitable for light‑emitting devices than light‑sensing devices. 
In the case of type III HC structures with  EF alignment, 
ECW is lower than ECS and EVS, or ECS is lower than ECW 
and EVW (‘ECW < ECS and EVS’, or ‘ECS < ECW and EVW’). 
However, type III HC structures are rarely formed because 
the electron affinity between the two materials should be 

significantly different. In type II HC structures with EF align‑
ment, ECW is lower (or higher) than ECS and EVW is lower 
(or higher) than  EVS. That is, (i) ECW < ECS and EVW <  EVS, 
or (ii) ECW > ECS  and EVW > EVS. Compared with other 
type HCs, the type II HC is most favorable for the efficient 
separation of the electron–hole pairs (EHPs) at the hetero‑
interface and stable storage of the separated photocharges 
(Fig. 8a). Therefore, many transistor‑type OSs are manufac‑
tured with type II HCs, including spike‑form‑bent hetero‑
geneous interfaces [60–63]. When the light signal reaches 
the photoabsorber, EHPs are formed in the photoabsorber 
and spontaneously split into photoelectrons and photoholes 
at the interface between the photoabsorber and the high‑
performance semiconducting layer due to the presence of 
type II heterostructures. Since each photocharge is trapped 
in different layers, the photoelectrons and photoholes can be 
maintained for a long time without recombination process. 
Therefore, the channel conductance can be updated into 
more conductive states by using an optical programming 
input (Fig. 8b). However, it is difficult to reversibly reduce 
the channel conductance, even when optical signals with dif‑
ferent optical spectra or optical intensities are provided. The 
channel conductance can only be reversibly reduced using 
electrical bias signals. Therefore, in general, most OSs uti‑
lize both optical and electrical means to perform in‑memory 
computing tasks.

However, several researchers have begun to focus on 
the development of fully photo‑driven OSs in which can 
change the channel conductance using two kinds of optical 
signals with different optical spectra [64–66]. Particularly, 
Park et al. [66] proposed an interesting solution based on 
the fusion of a photovoltaic divider and an OS for a fully 
photo‑driven transistor‑type OS. They manufactured an 
optoelectronic circuit consisting of a photovoltaic divider 
(CdSe photosensor and IGZO load transistor) and a CdS/
IGZO HC‑type OS (Fig. 8c). In fact, the channel conduct‑
ance of the CdS/IGZO HC‑type OS can be updated to more 
conductive and more resistive values by green light and red 
light programming signals, respectively (Fig. 8d). When the 
CdS/IGZO HC‑type OS of optoelectronic circuit is exposed 
to green light, EHPs are generated in the CdS layer (band‑
gap; 2.36 eV) that can absorb the green light. In contrast, 
IGZO hardly responds to red and green light due to its wide 
bandgap (3.69 eV). Here, photoelectrons are spontaneously 
transferred to the IGZO while photoholes are trapped in the 
CdS layer due to the presence of a potential barrier. Since 
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the photoelectrons and photoholes can exist separately in 
different layers, they contribute to the increase of the channel 
conductance and can be maintained for a long time without 
recombination even after the green light is removed. There‑
fore, the CdS/IGZO HC‑type OS can exhibit an excitatory 
update behavior of the channel conductance in the green 

light programming signal. Next, when red light program‑
ming input is applied at the CdSe photosensor, the resist‑
ance of the photosensor is reduced due to the generation 
of photocharges in the CdSe layer (bandgap; 1.7 eV). In 
contrast, the IGZO load resistor and the CdS/IGZO HC‑type 
OS are insensitive in red light signal because they have a 
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larger energy bandgap than the red light energy. When the 
resistance of the CdSe photosensor is temporarily reduced 
by the red light input, the photovoltaic divider passes a posi‑
tive bias to the voltage output electrode connected to the 
gate terminal of the HC‑type OS (Fig. 8c). The amplitude 
of the delivered positive bias depends on the resistance ratio 
between the CdSe photosensor and the IGZO load resistor. 
In contrast, when there is no external optical signal, almost 
zero bias is applied to the voltage output electrode because 
the resistance of the load resistor is set higher than that of 
the CdS photosensor. Finally, the positive bias transferred 
from the photovoltaic divider to the gate terminal of the 
HC‑type OS by the red light programming input releases the 
photocharges accumulated near the heterogeneous interface 
of CdS/IGZO, reducing the channel conductance of the OS 
(Fig. 8e).

