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HIGHLIGHTS

• Recent advances of metal–organic frameworks (MOFs) in the fire‑retardant polymeric materials are reviewed.

• State of the art to the novel strategies for functionalizing MOFs as fire retardants is critically and comprehensively discussed.

ABSTRACT High flammability of polymers has become a major 
issue which has restricted its applications. Recently, highly crystalline 
materials and metal–organic frameworks (MOFs), which consisted of 
metal ions and organic linkers, have been intensively employed as novel 
fire retardants (FRs) for a variety of polymers (MOF/polymer). The 
MOFs possessed abundant transition metal species, fire‑retardant ele‑
ments and potential carbon source accompanied with the facile tuning 
of the structure and property, making MOF, its derivatives and MOF 
hybrids promising for fire retardancy research. The recent progress 
and strategies to prepare MOF‑based FRs are emphasized and summa‑
rized. The fire retardancy mechanisms of MOF/polymer composites are 
explained, which may guide the future design for efficient MOF‑based 
FRs. Finally, the challenges and prospects related to different MOF‑
based FRs are also discussed and aim to provide a fast and holistic 
overview, which is beneficial for researchers to quickly get up to speed 
with the latest development in this field.
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1 Introduction

Metal–organic frameworks (MOFs) or porous coordina‑
tion polymers (PCPs), which consist of metal centers and 
organic links (Fig. 1), have attracted great attention as a new 
high crystalline porous material. Based on different metal 

ions and organic linkers, the multi‑component structure of 
MOFs allows for the opportunity of tuning the morphology 
and microstructures, which make MOFs ideal materials for 
targeted properties [1]. A series of key features such as high 
surface area, open metal site and high porosity make MOFs 
suitable in many advanced applications such as in batteries, 
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sensors and catalysis [2–4]. In particular, MOFs have been 
proven to be a proper template for preparing functional 
micro‑/nano‑materials such as highly porous carbon materi‑
als [5]. The presence of the organic component of MOFs 
allowed the formation of carbon‑based materials directly 
from the MOF such as both graphitic and amorphous carbon. 
Xu et al. [6] first synthesized nanoporous carbon with the use 
of MOF‑5 as a sacrificial template with the presence of furfu‑
ryl alcohol. Nanoporous carbon was obtained with high BET 
surface by calcinating MOF at 1000 °C in Ar flow. Moreo‑
ver, MOFs contains a variety of transition metals (e.g., Co, 
Ni, Cu, Fe) and fundamental elements (e.g., C, N, O) in the 
organic linkers for the catalytic applications [4]. By calcina‑
tion of MOFs in different atmospheres such as air or  N2 at an 
evaluated temperature, a series of MOF‑derived hybrids such 
as metal oxide and metal/carbon were obtained by rational 
design of the MOF template and controlled thermolysis pro‑
cess [7]. The copper‑based MOF (Cu‑BTC)‑derived Cu/
Cu2O has been synthesized as catalysts toward carbon mon‑
oxide (CO) oxidation [8]. Co‑based ZIF‑67 was also reported 
to have high performance in CO oxidation at − 30 °C through 
facile pyrolysis in argon atmosphere [9]. Besides, apart from 
the conversion of poisonous CO to reduce the environmental 
impact, much effort has been devoted to making use of MOFs 
to adsorptively remove hazardous materials from fuel, water 
and air [10]. The metal ions, open metal sites, linkers and 
functionalization of MOFs showed different possible inter‑
actions such as unsaturated sites [11], π‑complex formation 
[12] and hydrogen bonding [13].

Due to the high flammability of polymeric such as epoxy 
and PLA, the fire hazards including the release of heat, 
smoke, toxic gases and hypoxia (lack of oxygen) cause great 
loss to life and properties in the long history [14–16]. Previ‑
ously widely applied halogen fire retardants are gradually 
banned in consideration of their threaten to health [17, 18]. 
Therefore, the emerging of metal‑based inorganic FR [19, 
20] and nanotechnology [21–23] have attracted a great atten‑
tion. Recently, the increasing attention paid to the applica‑
tion of MOFs in fire retardancy research has been reflected 
by an increasing number of publications in various journals. 
The previously mentioned unique features of MOFs, such 
as adsorptive removal of hazardous materials, potential car‑
bon source and effective catalytic performance, indicated 
the potential for using MOFs in the fire retardancy for the 
polymer composites. As a matter of fact, MOFs themselves 
or their functionalized derivatives may provide a platform for 

preparing a highly efficient FR compared with traditional FRs 
due (most likely) to the following several points: (1) abun‑
dant fire‑retardant elements C, N, P in the organic linkers 
and transition metal species in the metal centers; (2) precur‑
sor of porous carbon in specified conditions; (3) possessing 
high surface area and microporous structure (< 2 nm [24]) to 
facilitate the adsorption for toxic gases; and (4) facile rational 
design of the microstructure, morphology and property 
through the choice of different metal centers and organic link‑
ers and the possibility to further functionalize MOFs through 
coordination bond. Comparing with some inorganic FRs, 
MOFs as organic–inorganic hybrids possess the possibility 
to combine the properties of both inorganic and organic FRs. 
The presence of organic linker may enhance compatibility 
with polymer or relief the sensitivity of inorganic materials 
[25]. Therefore, suitable strategies for the design and syn‑
thesis of MOFs, MOF derivatives and their functionalized 
hybrids can be novel FRs for polymeric materials.

