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S1 Experimental Detail 

S1.1 Chemicals 

All materials generated in this study are available from the lead contact without restriction. Iron 

(III) chloride hexahydrate (FeCl3∙6H2O; Sigma-Aldrich; AR 97.0%), urea ((NH2)2CO; Sigma-

Aldrich; AR, 99%), hydrochloric acid (HCl; Sigma-Aldrich; 36.5-38.0%), sodium 

hypophosphite monohydrate (NaH2PO2·H2O; AR, 99%), sodium hydroxide (NaOH; Sigma-

Aldrich; AR, > 85%), sodium sulfite (Na2SO3; AR 97.0%), and fluorine-doped tin oxide glass 

(FTO, 15 Ω, thickness 2 mm) were used as received unless stated otherwise. 

S1.2 Faradic Efficiency Calculation  

The faradaic efficiency of O2 production was calculated using the follow equation:  

Faradaic efficiency = nO2/(Q/2F)                                    (S1) 

where nO2 defines produced oxygen with the utilization of total charge Q, F refers to Faradic 

constant. 

S1.3 DFT Calculations  

DFT calculations were performed using the Vienna ab initio package (VASP) [S1, S2]. The 

core electrons were described by using the projector augmented wave (PAW) method [S3]. A 

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional 

was employed for the plane-basis wave expansion [S4, S5]. A corrective Hubbard U correction 

(GGA+U) method introduced by Dudarev et al. was included in the calculations to accurately 

describe the strongly correlated interaction of Fe 3d orbitals [S6]. Ueff was set to 5 eV for Fe 

atoms. The energy cut-off of 400 eV was used. Brillouin zones were Ueff was set to 5 eV for Fe 

atoms and an energy cut-off of 400 eV was used. Brillouin zones were sampled with a gamma-

centered k-point grid of 1 × 2 × 1 in the supercell of FePy, FePi, and α-Fe2O3(012) of which the 

lateral dimensions are 21.71 × 9.68 Å2, 18.24 × 18.22 Å2, and 19.39 × 10.28 Å2, respectively 

[S7]. Large enough vacuum layers of at least 15 Å were applied to minimize undesirable 

interactions between adjacent periodic cells. The Gaussian smearing scheme was applied with 
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a smearing width of 0.1 eV. The energy convergence criteria in the self-consistent field were 

set to 10-6 eV and geometry structures were fully relaxed with Hellman-Feynman forces with a 

tolerance of 0.1 eV Å−1.  

The ΔG of the OER intermediates was defined as follows:  

ΔG = ΔE + ΔZPE – TΔS + ΔGU + ΔGpH                                (S2)  

where ΔE is the calculated total energy difference, ΔZPE and TΔS are the zero-point energy 

correction and entropy terms, respectively, which can be determined by frequency calculations. 

ΔGpH is the correction of the H+ free energy by the concentration and ΔGU represents the free 

energy terms related to the applied electrode potential, U. 

S2 Supplementary Figures 

 

Fig. S1 Cross slide SEM image of FePy@FePi decorated nanorods 

 
Fig. S2 HRTEM image of FePy@FePi hybrid overlayer and lattice fringe of Fe4(P2O7)3 

crystalline phase 

http://springer.com/40820


Nano-Micro Letters  

 S3/S5 

 

Fig. S3 EDX images of the FePy@FePi hybrid overlayer 

 

Fig. S4 a-c HR-TEM images of FePi at different magnifications 

 
Fig. S5 XPS spectra of C 1s for FePi, and FePy@FePi 

http://springer.com/40820


Nano-Micro Letters  

 S4/S5 

 

Fig. S6 a XRD patterns of Fe2O3 and e-Fe2O3. b, c XPS spectra of Fe 2p and O 1s of Fe2O3 

and e-Fe2O3 

 

Fig. S7 a UV-vis absorptance spectra of Fe2O3, FePi, and FePy@FePi decorated photoanode. 

The absorptance spectra (A) were obtained by considering the diffuse reflectance (R) and 

diffuse transmittance (T) spectra (A = 100 % – R – T). b Tauc plots of α-Fe2O3 and FePi, and 

FePy@FePi decorated α-Fe2O3 

 

Fig. S8 a-c Cyclic voltammetry curves of Fe2O3, FePi, and FePy@FePi decorated photoanode 

 

Fig. S9 Faradic Efficiency of Fe2O3, FePi, and FePy@FePi decorated photoanode measured at 

1.23 V vs. RHE at 1 sun illumination after measured for 1 h 
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Fig. S10 a HRTEM image of FePy@FePi hybrid overlayer decorated α-Fe2O3 nanorod after 

PEC test. b HRTEM image of FePy@FePi hybrid overlayer after PEC test 

 

Fig. S11 a-c Fe 2p, O 1s, and P 2p XPS spectra of FePy@FePi decorated photoanode after 

stability test 
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