3.2.2  FG Transistor‑Type OS

FG transistor‑type OSs can be manufactured by verti‑
cally stacking thick blocking dielectrics, photoresponsive 
semiconducting FGs, ultra‑thin tunneling dielectrics, and 

semiconducting channels with wider bandgap than the FGs 
(Fig. 9a) [67]. Similar to the other cases, FG transistor‑type 
OSs also utilize optical and electrical means as program‑
ming resources for excitatory and inhibitory conductance 
modulation during in‑memory computing. When a light 
signal with smaller energy than bandgap of semiconduct‑
ing channel is absorbed at the photoresponsive FG region, 
EHPs are only formed in FG region through a band‑to‑band 
transition. Depending on the band alignment between the FG 
and channel layer, EHPs can be spontaneously separated or 
disappeared at FG region. When the conduction band mini‑
mum energy level of FG is higher than the that of n‑type 
semiconducting channel, some EHPs can be spontaneously 
separated due to its band alignment without intentional sup‑
ply of gate bias. Here, some photoelectrons move across the 
tunneling layer into the semiconducting channel region and 
some photoholes are trapped in FG region. The photoelec‑
tron supplied through the tunneling layer contribute to the 
improvement in the conductivity of n‑type semiconducting 
channel region and enable an excitatory conductance update. 
The excitatory conduction state updated by the optical pro‑
gramming can be maintained for a long time, owing to the 
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photogating phenomenon caused by the photoholes trapped 
in the FG layer. Meanwhile, the increased channel conduct‑
ance can be reduced using electrical means. By applying a 
bias input of the positive polarity to the gate electrode ter‑
minal, the charges trapped in the FG region can be removed 
through a recombination process, thereby enabling a sup‑
pressive conduction conversion function.

In FG transistor‑type ESs, metallic low‑dimensional mate‑
rials (e.g., Au, Pt, and Cu NPs) are employed in the FG 
region. In contrast, photoresponsive semiconducting nano‑
materials should be employed in the FG region between the 
insulating blocking and tunneling dielectric layers for the 
optical conductance updating and nonvolatile switching 
responses. Various low‑dimensional semiconductors with 
band gaps of visible or near‑infrared rays can be utilized 
in the FG region, such as perovskite QDs, carbon QDs, 
organic QDs, black phosphorus (BP) QDs, and graphene 
oxide nanosheets [68–72]. In addition, an ultrathin tunneling 
dielectric layer with a large bandgap and low defect density 
is required to prevent recombination between the trapped 
charge carriers in the FG layer and free carriers in the chan‑
nel region. In a pioneering survey, Han et al. [71] reported 
a perovskite QD‑based FG OS, including an inorganic 
 CsPbBr3 perovskite QD (photoresponsive FG), thick‑SiO2 
(blocking dielectric), thin‑PMMA (tunneling dielectric), 
and p‑type pentacene (semiconducting channel). Similarly, 
Zhang et  al. [72] demonstrated a BP QD‑based FG OS 
including BP QDs (photo‑active FGs), thick  Al2O3 (block‑
ing dielectric layers), thin‑Al2O3 (tunneling dielectrics), and 
n‑type MoSSe (semiconductor channels) (Fig. 9b). This 
device was capable of color‑driven potentiation and bias‑
driven depression functions, and demonstrated significant 
potential for in‑memory computing) (Fig. 9c). Regardless 
of the OS type, an optical signal is usually employed as 
an excitatory programming input. However, the polarity of 
the bias signal for depression programming depends on the 
electrical type of the semiconductor. Generally, a negative 
(positive) bias signal is suitable for suppressing conduct‑
ance modulation in an FG transistor‑type OS using p‑type 
(n‑type) semiconductor channels.

3.2.3  NSC Transistor‑Type OS

Stoichiometric semiconductors (in which the constituent 
atoms are bonded in precise integer ratios) exhibit ultrafast 

optical responses and spontaneous decay characteristics, 
owing to their direct band‑to‑band transition and recombina‑
tion kinetics. Therefore, semiconductor channels with stoi‑
chiometric compositions have been preferentially utilized for 
typical ultra‑sensitive transistor‑type photosensors without 
in‑memory computing capabilities because of their superior 
conduction paths and efficient generation kinetics of pho‑
tocharges [73, 74]. In contrast, NSC semiconductors with 
a large number of point defects exhibit slow conductance 
transitions and nonvolatile modulation behaviors under an 
optical input signal, owing to photo‑ionization of the point 
defects. Therefore, NSC semiconductors are more suitable 
for the fabrication of transistor‑type OSs. There are sev‑
eral ways to obtain NSC semiconductors with many point 
defects. First, it is possible to artificially introduce point 
defects into crystalline and amorphous semiconductor mate‑
rials by incorporating external elements into their intersti‑
tial and displacement sites. Second, compared to crystalline 
materials, amorphous materials inherently contain many 
photo‑ionizable point defect states, owing to their loosely 
coupled component networks. Therefore, if an amorphous 
semiconductor with many point defects can be employed in 
the channel region, an NSC transistor‑type OS can be easily 
manufactured.