In this review, we summarize, for the first time, recent 
progress in fire‑retardant polymer composites with the use 
of MOF‑based FRs (MOF/polymer) as shown in Fig. 2. The 
strategies that utilize MOFs or their derivates are highlighted 
for a better understanding of the purpose of functionalization 
in microstructure component, thus beneficial for the further 
design. Then, the characterization, preparation methods, 
thermal and fire retardancy properties and mechanisms of 
MOF/polymer composites are also discussed.

2  Thermal Properties of MOFs

Regarding the application of MOF as fire retardants for poly‑
mer composites, the thermal property of MOF is a crucial 
aspect to be considered either in the high‑temperature polymer 
processing or in the possible degradation behavior in the fire. 
Therefore, studying the thermal property of MOF promoted 
the rational design MOF‑based materials for target functions.

Basically, the thermal stability of MOF can be predicted 
by the strength of the bonds of the formed structure [26]. 

Metal center Organic linker Metal-Organic framework
(MOF)

Fig. 1  Schematic structure of the MOF
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The charge density including charges of metal source and 
ionic radius influenced the strength of bonds. Yuan et al. 
[27] proposed the strategy to construct stable MOFs based 
on Pearson’s hard/soft acid/base (HSAB) principle as shown 
in Fig. 3, in which high‑valent metal ions with high charge 
densities can form stronger coordination bonds and thus a 
more stable framework. The frequently reported MOFs in 
fire retardancy research, such as ZIF‑8 [28, 29], ZIF‑67 [30] 
and UiO‑66 [31–33], showed the decomposition temperature 
up to the range of 300 to 350 °C in both air and  N2, respec‑
tively. Meanwhile, the processing temperature of polymers, 
especially thermoplastic polymers, can be up to 200 °C or 

even higher. Therefore, the choice of suitable thermal stable 
MOFs is the preliminary factor that has to be considered and 
it is feasible to meet this requirement for preparing polymer 
composites.

3  Preparation of MOF/Polymer Composites

As shown in Fig. 4, there are various methods for prepar‑
ing MOF/polymer composites from the reported literature. 
To achieve a well‑dispersed state of fillers in the matrix, it 
is crucial to achieve the optimal property in both fire retar‑
dancy and mechanical property. Preparing MOF/polymer 
composites on different scales allows it to meet the require‑
ments for diverse properties and applications. The details 
for preparing MOF/polymer composites are discussed in the 
following subsections.

3.1  MOF and Polymer Nanohybridization

Encapsulating polymer chains into the regulated and adjust‑
able nanochannels can achieve the precise control of the pol‑
ymer chain distribution. It may further achieve the potential 
performance for the polymer composites compared with the 
polymer and MOF particles being randomly entangled in the 
bulk state [34]. Various synthetic methods have been applied 
such as the applied polymerization process within the chan‑
nels of MOF [35], and polymerization of the ligands [36]. 
The materials prepared using this method have been applied 
in carbon dioxide  (CO2) adsorption [37] and gas separation 
[38]. However, due to limitations in applying this method, 
applying it in large‑scale industrial applications is difficult.
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Fig. 2  Schematic illustration of the potential advantages of MOF as 
FRs and a variety of methods for preparing MOF‑based FRs

Representative MOFs Representative MOFs
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Fig. 3  Stability of MOF guided by HSAB theory. Reproduced from Ref. [27] with permission from The Royal Society of Chemistry
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3.2  Solution Casting Methods

Solution casting is a common fabrication method for prepar‑
ing MOF/polymer composites. In general, MOF particles 
are first dispersed in the solvent through stir or sonication 
and then further mixed with the polymer solution for the 
final MOF/polymer solution. This is followed by heating at 
a certain temperature to fully remove the remaining solution. 
A “priming” technique is reported to obtain a well‑dispersed 
solution, in which a small portion of polymer was mixed 
with MOF suspension with the addition of polymer to the 
required amount gradually [39]. The solution casting method 
is widely reported in the preparation of MOF‑based mixed 
matrix membrane. Using the solution blending method to 
prepare polylactic acid (PLA) [40] and polystyrene (PS) 
[41], MOF composites were also reported. The better dis‑
persion of the fillers in the polymer matrix can usually be 
obtained.

3.3  Melt Compounding

The melt compounding method is much more suitable for 
commercial use due to it being environmentally friendly 
and versatile for larger scale processes compared with the 
two previously mentioned methods [42]. The melt blend‑
ing method mentioned here includes the physical mixing 
of both thermoplastic and thermosetting polymer. By using 
this method, thermoplastic polymers such as PLA [43] or 

polypropylene (PP) were directly mixed with the melted 
polymer in a chamber followed by the physical mixing with 
the twin‑screw extruder. The thermosetting polymers such 
as epoxy (EP) [44] or unsaturated polyesters (UP) [45] were 
melt‑mixed with the fillers at high temperature followed by 
the curing process. The sheer force was beneficial in prevent‑
ing the aggregation of the fillers within the matrix, which is 
widely reported in previous research for the preparation of 
the polymer composites in various applications.

