Supporting Information for

# **Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy**

Wencheng Wu<sup>1, #</sup>, Yinying Pu<sup>2, #</sup>, Shuang Gao<sup>3</sup>, Yucui Shen<sup>3</sup>, Min Zhou<sup>3, \*</sup>, Heliang Yao<sup>1</sup>, and Jianlin Shi<sup>1, \*</sup>

<sup>1</sup> The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Shanghai Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China

<sup>2</sup>Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, P. R. China

<sup>3</sup>Digestive endoscopy center, Shanghai Fourth People's Hospital to Tongji University, Shanghai 200081, P. R. China

<sup>#</sup> Wencheng Wu and Yinying Pu have contributed equally to this work.

\*Corresponding authors. E-mail: jlshi@mail.sic.ac.cn (Jianlin Shi), crown\_zhou@hotmail.com (Min Zhou)

# **Supplementary Figures**



**Fig. S1** (a) The fabrication of the asd gene expression cassette under hypoxic conditions. The sense promoter PpepT consists of the constitutive promoter P2 and the FNR-regulated promoter P1, and PsodA is the antisense promoter. (b-e) Growth rate of various strains under different conditions



Fig. S2 Gene sequence map of engineered asd



**Fig. S3** The Cu<sub>2</sub>O-mdiated production of  $\cdot$ OH as demonstrated by using 3,3',5,5'tetramethylbenzidine (TMB), which can be oxidized by  $\cdot$ OH species to chromogenic TMB exhibiting characteristic absorption at 650 nm. As a result, PEG-Cu<sub>2</sub>O NPs present catalyst concentration-, pH-, and substrate H<sub>2</sub>O<sub>2</sub> concentration-dependent catalytic activity



Fig. S4 Bacterial cloning number of  $\Delta$ St treated by different amount of PEG-Cu<sub>2</sub>O for (a) 12 h and (b) 24 h



Fig. S5 The concentrations of dissolved H<sub>2</sub>S in the medium in the presence of different strains of bacteria



Fig. S6 CLSM images of 4T1 cells stained with Calcein-AM and PI after various treatments



**Fig. S7** (a) Body weight monitoring of mice during 30 days feeding post-injection of different doses of bacteria. (b-l) The hematological assays of mice at different time points after the injection of bacteria at the dose of  $10^5$  CFU



**Fig. S8** H&E staining histological sections of main organs (heart, liver, spleen, lung, and kidney) obtained from the mice sacrificed at different time points, scale bar 200  $\mu$ m



**Fig. S9** Impact of  $Cu_2O@\Delta St$  on hemolysis after 1 h at different concentrations, in which Triton x100 (1%) and PBS were respectively used as positive and negative controls



**Fig. S10** Hemoglobin content in CT26 tumors at different time points after i.v. injection of  $Cu_2O\Delta@St (10^5 \text{ CFU})$ 





Fig. S11 H<sub>2</sub>S concentration in the three types of tumor tissue



**Fig. S12** Quantitative comparison of  $H_2S$  levels in different main organs and tumor tissues of mice after the injections of (**a**) PEG-Cu<sub>2</sub>O and (**b**) Cu<sub>2</sub>O@ $\Delta$ St



Fig. S13 DCFH-DA immunostaining of tumor sections after the injections of PEG-Cu<sub>2</sub>O and Cu<sub>2</sub>O@ $\Delta$ St



**Fig. S14** (**a**) The IR images at different time intervals of mice after the injections of saline in mice bearing different types of tumor and (**b**) their corresponding temperature elevations at tumor site over time



Fig. S15 Average body weights of different types of tumor-bearing mice after various treatments, including (a) PANC-1 tumor-bearing mice, (b) 4T1 tumor-bearing mice, and (c) CT26 tumor-bearing mice



**Fig. S16** Quantifications of the relative fluorescence intensity of CRT, HSP70, and HMGB1 in CT26 tumor's sections



**Fig. S17** The activation of DAMPs release in CT26 tumors of mice after different treatments, observed by western blot. (Saline (groups 1), laser (groups 2),  $\Delta$ St (groups 3), Cu<sub>2</sub>O + laser plus surgery (groups 4), Cu<sub>2</sub>O@ $\Delta$ St (group5), and Cu<sub>2</sub>O@ $\Delta$ St + laser (groups 6))



Fig. S18 (a) Representative photographs, (b) corresponding quantifications of the number of tumor nodules, and (c) H&E staining of lung tissue from mice after ICB treatment, in which the primary tumor of mice was removed by different methods (surgery (groups 1), bacteria plus surgery (groups 2),  $Cu_2O@\Delta St$  plus surgery (groups 3),  $Cu_2O + laser$  plus surgery (groups 4), and  $Cu_2O@\Delta St + laser$  (groups 5))



**Fig. S19** Quantification of the relative CTL/Treg ratios in distant tumors of mice with primary tumor being removed by different methods (surgery (groups 1), bacteria plus surgery (groups 2),  $Cu_2O@\Delta St$  plus surgery (groups 3),  $Cu_2O + laser$  plus surgery (groups 4), and  $Cu_2O@\Delta St + laser$  (groups 5))





### **Supplementary Reference**

[S1]Q. Li, P. Xu, B. Zhang, H. Tsai, S. Zheng et al., Structure-dependent electrocatalytic properties of Cu<sub>2</sub>O nanocrystals for oxygen reduction reaction. J. Phys. Chem. C 117(27), 13872-13878 (2013). <u>https://doi.org/10.1021/jp403655y</u>