As material candidates suitable for the second case, 
amorphous oxide semiconductors (AOSs) (e.g.,  InOx,  ZnOx, 
 SnOx, IGZO, IZO, and ZnSnO) with n‑type electrical prop‑
erties and excellent conductivity are noteworthy. AOSs 
inherently have many point defects that cause photo‑ioniza‑
ble subgap states [75, 76]. Among the various point defects, 
such as VO, metal vacancies, self‑interstitial oxygen, and 
self‑interstitial metals, VO is the most dominantly formed, 
owing to having the lowest formation energy in n‑type 
AOSs. To date, many researchers have reported a transis‑
tor‑type OS capable of photo‑driven conductance updates 
and multibit programming operations by using AOSs in the 
channel region. Under an optical input, the VO‑induced deep 
trap states are broken down into photoelectrons and posi‑
tively single/double‑charged oxygen vacancy ions (Fig. 10a) 
[77]. The photoelectrons generated from the localized VO 
states require high activation energy for non‑spontaneous 
recombination. Through the removal of the optical inputs, 
these photoelectrons are maintained with slow decay behav‑
ior, thereby inducing the excitatory switching of the channel 
conductance. Meanwhile, electrical programming is used for 
the inhibitory conductance modulation. When an electrical 
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bias of appropriate polarity is applied to the gate terminal 
region, it can activate the recombination process between 
the photocharge and ionized  VO states, converting the chan‑
nel conductance to a more resistive state. In particular, a 
positive‑bias signal for inhibitory modulation is suitable 
because AOSs have n‑type semiconducting characteristics. 
Generally, in gate dielectric region of transistors, typical 

single material‑based high‑quality insulators such as  SiO2 
and  Al2O3 are mainly employed. However, in these cases, 
high voltage and long‑term programming conditions are 
mainly required to recombine the photocharge and the ion‑
ized VO state. [78, 79]. It makes difficult to realize OSs with 
linear conductance switching and power‑efficient computing 
performance. To address this issue, it can be good approach 
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to introduce additional charge trapping sites at the channel/
gate dielectric interface or gate dielectric bulk region of the 
AOS‑based OSs. In particular, during electrical bias‑induced 
depression programming, photocharges can be efficiently 
removed through a more frequent recombination process at 
additional charge trapping sites. Indeed, Miao et al. reported 
an AOS‑based OS with a charge trapping structure of  SiO2/
SiNx in the gate‑dielectric region (Fig. 10b). Despite the 
adoption of a weak electrical programming signal, pho‑
tocharges generated in the channel region can be easily 
removed by efficient recombination action in the charge 
trapping region, allowing linear and symmetric conductance 
updates (Fig. 10c) [80].

Next, in general, AOS‑based OSs exhibit unstable reten‑
tion of optically programmed channel conductance with 
gradual attenuation behavior (Fig. 10d, pristine state). How‑
ever, Lee et al. [81] devised a ferroelectric‑assisted AOS‑
based OS which introduced ferroelectric  HfZrOx layer in 
the gate dielectric region for long‑term nonvolatile storage 
characteristics of optically‑programmed channel conduct‑
ance. Here, the long‑time retention behavior of the optically 
programmed channel conductance state could be controlled 
depending on the polarization direction of the ferroelectric 
layer (Fig. 10d). Compared to the case of the upward polari‑
zation formed by applying the temporary positive gate bias 
pulse (+ 5 V, 10 ms), the optically programmed channel 
conductance could be robustly maintained when the fer‑
roelectric  HfZrOx layer had a downward polarization state 
formed by the temporary negative gate bias pulse (− 5 V, 
10 ms). This is because the presence of downward polariza‑
tion of  HfZrOx can dramatically suppress the recombination 
reaction between photoelectrons and ionized oxygen vacan‑
cies in the IGZO channel (Fig. 10e). Although nonvolatile 
operation of excitatory conductance state formed by optical 
programming could be successfully realized in the ferroelec‑
tric‑assisted AOS‑based OS, there is no consideration about 
depressive programming of conductance state by electrical 
bias. Thus, the research to address this issue is essential. The 
dual‑gate transistor architecture will become one of good 
approach. A ferroelectric material should be utilized in one 
gate dielectric region for nonvolatile engineering of an opti‑
cally programmed conduction state and a charge trapping 
structure should be utilized in the opposite gate dielectric 
region for inhibitory conduction update via electrical bias 
programming.

3.3  Memristor‑Type Optoelectronic Synapses

Regarding memristor‑type OSs, Schottky barrier (SB)‑ and 
photogating memristor‑type OSs have been widely devel‑
oped. They have a simple two‑terminal device structure with 
a photoresponsive active space between a transparent con‑
ductive TE and metallic BE.

3.3.1  SB Memristor‑Type OS

SB memristor‑type OSs have a Schottky contact between a 
semiconductor active layer (usually n‑type semiconducting 
metal oxides, e.g., ZnO, CeO, and SnO) and conductive TE 
(usually transparent conductive oxides (TCOs), for example, 
ITO and IZO) and an ohmic contact between the active layer 
and bottom metal electrode (Fig. 11a) [82–86]. In the initial 
state, an SB memristor‑type OS using a semiconductor oxide 
material for the active layer region exhibits a low conduc‑
tion state owing to the high SB and wide depletion region 
formed in the Schottky junction. When the device is exposed 
to an optical spike, the photoelectrons and charged oxygen 
vacancies generated in the semiconducting oxide layer via 
the photoionization process can contribute to the genera‑
tion of an excitatory conductance update (Fig. 11b). This is 
because the photoionized VOs reduce the barrier height and 
depletion width at the Schottky junction. Li et al. [86] dem‑
onstrated an artificial OS based on a Schottky junction struc‑
ture using ITO (a TCO) and Nb‑doped  SrTiO3 (an n‑type 
metal oxide semiconductor). The device could exhibit excit‑
atory conductance‑switching dynamics (i.e., potentiation) 
under optical programming spikes. In addition, by control‑
ling the modulation bias conditions, the photo‑ionized VOs 
generated from the light stimulus and height of the potential 
barrier could be effectively modulated to control the con‑
ductor switching performance. Irradiating the device with 
light while applying a positive modulation bias to the ITO 
TE could allow for photoionizing more oxygen vacancies, 
leading to a stronger conductivity transition while lowering 
the barrier height of the Schottky junction (Fig. 11c).