4  MOF Applied in Fire Retardancy Research

4.1  MOF‑Derived Materials as FRs

4.1.1  MOF‑Derived LDH as FRs

Converting MOFs into well‑known FRs such as layered 
double hydroxides (LDHs) is the initial process in explor‑
ing how to turn MOFs into FRs. Due to the specific feature 
of MOFs with reactive moieties, MOFs have demonstrated 
the suitable precursors and sacrificial template for prepar‑
ing various hierarchical hollow materials such as porous 
carbon [46] and metal/carbon hybrids [47]. Among MOFs, 
two specific MOFs, ZIF‑8, and ZIF‑67, possessed the same 
topology structure, which are sensitive to the acidic and 
alkali conditions, thus providing the possibility of prepar‑
ing a hollow structure in a facile way. Furthermore, cobalt 
ions with variable valences enabled the trivalent ions to 
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MOF/polymer
composites

Nano-
hybridization

Polymer chain
in channels
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Fig. 4  Schematic of the possible methods for preparing polymer@MOF composites
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become LDHs materials, which are a class of two‑dimen‑
sional (2D) lamellar structure emerging as new inorganic 
FRs for polymers [19]. As shown in Fig. 5, Chen et al. [48] 
first reported the synthesis of LDH nanocage with the use 
of MOFs as templates which could be used as supercapaci‑
tors. The same strategy to prepare LDH from MOFs was 
later applied in fire retardancy research. Recent published 
papers from 2017 which focus on MOF‑derived LDH and 
other materials as fire retardants applied in different poly‑
mers are summarized in Table 1.

Pan et al. [49] proposed three‑dimensional (3D) gra‑
phene/LDH hybrids (rGO@LDH) as high‑performance 
FRs in epoxy nanocomposites. Acid‑etched ZIF‑67 stood 

and lied on graphene sheets, which benefited the restack‑
ing of graphene layers, thus enhancing the dispersion of 
fillers within the polymer matrix. With only 2 wt% of 
rGO@LDH, the peak heat release rate (pHRR) and total 
smoke production (TSP) of EP composites exhibited 
65.9% and 16.7% reduction compared to that of pure EP. 
Moreover, the electrical resistivity of EP composites was 
also 81.4% higher than that of pure EP. This allowed the 
practical design of highly safe electrical insulating epoxy 
nanocomposites with fast heat dissipation and low fire 
hazards.

The graphene oxide and carbon nanotubes surfaced 
anchored bimetallic‑derived Co–Ni LDHs are reported to 
promote formation the compact char residue and reduce 
toxicity by catalytically reducing toxic CO yields (46.1% 
and 33.9% decreases in total CO yield) in unsaturated 
polyester resin (UPR) system [50]. Similar, the reinforced 
and intumescent char of EP composites was also observed 
when incorporating the MOF‑derived dual MgAl‑LDH@
NiCo‑LDH hybrids [51]. The embedded curves in Fig. 6c 
presented and measured the strength of the char which was 
improved. The microstructure with fewer pores in SEM 
images (Fig. 6d–f) further indicated this enhanced char 
residues. Other works in preparing different MOFs‑derived 
LDH hybrids such as with polyphosphazene [52] and zinc 
hydroxystannate (ZHS) nanoparticles [53] exhibited great 
enhancement in reducing the fire hazards and improving fire 
safety for polymers.

Precipitating and acidic etching LDH

M(NO3)2 added

1 µm
ZIF-67

M2+(M=Mg, Co, Ni)
NO3

−

H2O
Co3−

OH−

H+

Fig. 5  The formation illustration of LDH nanocages by simultaneous 
precipitation and acidic etching. Reproduced from Ref. [48] with per‑
mission from The Royal Society of Chemistry

Table 1  Summary of MOF‑derived FRs on flame retardancy of polymer composites

a DDS Diaminodiphenyl sulfone
b DDM Diaminodiphenyl methane

Polymer Derivation Loading (wt%) Type of FRs Main fire retardancy results References

EP (DDS)a ZIF‑67‑derived NiCo‑LDH 2.0 rGO@LDH 65.9% and 16.7% reduction in 
pHRR and TSP

[49]

EP (DDM)b ZIF‑8‑derived pATH 20.0 DOPO‑encapsulated pATH 65% reduction in pHRR [55]
UPR ZIF‑67‑derived NiCo‑LDH 2.0 Graphene oxide@NiCo‑LDH 35.5% reduction in pHHR [50]

2.0 Carbon nanotubes@NiCo‑LDH 30.5% reduction in pHRR
EP (DDM) ZIF‑67 4.0 Polyphosphazene@NiCo‑LDH 30.9% reduction in pHRR [52]
EP (DDS) ZIF‑67 2.5 MgAl‑LDH@NiCo‑LDH UL‑94 V0 ratio, 66.7% reduc‑

tion in pHRR
[51]

EP (DDS) ZIF‑67‑derived NiCo‑LDH 
(NCH)

6.0 ZHS@ bimetallic (Ni‑Co) 
hydroxides nanocage

UL‑94 V0 rating, 69.1% reduc‑
tion in pHRR

[53]
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4.1.2  MOF‑Derived Aluminum Hydroxide as Fire 
Retardants

Magnesium hydroxide and aluminum hydroxide (ATH) 
are cost‑effective inorganic fire retardants [54], which are 
usually added directly or together with other synergists 
into polymer. However, the great quantities required usu‑
ally lead to a decline in the processability and mechanical 
properties of the polymer composites. The mesoporous 
aluminum hydroxide with tunable pore width by using 
MOFs as sacrificial templates due to their PH sensitiv‑
ity features [55] was prepared. The high surface area of 
porous ATH (pATH) allowed a higher loading of phospho‑
rus FRs (9,10‑dihydro‑9‑oxa‑10‑phosphaphenanthrene‑
10‑oxide, designated as DOPO). The EP/pATH‑DOPO 
composites exhibited the great reduction of fire hazards, 
in which the pHRR and TSP decreased by 65% and 30%, 
respectively.

