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Chip‑Based High‑Dimensional Optical Neural 
Network
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HIGHLIGHTS

• High-dimensional optical neural network is achieved by introducing an on-chip soliton microcomb source and wavelength division 
multiplexing technique.

• The programmable electro-optic nonlinear layer and optical meshes promote the implementation of a multi-layer optical neural net-
work.

• Ultra-low coupling loss is realized between functional chips and fiber array, which is around 1 dB per facet.

ABSTRACT Parallel multi-thread processing in advanced intelligent processors 
is the core to realize high-speed and high-capacity signal processing systems. 
Optical neural network (ONN) has the native advantages of high parallelization, 
large bandwidth, and low power consumption to meet the demand of big data. 
Here, we demonstrate the dual-layer ONN with Mach–Zehnder interferometer 
(MZI) network and nonlinear layer, while the nonlinear activation function is 
achieved by optical-electronic signal conversion. Two frequency components 
from the microcomb source carrying digit datasets are simultaneously imposed 
and intelligently recognized through the ONN. We successfully achieve the digit 
classification of different frequency components by demultiplexing the output 
signal and testing power distribution. Efficient parallelization feasibility with 
wavelength division multiplexing is demonstrated in our high-dimensional ONN. 
This work provides a high-performance architecture for future parallel high-capacity optical analog computing.

KEYWORDS Integrated optics; Optical neural network; High-dimension; Mach–Zehnder interferometer; Nonlinear activation 
function; Parallel high-capacity analog computing

  e-ISSN 2150-5551
      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
         (2022) 14:221 

Received: 18 August 2022 
Accepted: 3 October 2022 
© The Author(s) 2022

https://doi.org/10.1007/s40820-022-00957-8

Xinyu Wang and Peng Xie have contributed equally.
 * Peng Xie, peng.xie@eng.ox.ac.uk; Xingcai Zhang, xingcai@mit.edu

1 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2 Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
3 School of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-022-00957-8&domain=pdf


 Nano-Micro Lett.          (2022) 14:221   221  Page 2 of 9

https://doi.org/10.1007/s40820-022-00957-8© The authors

1 Introduction

Deep neural network (DNN) has been an essential tool for 
developing general-purpose artificial intelligence (AI). The 
DNNs based on commercial electrical hardware processors or 
specifically optimized algorithms are extensively explored in 
pattern recognition, intelligent translation system, and material 
science [1–5]. With the rapid development of AI and increas-
ing demand for high-capacity datasets processing, high-per-
formance processors with accelerated matrix multiplication 
operations and high parallelism have attracted great attention 
in recent years. Progress of intelligent hardware plays a crucial 
role in developing next-generation advanced neural network 
processors. Nowadays, electronic neural network accelerators 
and processors based on the graphics processing unit (GPU), 
application-specific integrated circuits (ASIC), and field-pro-
grammable gate array (FPGA) dominate the commercial AI 
technique and specific function processing. However, intelli-
gent electronic neural network hardware is still suffering from 
limited electrical bandwidth and huge energy consumption for 
the larger matrix decomposition. The computing carrier by 
electrons strictly restricts the computing capacity. It is worth 
mentioning that optical neural networks (ONN) based on pho-
tonic devices can compensate for the troublesome deficiencies 
of electrical hardware processors [6–9]. ONN can provide 
a higher speed with at least two orders of magnitude, lower 
power consumption, and larger bandwidth than conventional 
electrical artificial intelligent processors. To date, ONN has 
developed from free space optics [10–14] to integrated pho-
tonic devices [15–21]. Meanwhile, continuous innovations of 
nano-micro fabrication and photonic integrated devices pave 
the way for miniaturized intelligent photonics processers. Syn-
chronous high-dimensional datasets processing or multi-thread 
operation is the urgent tendency with the arrival of the big data 
era. Photons have the natural superiorities of encoding high-
dimensional information due to the abundant dimensions, such 
as polarization encoding [22–24], orbit angular momentum 
demodulation [25], optical frequency components encoding 
in communication, and quantum technology [26–29]. Photon 
takes the unique superiority of parallel information transmis-
sion and processing by introducing the wavelength division 
multiplexing (WDM) technique, which has been widely used 
in current high-capacity optical communication systems [30, 
31] and parallel quantum key distribution [32]. Based on the 
independent propagation characteristic of photons, the rate of 

information throughput of ONNs depending on the bandwidth 
or quantities of available wavelengths can be increased expo-
nentially. Assisted by the commercial WDM techniques, the 
soliton microcomb (SMC) source [33] has demonstrated that it 
could efficiently contribute to the implementation of high-speed 
and parallel photonic convolution image accelerators [34, 35]. 
Especially, SMC can also be employed for parallel different 
information processing in ONN systems, which is promising 
in rapid parallel scenario analysis or multi-thread information 
processing via utilizing the dimension of wavelengths, such as 
emotion recognition, gesture recognizer, Fourier transforma-
tion of signals, speech recognition, and computing accelerator.