3.3.2  Photogating Memristor‑Type Oss

Photogating memristor‑type OSs usually have space charge 
regions such as localized subgap sites and/or heterogene‑
ous spaces within the active layer [87–89]. The carriers 
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trapped in the space charge region can induce an electric 
field, which serves as a photogate terminal. In general, 
localized subgap states can be caused by point defects [87, 
88], and heterogeneous spaces can be formed in the het‑
erogeneous compositional phases and multilayered hetero‑
structures [89, 90]. Yang et al. [87] reported photogating 
memristor‑type OSs using p‑type semiconducting SnS, 

including cation and anion vacancies in the active region 
(Fig. 11d). When the device was exposed to optical pro‑
gramming spikes, optical carriers were created in the active 
layer. Some photoelectrons were trapped in the local donor 
state induced by the sulfur vacancies, creating a negative 
photogating effect. More hole carriers were induced in active 
layer by the photogating effect, increasing the conductivity 
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of p‑type semiconductor‑based memristor. In addition, the 
device exhibited color‑programmable in‑memory computing 
behaviors, owing to the small bandgap of the SnS (Fig. 11e). 
Han et al. [91] reported a photogating memristor‑type OS 
fabricated using PbS QDs and a n‑type ZnO film. The ZnO 
film contained numerous oxygen vacancies, and there were 
many heterojunctions between the ZnO film and PbS QDs 
(Fig. 11f). A device with a heterojunction structure with PbS 
QDs interposed between ZnO active layers allows for excita‑
tory (by ionization of the VO) and inhibitory (by neutraliza‑
tion of the ionized VO) switching in conductivity via UV or 
near‑infrared programming spikes, respectively. Under UV 
illumination (λ = 365 nm), the VO of the ZnO layer is pho‑
toionized and acts as a locally positively charged photogate 
site, leading to a gradual increase in conductivity (Fig. 11g). 
In contrast, under infrared illumination (λ = 980 nm), the 
photoelectrons generated from the PbS QDs migrate to the 
ZnO layer to neutralize the ionized VOs and suppress the 
conductivity modulation (Fig. 11h).

4  Advanced Applications of Neuromorphic 
Vision Sensors

Recently, researchers are seeking further advances beyond 
the current functional and imaging levels of neuromorphic 
vision sensors for machine vision. For image recognition, 
researchers are developing neuromorphic vision sensors 
with advanced features, including adaptive recognition, 
focus recognition, and selective focus reception, as derived 
from superior biological visual recognition systems. Just 
as living things use visual information as a resource for 
decision‑making, researchers are working to develop neu‑
romorphic vision sensors for decision‑making, such as for 
collision avoidance, nociceptive movement, and nociceptive 
protection.

4.1  Environment‑Adaptable Neuromorphic Vision 
Sensors

The human retina, as a biological image detector, consists 
of biological cells such as photoreceptors (rods and cones) 
and horizontal cells (Fig. 12a) [92, 93]. The cone and rod 
cells are responsible for color perception and the contrast 
sensing of incident light, respectively. These biological pho‑
toreceptors have a low dynamic range for light detection 

compared with current electronic image detectors; such a 
range is disadvantageous for high‑resolution image recog‑
nition. However, in practice, the human retina can clearly 
recognize objects in a much wider range of light (from much 
darker to much brighter) than electronic image sensors by 
using visual adaptation functions [94]. There are two cases 
of biological visual adaptation for accurate image recog‑
nition in different ambient‑light environments: photopic 
adaptation and scotopic adaptation. When changing from 
a bright place to a dark environment, the retina can initially 
see very few objects. However, dark objects can be gradu‑
ally recognized through a scotopic adaptation process that 
lowers the visual threshold and activates photosensitive rod 
cells instead of cone cells. In contrast, our retinas are ini‑
tially dazzled by bright objects when exposed to bright light. 
However, it is possible to gradually recognize bright objects 
by suppressing ambient light noise through a photopic adap‑
tation process that activates photosensitive cone cells and 
enhances the visual threshold. Mimicking biological visual 
adaptation, in which the retina’s sensitivity is automatically 
adjusted to the ambient light environment, is currently a key 
element for building advanced image‑sensing systems with 
wider detection ranges and more accurate recognition using 
electronic image sensors.