Moreover, the mechanical property of epoxy compos‑
ites was studied by tensile tests and dynamic mechanical 
analysis (DMA), which exhibited the increased storage 
modulus due to the improved stiffness from the inor‑
ganic fillers. The slightly enhanced (diminished) tensile 
strength for EP composites with DOPO modified pATH 

(ATH) indicated better interaction of pATH with poly‑
mer matrix. Interestingly, a green and renewable cycle 
by the regeneration of the dissolved ZIF‑8 in mild alkali 
conditions is available, which led to the deprotonation 
of the ligand and thus the preparation of pATH (Fig. 7). 
The corresponding formation mechanism of pATH was 
investigated by TEM and the elemental mapping result 
as shown in Fig. 8. With the disappearance of ZIF‑8 in 
the interfacial region adjacent to the shell of ATH, newly 
generated ATH was supplied to fill the interface until 
termination of the hydrolysis reaction (amorphous rep‑
lica method). This template‑engaged nano‑architecture 
method has the potential to advance the research in fire 
retardancy.

4.2  MOF Directly as FRs

After exploring the conversion of template‑engaged MOFs 
into a series of novel FRs with porous structure, MOFs itself 
equipped with various transition metal centers and catalytic 
carbonization features also showed potential as fillers for 
polymers. Hou et al. [41], for the first time, reported incor‑
poration of iron‑based and cobalt‑based MOFs into polysty‑
rene. The 14% and 28% reductions in pHRR were observed 
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Fig. 6  a–c Front view and d–f SEM images of char after the cone calorimeter test for EP, EP/2.5% MgAl, EP/2.5% MgAl@NiCo, respectively. 
Adapted from Ref. [51] with permission from Elsevier
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for PS/Fe‑MOF and PS/Co‑MOF composites compared with 
that of neat PS. They reported that the formation of porous 
metal oxides derived from MOFs acting as a thermal bar‑
rier is one of the factors in achieving the fire retardancy. 
Moreover, it showed the restraint for the release of toxic sty‑
rene oligomers. Various MOFs which consisted of different 

transition metal centers such as zinc‑based ZIF‑8 [56, 57], 
cobalt‑based ZIF‑67 [58], copper‑based HKUST‑1 [45], 
iron‑based MIL101 (Fe) [41] and zirconium‑based UiO‑
66 [33, 59] have been applied as FRs in different polymers 
which showed different levels of fire retardancy efficiency. 
The same MOF has led to significant differences in provid‑
ing fire retardancy and suppressing smoke due to the dif‑
ferent mechanisms based on the features of both polymer 
and MOF such as the chemical structure. For example, the 
PS composites with the presence of 5% zirconium‑based 
MOF (UiO‑66) exhibit 26.8% reduction in pHRR [59]. The 
addition of 4% Zr‑MOF imparts polycarbonate (PC) 48% 
reduction in pHRR and UL‑94 V0 rating. The unsaturated 
Zr metal site made MOF possess catalytic oxidation and char 
formation ability [33].

On the contrary, many MOFs showed similarity exhibiting 
capacity to lower the fire hazards such as suppress of smoke, 
toxic CO and  PH3 which are reported in different polymer 
matrixes such as EP, PS and PA6 [33, 41, 60]. The 22.8%, 
30%, and 28% reductions of TSP with the addition of only 
2 wt% ZIF‑8 [61], UiO66‑NH2 [44] and ZIF‑67 [62] for EP 
composites were reported. The total smoke rate (TSR) of PC 
composites is reported decrease by 17% with the presence of 
2 wt% of UiO‑66 (Fig. 9). The reduction in smoke demon‑
strated that a possible reason is due to catalytic capacity of 
MOF and the transition metal oxide derived from the MOF, 

ZIF-8
Al(NO3)3

NaHCO
3

Al(OH)3 coating

ZIF-8@Al(OH)3

NO3−

Protonated ligand

Waste solution

ZIF-8 agglomeration

pATH

Etching
Etching

Zn2+

H+

H+

H+

Fig. 7  Schematic illustration of the synthetic procedure for pATH. Adapted from Ref. [55] with permission from the Royal Society of Chemis‑
try

(a)

(c)

(b)

Al(OH)3 layer

Al(OH)3 wallgap

50 nm50 nm

HAADF Zn Al

Fig. 8  Investigation of the formation mechanism of pATH through 
TEM. a TEM image of the ZIF‑8‑2 h template; b TEM image of 
the intermediate gathered after a reaction time of 10 min; c HAADF 
image and elemental mapping (scale bar: 20 nm). Adapted from Ref. 
[55] with permission from the Royal Society of Chemistry
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which played a catalytic role such as cobalt oxide  (Co3O4) 
[63–65]. The limitation of simply adding an MOF itself is 
usually not sufficient. Therefore, more research started to 
explore imparting polymer with highly efficient fire retar‑
dancy by further modifying MOFs using different methods.

