Supporting Information for

A Pair-Electrosynthesis for Formate at Ultra-Low Voltage via Coupling of CO₂ Reduction and Formaldehyde Oxidation

Mengyu Li¹, Tehua Wang¹, Weixing Zhao¹, Shuangyin Wang¹, Yuqin Zou^{1, 2, *}

¹State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China

²School of Chemistry and Chemical Engineering, Jishou University, Jishou Human 416000 *Corresponding author. E-mail: <u>yuqin_zou@hnu.edu.cn</u> (Yuqin Zou)

Supplementary Figures and Tables

Fig. S1 SEM images of commercial Bi powder at different magnifications

Fig. S2 XRD patterns of Cu foam, Cu1 and Cu2

Fig. S3 Electrochemical reduction curve of CuO/Cu₂O at -0.4 V_{RHE} for 400 s in 1 M KOH electrolyte

Fig. S4 Constant potential electrolysis of (a) BiOCl and (b) commercial Bi powder at the different potentials in H-cell

Fig. S5 Standard curve between the known concentration of formate and relative area measured by HPLC

Fig. S6 Potential-dependent FE of CO₂ reduction gas product for BiOCl and commercial Bi powder

Fig. S7 EE of BiOCl nanosheet for cathodic CO₂RR in H cell

Fig. S8 Long-term stability test of BiOCl nanosheet at -1.16 V_{RHE} in H-cell

Fig. S10 (a, b) TEM images, (c) HRTEM image, (d) SAED pattern of BiOCl nanosheet after CO₂RR

Fig. S11 (a) XRD pattern and (b) Bi 4f XPS spectrum of BiOCl nanosheet after CO₂RR

Fig. S12 The capacitive current density differences plotted against scan rates

Fig. S13 EE of BiOCl nanosheet for cathodic CO₂RR in flow cell

Fig. S14 HPLC spectrum of BiOCl nanosheet after electrolysis at -0.48 V_{RHE}

Nano-Micro Letters

Fig. S15 SPCE of CO₂ toward formate using BiOCl nanosheet in flow cell

Fig. S16 Long-term stability test of BiOCl nanosheet in flow cell at -0.48 V_{RHE}

Fig. S17 Long-term stability test of BiOCl nanosheet in flow cell at -0.86 VRHE

Nano-Micro Letters

Fig. S18 Linear relationship between the concentration of formaldehyde and the charge consumed

Fig. S19 (a) Nyquist plots and (b) Bode phase plots of Cu₂O in 1 M KOH with the addition of 100 mM formaldehyde at different potentials

Fig. S20 LSV curves of Cu₂O in 1 M KOH electrolyte with or without CH₃OH

Fig. S21 (a) Linear relationship between the concentration of methanol and the ratio of relative area to reference sample (DMSO) area. (b) Linear relationship between the concentration of formate and the ratio of relative area and reference sample (DMSO) area

Fig. S22 Formate concentration formed by formaldehyde electrooxidation and Cannizzaro reaction

Fig. S23 H₂ FE of Cu₂O for FOR at different potentials

Fig. S24 *I-t* curves using Cu₂O for six successive electrolysis cycles

Fig. S25 (a) Moles and (b) production rate of formate using Cu₂O for six successive electrolysis cycles

Fig. S26 CV curve of Cu₂O in 1 M KOH electrolyte

Fig. S27 LSV curves of Cu foam and Cu foam oxidation followed by reduction in 1 M KOH electrolyte with 0.1 M formaldehyde

Fig. S28 Electrochemical performance of CO₂RR coupled with FOR in H-cell. (**a**) Schematic diagram for CO₂RR coupled with FOR to realize the electrosynthesis of formate. (**b**) LSV curves of CO₂RR//FOR and CO₂RR//OER full cells. (**c**) Constant potential electrolysis of CO₂RR//FOR full cell at different voltages. (**d**) Voltage-dependent formate FE, (**e**) formate production rate of anodic FOR, cathodic CO₂RR and CO₂RR//FOR full cell