Recently, many efforts have been made to build neuro‑
morphic image sensors able to adapt to ambient‑light envi‑
ronments [95–103]. In a pioneer study on circuit‑type neu‑
romorphic image sensors, Park et al. [96] reported an OSC 
constructed by the interconnection of a photovoltaic divider 
for photo‑sensing and a transistor‑type ES for in‑memory 
computing (Fig. 12b). The transistor‑type ES was fabricated 
using an inorganic solid electrolyte (Na‑Al2O3) and semi‑
conducting channel (IGZO). Meanwhile, the photovoltaic 
divider, comprising a photosensor and load transistor, was 
responsible for the visible‑light reception and photo‑to‑bias 
conversion. The optical signal was converted into a bias 
signal in the photovoltaic divider, and the amplitude of the 
converted bias signal was proportional to the intensity of 
the incident light. And then, the converted bias signal was 
transmitted to the gate terminal of the transistor‑type ES 
(Fig. 12c). The bias spike induced a nonvolatile modulation 
of the channel conductivity, owing to the electrochemical 
doping of the semiconductor channel by mobile  Na+ ions. 
In general, for excessively bright images with a large amount 
of ambient noise, it is difficult to detect an accurate image, 
because the channel conductance of every transistor‑type 
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ES in every pixel is updated indiscriminately. In contrast, 
for very faint images with low intensity, the pattern images 
are difficult to detect because the channel conductance of all 
transistor‑type ESs in all pixels rarely exceed the threshold 
(Fig. 12d). However, switching the visual adaptation mode 
by controlling the load‑gate bias can result in an overall 
increase or suppression of the amplitude of the transformed 
bias spike under the same optical stimulus (Fig. 12e). In a 
bright‑light environment, image recognition can be better 

achieved by increasing the load gate bias (photopic adapta‑
tion mode), whereas faint images in a dark–light environ‑
ment can be distinguishable by decreasing the load gate 
bias (scotopic adaptation mode). Another study reported 
OSCs with similar architectures consisting of  MAPbI3 per‑
ovskite photosensors, IZO load transistors, and polymeric 
electrolyte transistor‑type ESs [97]. One notable advance is 
that more accurate image pre‑processing and spontaneous 
recovery can be achieved in neuromorphic image sensors by 
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using habitual visual processing implemented by introducing 
a pulse‑like load bias instead of the conventional constant 
load bias condition. A circuit‑type neuromorphic image sen‑
sor can achieve high‑performance image recognition over a 
wide dynamic range through its adaptive function. However, 
challenging problems remain, e.g., concerning the multiple 
components, complex integration processes, and low pixel 
density.

To overcome these challenging issues, researchers have 
developed OS‑based neuromorphic vision sensors able to 
improve the image recognition performance by introducing 
an adaptive function. In general, for the manufacture of high‑
performance phototransistors, it is ideal to introduce a high‑
crystal semiconductor and minimize the charge trap states 
in the channel region. During photosensing, the charge‑
trapping sites in the photosensor mainly play negative roles, 
such as slowing down detection and reducing sensitivity. 
However, some researchers have intentionally introduced 
charge trap sites within the device, which enables the devel‑
opment of environmentally adaptive photosensors based on 
sub‑linear photoresponse properties [104]. Here, sub‑linear 
photoresponse means that the magnitude of the photocur‑
rent generated from the low (high) light input is enhanced 
(reduced), compared to the case where the photocurrent 
and the incident light intensity have a linear relationship. 
Chai et al. [95] developed  MoS2 phototransistors with an 
environment‑adaptive image‑sensing capability (Fig. 12f). 
Many charge trap sites in the channel/insulator interface 
region were intentionally introduced to enable the photopic 
and scotopic sensing operations. The visual adaptation mode 
could be activated by applying a constant gate bias to the 
gate terminal, and the adaptive performance can be trans‑
formed by changing the gate bias value (Fig. 12g). When 
a positive gate bias was applied, the photosensor became 
insensitive (photopic adaptation mode). Here, the photo‑
current level of  MoS2 phototransistors with sub‑linear pho‑
toresponse characteristic can be gradually decreased with 
repeated exposure to a strong light input. This is because 
some of the photocharges generated in the channel are con‑
tinuously trapped at the charge trap sites in the channel/
insulator interface region by repeated strong light irradia‑
tion, contributing to the gate bias shielding. Therefore, it 
became more suitable for detecting bright images with high 
noisy background. In contrast, when a negative gate bias was 
applied to the gate terminal, the photosensor became more 
sensitive (scotopic adaptation mode). The photocurrent level 

can be progressively enhanced with repeated exposure to a 
weak light input. This is because photocharges can be stably 
generated and transferred to the electrode terminals without 
gate shielding by suppressing charges trapped in the inter‑
face region using a negative gate bias. Thus, it became more 
suitable for detecting dark images in dim light environments 
(Fig. 12h). Another study reported a HC transistor‑type 
OS with a photopic adaptation function constructed using 
 CsPbBr3 QDs and a  MoS2 semiconductor channel [98]. 
The defective heterogeneous interface regions provided a 
mechanistic resource for charge trapping and de‑trapping for 
adaptive sensing functions. When an optical signal arrived at 
the  MoS2 channel region, the photocarriers initially contrib‑
uted to the excitatory conductance update; however, some 
experienced charge trapping at the heterogeneous interface. 
Therefore, the excitatory conduction state gradually returned 
to its original state, and this behavior was accelerated in the 
photopic adaptation mode with a positive gate bias applied.

