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Supplementary Figures and Tables 

 

Fig. S1 Images of the contact angle tests of 2 M ZnSO4 on bare Zn and Zn-SF with/without 

water rinsing 

 

Fig. S2 Ionic conductivity of the electrolyte (a) and SF coating (b) with electrolyte soaked by 

EIS results in the frequency range from 106 Hz to 10-2 Hz 
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The ionic conductivity of the SF/electrolyte was tested by blocking electrode cells (SS//SF (or 

electrolyte) //SS) and calculated according to the Eq. S1: 

ρ =
𝑙

𝑅×𝐴
                                                              (S1) 

where R represented the resistance according to EIS measurement, l represented the thickness 

of the SF (0.08 mm in Swagelok cell) or electrolyte (8 mm electrolyte in H-cell), and A (1 cm2) 

was the area of contact between the stain steel and coating (or electrolyte). 

 

Fig. S3 Real-time interface pH with the plating/stripping process of the Zn anode at 5 mA cm-2 

 

Fig. S4 Simulated electric field (a) and Zn2+ concentration field (b) distributions on Zn anode 

with natural coating. The plating (c) and stripping (d) overpotentials of Zn-SF anode with 

various charges in different pH electrolytes 
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Fig. S5 Zn2+ transference number of Zn-SF (a) and bare Zn anode (b) 

The ionic transference number was tested using a symmetric battery and calculated by the Eq. 

S2: 

𝑡+ =
𝐼𝑆(Δ𝑉−𝐼0𝑅0)

𝐼0(Δ𝑉−𝐼𝑠𝑅𝑠)
                                                           (S2)  

where ΔV was the polarization voltage (15 mV); I0 and R0 were the initial current and 

resistance, respectively; and Is and Rs were the steady-state current and resistance. 

 

Fig. S6 Voltage profiles of the Cu-SF//Zn cell at the 1st, 5th, 10th, 50th, and 100th cycles 

 

Fig. S7 The electrochemical impedance of symmetric batteries with Zn-SF (a) and bare Zn 

(b) electrodes after cycles 
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Fig. S8 Comparison of voltage hysteresis and current density of Zn-SF with other advanced 

Zn anodes in the literature (PZIL [S1], TiN [S2], IS [S3], PFSA [S4], PA [S5], NaTi2(PO4)3 

[S6], graphite [S7], Polymer Glue [S8], PVB [S9], CaCO3 [S10], Gel-MA [S11], PI [S12], t-

KTN [S13], PANZ [S14], Ce2O3 [S15], MOF [S16], MXene [S17]) 

 

Fig. S9 SEM images of deposition morphology of bare Zn and Zn-SF under 5 mA cm-2 at 10, 

30, 60 min 

 

Fig. S10 Chemical structure of GSGAGA segments in silk fibroin 
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Fig. S11 EIS data of Zn-SF//Zn-SF (a) and Zn//Zn (b) systematic cells under different 

temperatures. (c) Tafel plots of two electrodes at 1 mV s-1 

The activation (desolvation) energy (Ea) of the anode based on the symmetric cell was 

calculated according to Eq. S3: 

1

𝑅𝑐𝑡
= A × exp (

−𝐸𝑎

𝑅𝑇
)                                                  (S3) 

where R and T stood for the ideal gas constant and Kelvin temperature, respectively. The 

exchange current density (i0) of the anode was calculated according to Eq. S4: 

𝑖 =
𝑖0×𝐹×ŋ𝑡𝑜𝑡𝑎𝑙

2×𝑅×𝑇
                                                        (S4) 

where i and ŋ stood for the current density and total overpotential, respectively. F, R, and T 

represented the faradic constant, ideal gas constant, and Kelvin temperature, respectively. 

 

Fig. S12 LSV of bare Zn and Zn-SF electrodes (a) and the corresponding Tafel curves (b). 

Elution profiles of H2 gases (c) during the stripping/plating of bare Zn and Zn-SF electrodes. 

Here the trace O2 is probably due to the residual O2 in the reactor 

 

Fig. S13 N 1s (a), O 1s (b) and S 2p (c) XPS spectra of two electrodes before/after cycles 
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Fig. S14 (a) XRD pattern of ZnVO. (b) Charging/discharging curves of Zn//ZnVO cell at 

various current densities. (c) Evaluation of self-discharging level for Zn//ZnVO cell rested at 

100% stage of charge for 24 and 48 h. (d) Discharging curves of Zn-SF//ZnVO at 0.5 A g-1 with 

different N/P ratios 

The energy density (E) based on the electrode and electrode+electrolyte was calculated 

according to Eq. S5: 

𝐸 =
∫𝑄𝑑𝑉

𝑚
                                                              (S5)  

where Q and V represented the discharging specific capacity and voltage, respectively. m was 

the mass of electrode/electrode+electrolyte, and t was the discharging time. 

 

Fig. S15 GCD cycles of Zn-SF//ZnVO full cells at 300 mA g-1 
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Table S1 Performance comparisons of the reported aqueous zinc ion batteries 

Anode//Cathode 
Current density 

(A g-1) 

Specific capacity 

(mAh g-1) 

Cycles 

(n) 

Retention 

(%) 
Refs. 

PZIL-Zn//MnO2 0.7 220 500 94 [S1] 

Zn@PFSA//MnO2 0.5 211 500 100 [S4] 

Zn-PA// MnO2 0.6 176 1000 88 [S5] 

Zn-G//V2O5·xH2O 5 120 1500 84 [S7] 

Zn-Gel// V6O13 0.1 380 250 83 [S11] 

Zn@CeO2/MoS2 2 110 1000 77 [S15] 

Zn@Mxene/MnO2 1 253 500 81 [S17] 

Zn//LFP 0.5 110 500 64 [S18] 

Zn-SF//ZnVO 
5 

0.3 

220 

398 

3000 

80 

80.3 

80 

This 

work 
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