Fig. S29 Schematic diagram for CO₂RR coupled with FOR in a liquid-phase flow cell

Fig. S30 LSV curves of CO₂RR//FOR full cell in H-cell and liquid-phase flow cell

Fig. S31 (a) Chronoamperometry curves and (b) potential-dependent total formate FE in a liquid-phase flow cell with 1 M KOH electrolyte

Fig. S32 (a) Chronoamperometry curves and (b) potential-dependent total formate FE in a liquid-phase flow cell with 2 M KOH electrolyte

Table S1 Gibb's free energy of formation at 25 °C and 101.325 kPa

Molecular formula	$\Delta_{\rm f} G_{\rm m}^{\rm 0} ~({\rm kJ~mol^{-1}})$
H ₂ O (1)	-237.129
O ₂ (g)	0
$CO_2(g)$	-394.359
HCOOH (l)	-361,35
OH ⁻ (aq)	-157.244
HCOH (g)	-102.54

Table S2 Comparison of electrocatalytic CO₂RR to formate performance on various catalysts in H-cell from recent literature

Catalysta	Flootroluto	Potential	FE	j formate	Defa
Catalysis	Electrolyte	(V _{RHE})	(%)	$(mA cm^{-2})$	Kels.
BiOCl	0.5 M KHCO ₃	-0.86	90.7	11.11	this work
BiOCl	0.5 M KHCO ₃	-1.16	99.0	36.24	this work
High crystalline Bi ₂ O ₃	0.5 M KHCO ₃	-0.9	91	8	[S1]
Bi ₂ O ₃ @C-800	0.5 M KHCO ₃	-0.9	92	7.5	[S2]
Bi ₂ O ₃ NSs@MCCM	0.1 M KHCO ₃	-1.256	93.8	14	[S3]
Bi/rGO	0.1 M KHCO ₃	-0.8	98	2~3	[S4]
Cu foam@BiNW	0.5 M NaHCO ₃	-0.69	95	15	[S5]
Bi ₂ O ₂ CO ₃ nanosheets	0.1 M NaHCO ₃	-0.7	85	9.35	[S6]
Activated Bi2Te3 NPs/C	0.5 M NaHCO ₃	-0.9	89.6	14	[S7]
Bi ₂ S ₃ -Bi ₂ O ₃ @rGO	0.1 M KHCO ₃	-0.9	90.1	3.7	[S8]
Fractal-Bi ₂ O ₃	0.1 M KHCO3	-1.2	87	20.9	[S9]
Bilayer-Bi ₁₂ O ₁₇ Cl ₂ nanosheet	0.5 M NaHCO ₃	-0.89	93.5	11.5	[S10]
BiOBr-templated catalyst	1.0 M KHCO ₃	-0.9	96	52.8	[S11]
Ultrathin Bi NS	0.5 M NaHCO ₃	-0.82	95	14	[S12]
Oxide-derived Bi-Sn/CF	0.5 M KHCO ₃	-1.14	96	43.2	[S13]
Mesoporous-SnO ₂ NS	0.5 M NaHCO ₃	-0.9	83	15	[S14]
Sn sheets/GO	0.1 M NaHCO ₃	-1.16	89	18.8	[S15]
SnO ₂ porous nanowire	0.1 M KHCO ₃	-0.8	80	4.8	[S16]
Bi nanosheets	0.1 M KHCO ₃	-1.1	86	16.5	[S17]
Bi dendrite	0.5 M KHCO ₃	-0.74	89	2.7	[S18]
Bi ₂ S ₃ derived Bi	0.5 M NaHCO ₃	-0.75	84	4.2	[S19]
Bi nanoflakes	0.1 M KHCO ₃	-0.6	100	2	[S20]
Bi-ene	0.5 M KHCO ₃	-0.83	97.5	15.28	[S21]
Bi ₂ O ₃ -NGQDs	0.5 M KHCO ₃	-0.9	98.1	18.1	[S22]