By incorporating environmental adaptation capabilities 
into neuromorphic image sensors, the potential for high‑
speed and low‑power pre‑processing for image recognition 
can be dramatically improved. However, the major limita‑
tion of currently developed adaptive neuromorphic sensors 
is that they cannot automatically switch their adaptive mode 
according to the ambient lighting environment. Therefore, 
new hardware or software methodologies for the auto‑
matic conversion of adaptive modes must be developed for 
advanced artificial machine vision systems.

4.2  Neuromorphic Collision Sensor

As a biological proximity detector, the bio‑visual system can 
recognize distances from objects by measuring changes in 
the frequency and intensity of the light signal in the visual 
information reflected from the objects. Based on the prox‑
imity detection function, the human vision system can per‑
form advanced imaging and decision‑making tasks such as 
collision avoidance from approaching dynamic objects and 
stereoscopic and focal image detection of static objects. For 
collision avoidance, biological proximity recognition sys‑
tems employ several strategies for estimating the approxi‑
mate distance from an approaching object. In the case of a 
human vision system, the human eye perceives distances 
from objects using the binocular parallax principle [105, 
106]. As the eyes of humans are far apart from each other, 
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the image coming into each eye will look slightly different. 
By comparing and analyzing this two‑image information, 
the brain can accurately recognize the shape, movement, and 
distance of an object. Insects have compound eyes made up 
of several lenses, which allow for wide field‑of‑view detec‑
tion. However, insects cannot use the human distance recog‑
nition method with binocular parallax, because the distance 

between their eyes is too short. Instead, the distance is esti‑
mated based on the speed at which the object approaches the 
compound eye (Fig. 13a). Collision‑monitoring neurons in 
the insect visual system have an excitatory synaptic portion 
for responding to the angular velocity of an approaching 
object, and an inhibitory synaptic portion for responding to 
the angular size of the approaching object [106, 107]. As 
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an object approaches, the angular velocity and size of the 
approaching object gradually increase. An increase in angu‑
lar velocity introduces a gradual excitatory modulation in the 
collision‑monitoring neuron. In contrast, an increase in the 
angular magnitude introduces a gradual inhibitory modu‑
lation. Owing to the opposing update behaviors occurring 
continuously as the distance to the approaching object gets 
closer, the accumulated weight value or firing frequency in 
the neuron reaches its maximum peak at any critical moment 
just before the collision. When this maximum peak point 
appears, the decision‑making for collision avoidance should 
be performed.

Das et al. [107] reported neuromorphic collision sen‑
sors for mimicking proximity recognition, and an auto‑
mated decision‑making method for collision avoidance in 
insect vision systems. The neuromorphic collision sensors 
were capable of optical excitation and electrical suppres‑
sion updates of the channel conduction states, owing to the 
use of  MoS2 semiconductor channels and the FG device 
structure (Fig. 13b). In this approach, the intensity of light 
reflected from the object increased as the object approached, 
resulting in the monotonically increasing conductivity of the 
 MoS2 semiconductor with an excitatory optical feed‑forward 
stimulus. Meanwhile, as the angular size increased as the 
object approached, the suppressive electrical feed‑forward 
stimulus applied to the gate terminal of the neuromorphic 
collision sensors induced a continuous monotonic decrease 
in the channel conductance. Thus, as the object approached, 
the visual excitation and electrical suppression of the neuro‑
morphic collision sensor competed, resulting in a nonmono‑
tonic conductance update. By monitoring the appearance 
of the maximum peak in the conductance of the neuromor‑
phic collision sensor, it was possible to determine when a 
collision was nearly imminent (Fig. 13c). Thus, when the 
minimum peak was observed, it was necessary to judge the 
next appropriate action and take a collision avoidance action 
accordingly. Han et al. [108] demonstrated an autonomous 
collision avoidance system using a neuromorphic collision 
sensor in the form of a memristor‑type OS and spiking 
neuron circuit. The neuromorphic collision sensor with the 
memristor‑type OS configuration consisted of an Ag TE, 
a few‑layer BP‑CsPbBr3 perovskite QD (FLBP‑CsPbBr3) 
heterogeneous material, and an ITO BE (Fig. 13d). This 
memristor‑type OS was capable of an excitatory response to 
the feed‑forward stimulus of an electrical bias spike and an 
inhibitory response to the feed‑forward stimulus of the light 

reflected from an approaching object. It was confirmed that 
a maximum current peak could be generated in the neuro‑
morphic collision sensor at the critical moment of collision. 
This is because metallic CFs were formed from electrically 
biased programming spikes and then gradually dissolved 
by stronger light stimulation of an approaching object. In 
particular, omnidirectional collision detection was achieved 
by integrating a collision sensor array onto a circular poly‑
dimethylsiloxane lens (Fig. 13e). Finally, a robotic car with 
automatic decision‑making for collision avoidance was suc‑
cessfully demonstrated using the memristor‑type collision 
sensor and spiking neuron circuit (Fig. 13f).