4.3  Hierarchical Functionalized MOF Hybrids as FRs

4.3.1  Phosphorus Modified MOF Hybrids

To optimize the fire retardancy efficiency, the combination 
of phosphorus fire retardants with additional inorganic com‑
pounds is attracting increasing attention due to the phospho‑
rous FRs influenced in both the condensed phase by enhanc‑
ing the char and in the gas phase through flame inhibition. 
Among the inorganic materials, transition metal containing 

compounds are reported to functionalize with phosphorus 
FRs as a feasible way to prepare highly efficient FRs [66]. A 
ZIF‑8 modified phosphorus containing layered α‑zirconium 
phosphate (α‑ZrP) was synthesized by electrostatic force 
[67]. Polyurethane (PU) composites with the addition of 
these fillers showed 45.6% and 40.6% reduction in pHRR 
and TSP, respectively. Moreover, Co‑based MOFs abundant 
with transition metal species and phosphorus containing 
structure (denoted as P‑MOF) were synthesized through a 
facile hydrothermal method and reported by Hou et al. [25] 
as shown in Fig. 10a. The layered MOF acted as a barrier 
and was able to provide a skeleton for char formation, thus 
suppressing the release of toxic gases such as CO for epoxy. 
The toxicity of gas was assessed by the effective apparatus, 
steady state tube furnace (SSTF) tests, based on standard 
ISO TS 19700 as shown in Fig. 11. The reduction yield 
of CO and increase in  CO2 provide direct evidence of the 
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excellent catalytic oxidation effect of P‑MOF. The porous 
structure acted as a pathway for the absorption of degrada‑
tion products. Hou et al. also reported another layered Co‑
based MOF (Co‑MOF) with Schiff base as organic ligands 
which was designed and synthesized from para‑aminoben‑
zoic acid (PABA) and terephthalaldehyde (TPAL) as shown 
in Fig. 10b [68]. After modified Co‑MOF with phosphorus 
fire retardants like DOPO, this novel MOF hybrid showed an 
enhancement in the fire retardancy and mechanical property 
for PLA. 

The reduction of toxic CO with the combination of phos‑
phorus modified MOF was also observed by Zhang et al. 
[44]. They reported the use of bio‑mass phytic acid (PA) to 
functionalize zirconium MOF (PA‑UiO66‑NH2) as effective 

FRs to impart epoxy with enhanced fire retardancy. This 
resulted in a 65% reduction in the carbon monoxide produc‑
tion (COP) of the EP composites with the addition of 5 wt% 
of PA‑UiO66‑NH2. They reported that the existence of phos‑
phate groups and amine groups on the FRs may react with 
the epoxy groups during the curing process which enhances 
the interfacial strength of fillers with polymer, and this is 
indicated by the decrease in the glass transition temperature 
(Tg) and cross‑linking density. They further proposed that 
the modified thermal decomposition of EP composites such 
as extensive random scission may enhance the char qual‑
ity with higher polyaromatic structures, due to the interac‑
tion of the early decomposition products of EP and that of 
novel phosphorus functionalized MOF, which was evidenced 
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by pyrolysis gas chromatography–mass spectrometry (Py‑
GC–MS). The possible modified pyrolysis route was pro‑
vided as shown in Fig. 12. Indeed, thermal decomposition 
of phosphorus FRs and polymer as one of the factors affect‑
ing the fire retardancy performance of polymer composites 
and char formation is systematically studied [69]. This may 
also be applicable and should be considered when preparing 
phosphorus modified MOFs as highly efficient FRs.

4.3.2  Other Hierarchical MOF Hybrids

Graphene oxide (GO) as a two‑dimensional material with a 
large surface area and rich functional groups is favored for 
the growth of MOFs due to the coordination bonds [61, 70]. 
MOFs and graphene oxide hybrids have been prepared and 
used in many different applications [71, 72]. Recently, they 
have also been attractive as FRs for EP and PLA, respec‑
tively. The results revealed that a 65% reduction of pHRR 
for epoxy was achieved, while the LOI value of the PLA/

MOF@GO composites increased to 24% from 21% [73]. 
Moreover, the growth of bimetallic MOF on GO layer can be 
adjusted through controlling the ratio of Zn and Co sources 
[74]. The homogenous covered MOF@GO hybrids can 
further improve the fire retardancy of EP composites lead‑
ing to an LOI value up to 29% and a 37% reduction in the 
production of carbon monoxide (COP). Adding borate ions 
adsorbed MOF‑functionalized GO (ZIF67/RGO‑B, Fig. 13) 
into epoxy can further enhance its fire safety, which exhib‑
ited a 65% reduction in pHRR and 66% reduction in smoke 
density [62]. They proposed that the fire retardancy mecha‑
nism was attributed to both the barrier effect of GO, and the 
formation of dense char, with the latter being due to  Co3O4 
derived from MOF. The inert gases such as  N2 and  NH3 also 
helped to dilute oxygen and flammable gases. Comparing 
fire retardancy results with the other GO hybrid FRs in EP, 
such as the pHRR reduction of GO hybrids with MCM‑41 
(40%) [75] or LDH (25%) [76], MOF@GO hybrids exhibit 
similar and even more attractive performance.

N
H

C

OH

NH2−CH2CHCH2O O−CH2CHCH2−NH

CH3

O

CH3

NH2

COOH

COOH

5.

5.

5.

5.

NH2

COO+

COOH

(22.14 min)

4.3.

3.

4.

4.

4.