Catalysts	Electrolyte	Potential (V _{RHE})	FE (%)	<i>j</i> formate (mA cm ⁻²)	IR	Refs.
BiOCl	1 M KOH	-1.08	94.65	219.3	No	this work
MIL-68(In)-NH ₂	1 M KHCO ₃	-1.1	94	108	No	[S23]
Bi-ene	1 M KOH	-0.57	99.8	100	No	[S21]
Bi-ene	1 M KOH	-0.75	99.2	200	No	[S21]
Bi ₂ O ₃ @C-800	1 M KOH	-1.1	93	208	No	[S2]
Bi ₂ O ₃ NTs	1 M KHCO ₃	-0.85	95	133	90%	[S24]
Bi ₂ O ₃ NTs	1 M KOH	-0.58	98	206	90%	[S24]
POD-Bi	1 M KOH	-0.63	93.6	187	95%	[S25]
BiOBr templated	2 M KHCO ₃	/	90	180	90%	[S11]
Bi_2S_3	1 M KOH	-0.59	~100	205	90%	[S26]
In-Sn	0.5 M KHCO3	-1.16	87.1	62.8	No	[S27]
SnO ₂ nanosheet	1 M KOH	-1.13	94.2	443.7	Yes	[S28]
Sn-based GDE	0.5 M KHCO ₃	-1.16	73.0	25.0	/	[S29]
Cu ₃ Sn/Cu ₆ Sn ₅ alloy	1 M KOH	-0.98	87	128.8	/	[S30]

Table S3 Comparison of electrocatalytic CO₂RR to formate performance on various catalysts in flow cell from recent literature

Table S4 The summary of the corresponding fitting date of Cu₂O electrode at different potentials

Potential (V _{RHE})	$R_{ m s}\left(\Omega ight)$	$R_{\mathrm{ct}}\left(\Omega ight)$	$R_{\text{total}}\left(\Omega\right)$
-0.25	2.064	4.65	6.714
-0.20	1.475	24.19	25.665
-0.15	1.467	46.43	47.897
-0.10	1.499	20.22	21.719
-0.05	1.202	10.80	12.002

Table S5 The summary of electrooxidation performance of Cu₂O in the complete conversion of formaldehyde under different potentials in three-electrode system

Potential V _{RHE}	C (mM)	FE (%)	Production rate (mmol h ⁻¹ cm ⁻²)
-0.05	35.73	99.52	0.508
0.05	79.83	98.57	0.829
0.15	83.75	98.22	1.117
0.25	87.70	95.45	1.452
0.35	86.94	92.90	1.479

C is the concentration formed by formaldehyde electrooxidation.

Table S6 Comparison of electrochemical CO_2 conversion system on various catalysts from recent literature

Paired electrolysis	Anode	Cathode	Reactor	Performance	Refs.
CO ₂ RR//FOR	Cu ₂ O 1 M KOH+100 mM HCOH FE: 93.67% (HCOO ⁻)	BiOC1 0.5 M KHCO ₃ FE: 93.83% (HCOO ⁻)	H-cell	1.05V @ 10.6 mA cm ⁻²	this work
CO ₂ RR//FOR	Cu ₂ O 2 M KOH+100 mM HCOH FE: 92 6% (HCOO ⁻)	BiOCl 2 M KOH FE: 92.6% (HCOO ⁻)	Flow cell	1.2 V @ 100.2 mA cm ⁻²	this work
CO ₂ RR//FOR	Cu ₂ O 1 M KOH+100 mM	BiOCl 1 M KOH	MEA	1.0 V @ 126.9 mA cm ⁻²	this work