Although the development of neuromorphic vision 
sensors for collision avoidance is exciting, it is still in its 
infancy. In collision avoidance, the processing speed for the 
optical information from an object is a more important fac‑
tor than the recognition accuracy of the shape. Therefore, 
it is necessary to steadily devise architectures and material 
selections to accelerate the data‑processing speeds of neu‑
romorphic vision sensors.

4.3  Neuromorphic Nociceptive Sensor

To protect human skin and organs (especially the eyes) in 
daily life, it is necessary to detect harmful signals such as 
UV rays and radiation. However, it is difficult to immedi‑
ately recognize latent damage, as UV rays are invisible to the 
human eye. Several studies have recently reported artificial 
neuromorphic nociceptor sensors for mimicking pain‑sen‑
sory biological nociceptors that detect and transmit noxious 
stimuli to the central nervous system (Fig. 14a‑b) [109–117]. 
In the process of pain perception, an external stimulus input 
above a threshold can be perceived; this is called the thresh‑
old behavior. After stimulation, nociceptors gradually return 
to their initial state over time. This is called the relaxation 
behavior. During the relaxation process, if an additional 
stimulus is applied before the residual response completely 
disappears, the nociceptor may be more sensitive to external 
stimuli, and may even respond to subthreshold stimuli. Such 
sensitization can be extended to allodynia and hyperalgesia 
(Fig. 14c). Under high‑intensity stimulation, nociceptors can 
be easily injured, in which state they respond strongly to 
mild stimuli. Specifically, in the damaged state of the noci‑
ceptors, an allodynia behavior that responds to a stimulus 
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intensity below a threshold and hyperalgesia behavior that 
responds to a stimulus more strongly may occur.

Wide‑bandgap material‑based photonic nociceptive 
devices have been studied with the goal of selectively per‑
ceiving harmful incident UV rays in artificial vision systems. 
Kim et al. [118] demonstrated a metal oxide memristor‑type 
artificial photonic nociceptor in which an Sb‑doped  SnO2 
active layer was employed. In addition to perceiving delete‑
rious UV light, the device emulated a variety of nocicep‑
tive functions, including allodynia and hyperalgesia. The 
device structure consisted entirely of metal oxide materials 
(ZnO, Sb‑doped  SnO2, and F‑doped  SnO2) for transparent 

optoelectronic applications. In general, the harmful light per‑
ception function is expected to be utilized as a practical alert 
system for providing notifications regarding the accumula‑
tion of potential light damage. Recently, an NSC transistor‑
type OS‑based photoreceptor for artificial vision with an 
alerting function for harmful light was reported [119]. The 
channel conductance of the IGZO NSC transistor‑type OS 
could be increased because of carrier generation owing to 
band‑to‑band excitation and photoionization of the  VO sub‑
gap state. It is known that the photoionization of  VO gener‑
ally triggers the phenomenon of persistent photoconductiv‑
ity, which in turn triggers the photosynaptic operation of the 
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device (Fig. 14d). Therefore, the channel conductance of the 
nociceptors could be increased with increasing light‑stim‑
ulus intensity (Fig. 14e). In addition, the nociceptor device 
could be damaged (injured) by stimulation accumulation 
(increasing the number of stimulation pulses), after which 
pain perception (threshold behavior) was possible under sub‑
threshold stimulus intensities, as well as increased response 
levels under above‑threshold intensity stimuli (Fig. 14f). 
Thus, allodynia and hyperalgesia behaviors were observed 
(Fig. 14g). It was also confirmed that the pain perception 
could be modulated by changing the gate bias conditions to 
control the number of carriers accumulated at the interface 
between the channel and gate dielectric. Photoresponsive 
neuromorphic nociceptor sensors can enable intelligent auto‑
matic protection systems against harmful light signals.

In a pioneering study, Lee et al. [120] proposed a UV‑
light‑blocking window system using UV‑light‑responsive 
neuromorphic nociceptors and UV transmittance modula‑
tors. In this study, an FG transistor‑type OS was fabricated 
by vertically stacking nitrate‑treated  C3N4 (Eg = 3.41 eV), 
PMMA, and a pentacene semiconductor for a UV‑light‑
responsive artificial photon nociceptor (Fig. 14h). Under UV 
stimulation (λ = 365 nm), the  C3N4 layer acted as a negative 
photogate by trapping photogenerated electrons, thereby 
increasing the channel conductivity of p‑type pentacene. In 
contrast, the UV transmittance of the modulator was altered 
according to the supplied variable bias arising from the 
UV‑light‑responsive artificial photon nociceptors (Fig. 14i). 
Thus, the proof‑of‑concept showed that a neuromorphic 
nociceptive system integrated with a UV transmittance 
modifier could monitor harmful UV rays and automatically 
block UV rays when a threshold was exceeded (Fig. 14j–k). 
Integrating harmful light monitoring and protection into arti‑
ficial vision systems provides intelligent features for prevent‑
ing skin and eye aging and related diseases.