H2

O

CH3

C+

O H

(26.40 min)

(16.41 min)
(9.12 min)

(6.24 min)

H
H

+

CH3

CH2
+

CH2
+ HC=CH2

CH3

CH3

NH2

NH2

(2.33 min)

(25.03 min)

CH2
+

+

NH2

C=O

C=O

(11.29 min)

(19.67 min)

(16.41 min)

NH2

C=O
CH2

+

C NH2

(11.29 min)
NH2

NH2

+

6.

6.

(25.03 min)

H2C
+

H2N
H2

Fig. 12  The new pyrolysis route of the EP composites with the addition of 5 wt% PA modified UiO66‑NH2 sample. Reproduced from Ref. [44] 
with permission from American Chemical Society



Nano‑Micro Lett.          (2020) 12:173  Page 11 of 21   173 

1 3

Hybridization of MOF with other fire retardants based on 
the different interactions between MOF and FRs was also 
reported to be an effective method. Through the electrostatic 
interactions, MOF and MgAl‑LDH hybrids, ZIF‑8@MgAl‑
LDH and ZIF‑67@MgAl‑LDH, were prepared to impart 
epoxy composites with enhanced fire retardancy, which were 
measured by the cone calorimeter test (CCT), UL‑94 and 
LOI [77]. The reduction in the burning time in the UL‑94 
test was observed, which reached UL‑94 V1 rating as shown 
in Fig. 14. Guo et al. [78] prepared silicon dioxide  (SiO2, 
core) and zirconium‑based MOF (UiO‑66, shell) structure, 
where the two layers were connected through the covalent 
bonds  (SiO2@UiO‑66). Adjusting the ratio of the two mate‑
rials can control the morphology of the hybrids. The 31% 
and 16% reductions in pHRR and TSP for EP/SiO2@UiO‑66 
composites indicated the improved performance in suppress‑
ing heat and smoke compared with any single component.

It is noticeable that MOF or MOF hybrid fire retardants 
exhibited more significant results in CCT than the small 
external heat flux fire tests (LOI and UL‑94). This is also 

observed in other nano‑FRs system due to barrier vanished 
for the nanocomposites system in small external heat flux 
leading to not significant improvement in the UL‑94 [79, 
80]. In the above studies, the MOF mainly influences the 
fire retardancy in two aspects as shown in Fig. 15 [74]: (1) 
catalytically promoting the formation of dense and thermal 
stable char, which acts as a barrier to protect the polymer 
from the heat and oxygen; and (2) suppressing the produc‑
tion of smoke and toxic CO through its catalytic oxidation 
behavior. The applications of MOF hybrids as FRs for poly‑
mer composites are summarized in Table 2.

4.4  MOFs or MOF Derivatives as Synergists

The optimization of the synergists based on traditional intu‑
mescent fire retardants (IFRs) system has attracted atten‑
tion in the past two decades as a way to achieve a superior 
fire retardancy property. MOFs were applied as novel syn‑
ergists to control the fire retardancy, mechanical property 
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and carbonization process. Zhang et al. [81] first applied 
only 0.5% of bimetallic MOF with zinc and cobalt transi‑
tion metal centers in the intumescent epoxy with signifi‑
cant improvement. Further, using bimetallic MOF and gra‑
phene oxide hybrids (MOF@GO) as synergists exhibited 
a 41% decrease in pHRR and 30% decrease in TSP. The 
systematic study for the carbonaceous char residue by XRD, 
in situ char morphology observation and X‑ray tomography 
found a novel carbonization forming an alternative loose 
and accumulated structure as shown in Fig. 16. The study 
showed that the reinforced char structure with a good insula‑
tion property is crucial for achieving a good fire retardancy 

property. The mechanical property of EP composites did 
not deteriorate according to the tensile test result in Fig. 17, 
which is probably due to the high specific surface area 
and inorganic–organic hybrid feature of MOF, which can 
enhance the interfacial interaction [81].

Moreover, the synergistic effect of MOFs with the com‑
bination ammonium polyphosphate (APP) on the polymer 
PLA was also studied. Firstly, the modified MOF (α‑Phenyl‑
N‑(2‑propyl‑2‑hydroxymethyl‑1, 3‑dihydroxy)‑imine‑nickel 
(II), labeled as Ni‑MOF) was prepared, which contained 
polyhydroxy groups. With the addition of total loading 
at 5 wt% (1.7% Ni‑MOF and 3.3% APP), the fire safety 
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Fig. 14  Digital photographs of EP, EP/ZIF‑8@MgAl‑LDH and EP/ZIF‑67@MgAl‑LDH during the UL94 vertical burning test process. Repro‑
duced from Ref. [77] with permission from Elsevier
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PLA composites were achieved, which achieved UL‑94 V0 
rating [43]. They also reported that the dehydration and 
crosslink of polyhydric resulting from the decomposition 

of Ni‑MOF are beneficial to the formation of the thermal 
stable char residue with the presence of more P and N ele‑
ments, which act as a physical barrier in the condensed 

Table 2  Summary of MOF hybrids as FRs on fire retardancy of polymer composites

a MOCA: 3,3′‑Dichloro‑4,4′‑diaminodiphenyl methane

Methods Polymer Loading (wt%) Type of FRs Main fire retardancy results References

Phosphorus modified MOF EP (DDM) 2 P containing MOF structure 28% and 18% reduction in pHRR 
and THR

[25]

PLA 2 Co‑MOF@DOPO 27% and 56% reduction in pHRR 
and TSP

[68]

EP (DDM) 5 UiO66‑NH2@phytic acid 41% and 42% reduction in pHRR 
and TSP

[44]