	HCOH FE: 93.04% (HCOO ⁻)	FE: 93.04% (HCOO ⁻)			
CO ₂ RR//MOR	CuONS/CF 1 M KOH+1 M CH ₃ OH FE: 91.3% (HCOO ⁻)	mSnO ₂ /CC 1 M KHCO ₃ FE: 80.5% (HCOO ⁻) BiNS	H-cell	1.22 V@ 20 mA cm ⁻²	[S31]
CO ₂ RR//OER	Ir/C 0.5 M KHCO ₃	0.5 M KHCO ₃ FE: 95% (HCOO ⁻)	H-cell	$3.0 V@ 8 mA cm^{-2}$	[S12]
CO ₂ RR//OER	RuO ₂ 1 M KOH	Bi-ene 0.5 M KHCO ₃	H-cell	2.38 V @ 10 mA cm ⁻²	[S21]
CO ₂ RR//MOR	1 M KOH+0.5 M CH ₃ OH FE: ~100% (HCOO ⁻)	B1-enes 0.5 M KHCO ₃ FE: ~100% (HCOO ⁻)	H-cell	2.13 V @ 10 mA cm ⁻²	[S32]
CO2RR//HMF	NiO NPS 0.5 M KHCO ₃ +10 mM HMF FE: 36% (FDCA, FFCA, DFF)	BiO _x 0.5 M KHCO ₃ FE: 81% (HCOO ⁻)	H-cell	2.5 V @ 2 mA cm ⁻²	[\$33]
CO ₂ RR//OER	Mesoporous-SnO ₂ 0.5 M NaHCO ₃ FE: 50% (formate)	IrO ₂ /Ti foil 0.5 M NaHCO ₃	H-cell	3 V @ 7.3 mA cm ⁻²	[S14]
CO2RR//GOR	Pt nanoparticle 2 M KOH+2 M glycerol	Sn nanoparticle 2 M KOH FE: 85.0% (HCOO-)	Flow cell	1.5 V @ 72.95 mA cm ⁻²	[S34]
CO ₂ RR//GOR	Pt nanoparticle 2 M KOH+2 M glycerol	Ag nanoparticle 2 M KOH FE: 94.7% (CO)	Flow cell	1.5 V @ 93.42 mA cm ⁻²	[S34]
CO ₂ RR//UOR	Ni-WO _X 1 M KOH+0.33 M urea	Ag NPs FE: 98% (CO)	MEA	2.16 V @ 100 mA cm ⁻²	[S35]
CO ₂ RR//OER	Ni-WO _X 1 M KOH	Ag NPs	MEA	2.53 V @ 100 mA cm ⁻²	[S35]
CO ₂ RR//OER	Foam nickel 1 M KOH	MIL-68(In)-NH ₂ FE: 92.2% (HCOO ⁻)	MEA	2.7 V @ 258 mA cm ⁻²	[S23]

Supplementary References

- [S1] P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743-750 (2020). <u>https://doi.org/10.1021/acscatal.9b04043</u>
- [S2] P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO₂ electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807-10813 (2020). <u>https://doi.org/10.1002/anie.202000657</u>
- [S3] S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W. Lou, Bi₂O₃ nanosheets grown on multi-channel carbon matrix to catalyze efficient CO₂ electroreduction to HCOOH. Angew. Chem. Int. Ed. 58(39), 13828-13833 (2019). <u>https://doi.org/10.1002/anie.201907674</u>
- [S4] Y.X. Duan, K.H. Liu, Q. Zhang, J.M. Yan, Q. Jiang, Efficient CO₂ reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods 4(5), 1900846 (2020). <u>https://doi.org/10.1002/smtd.201900846</u>