In order to put the nociceptive function of neuromorphic 
nociceptive sensors into practical use, the key factors for 
automatic decision‑making should be considered such as 
strong and timing of nociceptive response, power consump‑
tion, and selective response about intensity and spectrum 
of optical and electrical stimuli. In particular, the thresh‑
old setting of nociceptive sensors, which is the criterion for 
determining the initiation of nociceptive responses, should 
be designed according to the onset conditions of the fol‑
lowing actuating or protective devices. For effective noci‑
ceptive behavior in real life, it may be necessary to set the 
threshold value quantitatively and precisely by associating 
cumulative levels of incoming external stimuli that begin 
to substantially affect humans or other receivers in various 
surrounding environments. In addition, system integration 
of nociceptive sensors and output devices such as actuators, 
smart glasses and light‑emitting devices is required to imple‑
ment the ability to actively avoid or protect against harmful 
stimuli through automatic recognition and decision‑making. 
Several artificial nociceptor‑based smart systems have been 
proposed, but it still remains a major challenge.

5  Outlook

In this review, we summarized the recent progress and 
advanced functional applications in neuromorphic vision 
sensors. The representative characteristics of neuromorphic 
vision sensors based on near‑sensor and in‑sensor computing 
was summarized in Table 1. Although significant progress 
has been made in OSC‑ and OS‑based neuromorphic vision 
sensors, several major issues and challenges remain, and 
require further study.

In the case of OSCs, the planar and vertical serial mode 
frames of photosensors and in‑memory computing proces‑
sors are widely used to indirectly modulate the conductance 

Table 1  Characteristic summary of neuromorphic vision sensors for near‑sensor and in‑sensor computing

Parameters Near‑sensor computing In‑sensor computing

Hardware implement Optoelectronic synaptic circuit Optoelectronic synapse
Essential hardware parts Photosensor, electrical synapse, photovoltaic transducers Optoelectronic synapse
Signal processing sequence Light input → bias (conversion) → conductance switching → current 

readout
Light input → conductance 

switching → current readout
Device density Low (many parts) High (All‑in‑one)
Power consumption High Low
Programming speed Low (signal transmission between parts) High (Direct conductance update)
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of adjacent ESs after capturing visual information from pho‑
tosensors. Therefore, intrinsic problems exist, such as exces‑
sive numbers of parts, complex manufacturing processes, 
and low device density. To realize higher resolution and 
smaller chip size, compact design of individual components 
and overall circuits and further development of precision 
manufacturing techniques are required. In addition, when 
light spikes are repeatedly incident on the photosensor in 
the OSC, some amplitude of the voltage output signal sup‑
plied from the photovoltaic divider to the voltage output 
electrode may be lost due to the problem of impedance mis‑
match between elements [121, 122]. This problem becomes 
more serious in the high‑frequency optical spikes condition. 
Here, the information loss and noise increase in OSCs by 
impedance mismatching will cause distorted imaging task 
and low image recognition accuracy. Thus, in the future, the 
impedance matching design between the functional parts in 
OSC‑type neuromorphic vision sensors is essential consid‑
ered for high‑frequency image information processing.

OSs are advantageous for high‑resolution and fast image 
pre‑processing because of their high‑density fabrication, 
shorter data processing paths, and fewer components relative 
to OSCs. However, because the OS is an all‑in‑one device, 
it is difficult to simultaneously optimize the light reactiv‑
ity, spectral selectivity, conductivity duration, and power 
consumption efficiency. Therefore, many studies, including 
those on material discovery, device architecture design, and 
self‑power operation, must be continuously performed for 
neuromorphic image pre‑processing tasks, including con‑
trast enhancement, noise suppression, fast recognition, and 
spectral selectivity. Nanomaterials have mainly been used, 
but they are disadvantageous for device stability and uniform 
array production. In addition, is difficult to develop a high‑
resolution neuromorphic vision sensor using a transistor‑
type case (as opposed to a memristor‑type case). Thus, it is 
necessary to develop high‑density manufacturing technolo‑
gies (e.g., e‑beam and nanoimplant lithography) and fine 
device structure designs (e.g., nanogap, vertical, or three‑
dimensional channel structures).

To date, many neuromorphic vision sensors have been 
built on rigid substrates and have generally focused only 
on demonstration and performance optimization for neu‑
romorphic processing of visual information. However, to 
implement eye‑shaped curved vision systems, wearable or 
skin patched or implantable optoelectronic systems, and soft 
robots, neuromorphic vision sensors must be fabricated on 

flexible or stretchable substrates for freeform platforms. 
Therefore, many studies should be performed for the reali‑
zation of freeform neuromorphic vision sensors: (i) low‑tem‑
perature processing (e.g., e‑beam treatment, deep UV light 
treatment and microwave treatment), (ii) deformable mate‑
rial adaptation (e.g., low‑dimensional; materials, organic 
materials, and liquid metals), and (iii) mechanically robust 
structural architectures (e.g., nanostructuring, rigid island, 
and Kirigami structure).

In the future, it will be necessary to develop a neuromor‑
phic vision sensor able to recognize 3D image information 
beyond current 2D plane image recognition. In addition, 
there is a need to accelerate the development of intelligent 
robots and autonomous driving mobility by building an 
intelligent vision system with active decision‑making and 
passive protection functions based on neuromorphic vision 
sensors beyond image recognition.
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