Hybridization of MOF EP (MOCA)a 2 ZIF‑8@MgAl‑LDH 50.9% reduction in pHRR UL‑94 
V1 rating

[77]

ZIF‑67@MgAl‑LDH 62.3% reduction in pHRR UL‑94 
V1 rating

PS 1 Ni‑MOF@GO 33% and 21% reduction in pHRR 
and TSP

[70]

PUE 2 ZIF‑8@α‑ZrP 69.6% and 40.5% reduction in 
pHRR and TSP

[67]

EP (MOCA) 2 ZIF‑8@rGO 65% and 37% reduction in pHRR 
and TSP, UL‑94 V1 rating

[61]

PLA 0.5 ZIF‑8@GO LOI value 24.5% (That of pure 
PLA 21%)

[73]

EP (DDM) 3 UiO66‑NH2@epoxy terminated 
 SiO2

31% and 16% reduction in pHRR 
and TSP

[78]

EP (MOCA) 2 ZIF67/RGO‑B 65.1% reduction in pHRR, UL‑94 
V0 rating

[62]
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phase. The synthesis process of the Ni‑MOF and its mecha‑
nism in the PLA composites are shown in Fig. 18. Other 
works related to the synthesis of nickel‑based MOF‑derived 
nickel phosphate as synergists were also reported to impart 
intumescent flame‑retardant wood fiber/PLA composites 
toward fire safety [82]. The current reported work relating 
to the application of MOF‑derived synergists is summarized 
in Table 3, including the composition as well as the main 
results in fire retardancy.

Aside from directly applying MOF as synergists with the 
incorporation of IFR, the MOF‑derived nickel phosphate 
was also reported to have an effect in reducing the smoke in 
the intumescent fire‑retardant wood/PLA system. The facile 
hydrothermal synthesis method shown in Fig. 19 prepared 
microsized rod‑like nickel phosphate and also exhibited an 
enhancement in the mechanical property of PLA compos‑
ites, for example, Young’s modulus.

4.5  MOF Host–Guest Interaction

Taking advantage of the highly porous inner structure of 
MOFs and incorporating FRs molecules into MOF host 
materials are feasible ways to avoid the release of volatile 
organic compounds (VOCs). Qi et al. [45] reported the 
infusion of phosphorus FRs‑dimethyl methylphospho‑
nate (DMMP) into porous copper‑based MOFs HKUST‑1 

and then incorporated into unsaturated polyester (UP). 
The single‑crystal X‑ray diffraction, thermogravimetric 
analysis (TGA) and computational model proved that 
around 41% DMMP were encapsulated inside the host 
MOF particles due to the presence of open metal sites 
(OMSs) in HKUST‑1 (Fig. 20). This hierarchical strategy 
simultaneously improved the fire safety of UP and its 
mechanical property. Similar strategy was also reported 
by encapsulating P and N containing ionic liquid (IL) into 
MOF (NH2‑MIL‑101(Al)) as novel FR for EP [83], which 
solved the poor dispersion and neutralizing the effect of 
directly adding IL into polymers. This IL‑modified MOF 
combined the advantages of both materials and exhib‑
ited the 51% and 37.8% reduction in pHRR and SPR, 
respectively.

The addition of FRs at a high dose usually leads to the 
deterioration of the mechanical property. However, by 
encapsulating the DMMP into MOF, the similar impact 
strength and enhanced tensile strength, as shown in Fig. 21, 
indicated that the host–guest interaction eliminated the plas‑
ticization effect of DMMP. In summary, this hierarchical 
functionalization strategy by using MOF as host materi‑
als allowed the original fire retardancy mechanism of the 
polymer composites to strengthen and led to the effective 
improvement of polymer composites simultaneously in both 
the fire retardancy and mechanical property.

EP
EP/10IFR
EP/0.5MOF@GO-9.5IFR

EP/0.
5M

OF@

GO-9.
5IF

R

Tensile strength
Elongation at break

(b)(a)60

50

40

30

20

10

0

70

60

50

40

30

7

6

5

4

3

St
re

ss
 (M

Pa
)

0 1 2 3 4
Elongation (%)

5 6 7

Te
ns

ile
 s

tre
ng

th
 (M

Pa
)

El
on

ga
tio

n 
at

 b
re

ak
 (%

)

EP

EP/10
IFR

Fig. 17  The mechanical property of EP composites by tensile test. Reproduced from Ref. [81] with permission from Elsevier



Nano‑Micro Lett.          (2020) 12:173  Page 15 of 21   173 

1 3

1 µm

(a)

(b)

C

PLA/APP

Dense smoke
Less smoke

PLA/APP/Ni-MOF

O N Ni

Ni(CH3COO)2·4H2O

O
O

OO

O

O

O

O

O

O

O

N

Char layer

Heat flow

Heat flow Heat flow

Char

Heat flowVolatile
VolatileO2O2

O2 O2

Pyrolytic
layer

Substance

O
O

O

O

ONH4 ONH4 ONH4

O2

O O O

OH
OH

OH

HO

CNC
H

O

OH
H
C N

O

O
O O

O
OH

O

H
C CN

O

O O

P

P P

PP
O

O

O

O O

O

O

O

OH OH

HOCross-linking

Oxides of nickel

Oxides of nickel APP Graphitized carbonNi-SaTr

O
Ni Ni Ni Ni

NiO Ni2O3

Δ

Δ

−NH3

−H2O

O

O O

P P P

O

O

OH

OH
O O

O

Ni2+

O
C

OH

OHN
HO

HC
C

N
CH

OH

O

O

P P

OH

O

P

C

P

OH
H
C N C

OH

O

O

O
O OH

OH

HO

P

O

P

P P

O

O

Fig. 18  a Graphic illustration of preparation process of Ni‑MOF. b Illustration of flame‑retardant and smoke suppression mechanism. Adapted 
from Ref. [43] with permission from Elsevier