- [S5] X. Zhang, X. Sun, S.X. Guo, A.M. Bond, J. Zhang, Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO₂ reduction at low overpotential. Energy Environ. Sci. 12(4), 1334-1340 (2019). <u>https://doi.org/10.1039/c9ee00018f</u>
- [S6] Y. Zhang, X. Zhang, Y. Ling, F. Li, A.M. Bond et al., Controllable synthesis of fewlayer bismuth subcarbonate by electrochemical exfoliation for enhanced CO₂ reduction performance. Angew. Chem. Int. Ed. 57(40), 13283-13287 (2018). <u>https://doi.org/10.1002/anie.201807466</u>
- [S7] N. Zhang, F. Zheng, B. Huang, Y. Ji, Q. Shao et al., Exploring Bi₂Te₃ nanoplates as versatile catalysts for electrochemical reduction of small molecules. Adv. Mater. 32(22), 1906477 (2020). <u>https://doi.org/10.1002/adma.201906477</u>
- [S8] X. Yang, P. Deng, D. Liu, S. Zhao, D. Li et al., Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO₂ reduction. J. Mater. Chem. A 8(5), 2472-2480 (2020). <u>https://doi.org/10.1039/c9ta11363k</u>
- [S9] T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal et al., Nanostructured β-Bi₂O₃ fractals on carbon fibers for highly selective CO₂ electroreduction to formate. Adv. Funct. Mater. **30**(3), 1906478 (2020). <u>https://doi.org/10.1002/adfm.201906478</u>
- [S10] J. Zhu, J. Fan, T. Cheng, M. Cao, Z. Sun et al., Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO₂ reduction. Nano Energy 75, 104939 (2020). <u>https://doi.org/10.1016/j.nanoen.2020.104939</u>
- [S11] F.P.G.D. Arquer, O.S. Bushuyev, P.D. Luna, C.T. Dinh, A. Seifitokaldani et al., 2D metal oxyhalide-derived catalysts for efficient CO₂ electroreduction. Adv. Mater. 30(38), 1802858 (2018). <u>https://doi.org/10.1002/adma.201802858</u>
- [S12] N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO₂ reduction to formate. Nat. Commun. 9, 1320 (2018). <u>https://doi.org/10.1038/s41467-018-03712-z</u>
- [S13] G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO₂ reduction toward formate production. Adv. Energy Mater. 8(31), 1802427 (2018). <u>https://doi.org/10.1002/aenm.201802427</u>
- [S14] N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu et al., Self-templated synthesis of hierarchical mesoporous SnO₂ nanosheets for selective CO₂ reduction. J. Mater. Chem. A 7(3), 1267-1272 (2019). <u>https://doi.org/10.1039/c8ta10959a</u>
- [S15] F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu et al., Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016). <u>https://doi.org/10.1038/ncomms12697</u>
- [S16] B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO₂ porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO₂-into-HCOOH Conversion. Angew. Chem. Int. Ed. 56(13), 3645-3649 (2017). <u>https://doi.org/10.1002/anie.201612194</u>
- [S17] W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao et al., Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO₂ reduction on twodimensional metal nanostructure. Nano Energy 53, 808-816 (2018). <u>https://doi.org/10.1016/j.nanoen.2018.09.053</u>
- [S18] J.H. Koh, D.H. Won, T. Eom, N.K. Kim, K.D. Jung et al., Facile CO₂ electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi

dendrite catalyst. ACS Catal. **7**(8), 5071-5077 (2017). https://doi.org/10.1021/acscatal.7b00707

- [S19] Y. Zhang, F. Li, X. Zhang, T. Williams, C.D. Easton et al., Electrochemical reduction of CO₂ on defect-rich Bi derived from Bi₂S₃ with enhanced formate selectivity. J. Mater. Chem. A 6(11), 4714-4720 (2018). <u>https://doi.org/10.1039/c8ta00023a</u>
- [S20] S. Kim, W.J. Dong, S. Gim, W. Sohn, J.Y. Park et al., Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy **39**, 44-52 (2017). <u>https://doi.org/10.1016/j.nanoen.2017.05.065</u>
- [S21] C. Cao, D.D. Ma, J.F. Gu, X. Xie, G. Zeng et al., Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 59(35), 15014-15020 (2020). <u>https://doi.org/10.1002/anie.202005577</u>
- [S22] Z. Chen, K. Mou, X. Wang, L. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi₂O₃ nanosheets for electrochemical reduction of CO₂ in a wide negative potential region. Angew. Chem. Int. Ed. 57(39), 12790-12794 (2018). <u>https://doi.org/10.1002/anie.201807643</u>
- [S23] Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107-19112 (2021). <u>https://doi.org/10.1002/anie.202107523</u>
- [S24] Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). <u>https://doi.org/10.1038/s41467-019-10819-4</u>
- [S25] S. He, F. Ni, Y. Ji, L. Wang, Y. Wen et al., The p-orbital delocalization of main-group metals to boost CO₂ electroreduction. Angew. Chem. Int. Ed. 57(49), 16114-16119 (2018). <u>https://doi.org/10.1002/anie.201810538</u>
- [S26] P. Ding, J. Zhang, N. Han, Y. Zhou, L. Jia et al., Simultaneous power generation and CO₂ valorization by aqueous Al-CO₂ batteries using nanostructured Bi₂S₃ as the cathode electrocatalyst. J. Mater. Chem. A 8(25), 12385-12390 (2020). <u>https://doi.org/10.1039/d0ta03761c</u>
- [S27] Q. Wang, Y. Wu, C. Zhu, R. Xiong, Y. Deng et al., Sn nanoparticles deposited onto a gas diffusion layer via impregnation-electroreduction for enhanced CO₂ electroreduction to formate. Electrochim. Acta **369**(10), 137662 (2021). <u>https://doi.org/10.1016/j.electacta.2020.137662</u>
- [S28] J. Li, J. Jiao, H. Zhang, P. Zhu, H. Ma et al., Two-dimensional SnO₂ nanosheets for efficient carbon dioxide electroreduction to formate. ACS Sustainable Chem. Eng. 8(12), 4975-4982 (2020). <u>https://doi.org/10.1021/acssuschemeng.0c01070</u>
- [S29] Q. Wang, X. Wang, C. Wu, Y. Cheng, Q. Sun et al., Electrodeposition of tin on Nafionbonded carbon black as an active catalyst layer for efficient electroreduction of CO₂ to formic acid. Sci. Rep. 7, 13711 (2017). <u>https://doi.org/10.1038/s41598-017-14233-y</u>
- [S30] J. Wang, J. Zou, X. Hu, S. Ning, X. Wang et al., Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO₂ to formate. J. Mater. Chem. A 7(48), 27514-27521 (2019). <u>https://doi.org/10.1039/c9ta11140a</u>
- [S31] X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO₂ reduction and anodic CH₃OH oxidation. Angew. Chem. Int. Ed. **60**(6), 3148-3155 (2021). <u>https://doi.org/10.1002/anie.202012066</u>

- [S32] C. Cao, D.D. Ma, J. Jia, Q. Xu, X.T. Wu et al., Divergent paths, same goal: a pairelectrosynthesis tactic for cost-efficient and exclusive formate production by metalorganic-framework-derived 2D electrocatalysts. Adv. Mater. 33(25), 2008631 (2021). <u>https://doi.org/10.1002/adma.202008631</u>
- [S33] S. Choi, M. Balamurugan, K.G. Lee, K.H. Cho, S. Park et al., Mechanistic investigation of biomass oxidation using nickel oxide nanoparticles in a CO₂-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. **11**(8), 2941-2948 (2020). <u>https://doi.org/10.1021/acs.jpclett.0c00425</u>
- [S34] S. Verma, S. Lu, P.J.A. Kenis, Co-electrolysis of CO₂ and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4(6), 466-474 (2019). <u>https://doi.org/10.1038/s41560-019-0374-6</u>
- [S35] L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui et al., Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem. Int. Ed. 60(19), 10577-10582 (2021). <u>https://doi.org/10.1002/anie.202100610</u>