 Nano‑Micro Lett.          (2020) 12:173   173  Page 16 of 21

https://doi.org/10.1007/s40820‑020‑00497‑z© The authors

Table 3  Summary of MOF‑based synergists on flame retardancy of polymer composites

Polymer Type and loading of FRs and synergists Main fire retardancy results compared with pure polymer References

EP (DDS) IFR (9.5 wt%) + Zn/Co MOF (0.5 wt%) UL‑94 V1 rating [81]
IFR (9.5 wt%) + Zn/Co MOF@GO (0.5 wt%) UL‑94 V1 rating

pHRR and TSP reduction = 42% and 50%, respectively
PLA APP (5 wt%) + Ni‑MOF (1 wt%) UL‑94 V2 rating [43]

APP (3.3 wt%) + Ni‑MOF (1.7 wt%) UL‑94 V0 rating
pHRR and TSP reduction = 27% and 50%, respectively

PLA Wood (25 wt%) +APP (5 wt%) + Ni‑PO (5wt %) UL94 V2 rating, LOI = 26.3% [82]
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Fig. 19  Schematic illustration of the formation from Ni‑MOF to Ni‑PO. Reproduced from Ref. [82] with permission from American Chemical 
Society
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5  Challenges and Current Limitations

Although many efforts have been tried as summarized to 
applying MOF as FR or FR component for polymers, there 
are a few drawbacks regarding the fire retardancy application 
that have to be faced critically in consideration of the aspects 
in practical concern, efficient design or future guideline. The 
detailed concerns were listed as follows:

(1) The limited fire retardancy efficiency of MOF itself 
demonstrated that though it possesses the potential fea‑
tures, MOF directly as FR does not quite meet the high 
standard in the fire retardancy field.

(2) Despite the large population of MOFs that have been 
synthesized and reported up to now relating to target 
functions, only a small number of MOFs have been 
applied as fire retardants. This is due to the fact that 
only MOF with certain features (e.g., specific metal 
centers, organic linkers, pore dimension, chemical and 
thermal stability of the framework) is suitable to be 
used in the fire retardancy field.

(3) Due to the chemical structure of different polymers, 
each polymer exhibited a significant difference in the 
thermal degradation process. Therefore, the same 
MOF‑based FRs exhibited a significant difference in 
the mechanism and performance for different polymer 
materials. Generally commenting efficiency of MOF 
FRs is difficult based on the current stage of studies 
have been explored.

(4) The productivity and the cost‑effective factors of MOF 
limited MOF as commercial materials in many practi‑
cal applications.

6  Conclusion and Prospects

In this review, the current state of the art in fire‑retardant 
MOF/polymer composites is summarized. Although it 
is still in its early stages, MOFs have been proven to be 
valid components in achieving enhanced fire retardancy 
and suppression of smoke for polymers through MOF, its 
derivatives or MOF hybrids. This paper has reviewed the 
recent findings in relevant publications in this specific 
topic which are still quite fresh but provide an extremely 
attractive research direction. It is hoped that this can 
serve as a reference to guide researchers in determining 
the suitable methods for their work in this area. Vari‑
ous MOFs and new synthesized approaches have been 
developed to MOF‑based hierarchical structure with 
the combination of effective fire retardancy component. 
In principle, MOFs are superior to other inorganic FRs 
since MOFs simultaneously possess a few advantages 
toward efficient FRs: potential carbon source, various 
pore geometries and facile functionalization. It is gen‑
erally reported that the fire retardancy mechanism can 
be attributed to the following several aspects: (1) char 
formation; (2) catalytic oxidation; and (3) adsorption 
attributed to porous structure.

So far, various polymers such as PLA, epoxy, PS, PC 
and PU have been explored as fire‑retardant MOF/poly‑
mer composites and they have shown an enhanced fire‑
retardant property. Nevertheless, MOF‑based FRs are cur‑
rently still in their infancy and are far from satisfactory. 
More future work may take effort in the serval aspects. 
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Firstly, rationally choosing suitable MOF and applied 
functionalization strategy in different polymer matrix is 
a fundamental aspect to be considered. Secondly, a deep 
understanding of the structure–property relationship in 
MOF/polymer composites is highly essential. Roles of the 
porous structures, transition metal species, organic ligand 
species of MOF to fire retardancy of polymers should be 
further clarified in the future. For example, studies on a 
matched thermal degradation behavior between MOF and 
polymer matrix or adsorption ability for hazard gases are 
a promising way to guide the future design of MOF‑based 
FRs. On top of the improved flame retardancy, since MOFs 
are versatile via tuning basic components (e.g., metal spe‑
cies, organic ligand species, porous structures, substituent 
group and nano‑hybridization), they have great potential 
to act as multifunctional additives for polymers to achieve 
some advanced properties. As a result, we do believe that 
these are ambitious yet achievable prospects for MOF‑
based fire‑retardant polymer composites.
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