In this letter, we propose an architecture of high-dimen-
sional ONN, which consists of an on-chip SMC source, 
WDM module, and dual-layer ONN. In the dual-layer ONN 
structure, we introduce the chip-based Mach–Zehnder 
interferometer (MZI) network as the matrix multiplica-
tion linear layer and electro-optic nonlinear modules as 
the nonlinear activation function, which is composed of 
electro-optic modulators (EOM), detector modules, and 
FPGA control systems. The flexible programmable capa-
bility of the MZI network ensures multi-objection clas-
sification and recognition via learning from the different 
objection datasets. Integrated microresonator technology 
provides the automatic single SMC generation character-
ized by the coherent multi-wavelength light source with a 
frequency spacing of 49 GHz, which is compatible with 
the commercial WDM technique. Benefitting from the 
large width of photonics devices and WDM techniques, 
the parallel high-dimensional ONN processor based on 
chip-based single SMC is experimentally demonstrated via 
classifying the MNIST datasets. The recognition accura-
cies of the digit ‘0’, ‘2’, and ‘7’ from the MNIST datasets 
are around 85% for different wavelengths. This work paves 
the innovative routines for exploring the chip-based paral-
lel high-capacity AI accelerator.

2  Architecture of High‑dimensional ONN 
and Experimental Results

2.1  Architecture of Chip‑based High‑dimensional ONN

Figure 1 schematically illustrates the basic architecture of 
a high-dimensional ONN system based on SMC source 
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and WDM techniques. The micro-ring resonator with 
high-quality factor is used to motivate the SMC source 
formation via sweeping the narrow linewidth laser into 
the red-detuned regime. Each frequency component via 
WDM could be regarded as one coherent laser and take 
one task, and then all components are coupled into the 
ONN chip to realize high-capacity signal processing and 
parallel high-dimensional computing. The flexible pro-
grammable characteristics of ONN guarantee the feasibil-
ity of different datasets processing and the demultiplexing 
technique is applied to divide the optical frequency com-
ponents, respectively. The potential recognition informa-
tion or computing results will be characterized by testing 
the power of output signals according to the classification 
results from the presupposed algorithm or optimization 
procedure.

2.2  Single SMC Source with 49 GHz Repetition Rate

Figure 2 shows the result of the single SMC generation. The 
basic principle of single SMC generation is based on the 
auxiliary laser heating the micro-cavity to reach the ther-
mal balance. The auxiliary laser is shifted about 100 MHz 
from the pump laser via the acoustic optical modulator 
(AOM). The details of single SMC generation are demon-
strated in the supplementary information. The proper fre-
quency spacing between the pump and auxiliary laser could 
ensure the thermal balance in the soliton existence region 
or the red-detuned region. Once the pump laser is located 
at the soliton region, the external frequency modulation on 

the AOM and forward tuning of the pump laser frequency 
would make the microcomb state stabilize at the single SMC 
existence region. In our SMC source generation experiment, 
the micro-cavity is designed with strong anomalous disper-
sion and the pump and the auxiliary laser are located in the 
same resonance mode. The micro-cavity is fabricated at the 
platform of high-index doped silica glass with the radius of 
592.1 μm. Pump laser is provided by the narrow linewidth 
laser at 1560.2 nm to be compatible with WDM. The gen-
erated optical spectrum of single SMC source is shown in 
Fig. 2(a), which covers the S, C, and L bands. As is shown 
in Fig. 2(b), the repetition rate is about 49 GHz, which meets 
the requirement of frequency spacing for avoiding crosstalk 
in dense WDM communication systems. By introducing the 
dense WDM technique, the single SMC source could be 
divided into many equidistant coherent lasers via demul-
tiplexing to take several hundred tasks to realize parallel 
high-dimensional computing.

2.3  Artificial Neural Network Based on Dual‑layer 
ONN

Figure 3(a) schematically illustrates the basic structure of 
artificial neural network (ANN), which is composed of 
an input layer ( x

0
 ), cascade linear matrix multiplication 

layer ( W
1
andW

2
 ) and nonlinear activation function layer 

( fNL1andfNL2 ), and an output layer ( Yout ). Via loading the 
input data and matrix operations, the output vector Yout is 
fNL2(W2

× fNL1(W1
×x

0
)). For a given ANN, a lost function 

as the object error function is defined to minimize the target 

Fig. 1  The concept illustration of chip-based high-dimensional ONN. The ONN technique supports parallel multi-signal processing, and multi-
thread optical operations for multi-users by WDM technique. The narrow linewidth laser is the pumping source to generate the on-chip high 
repetition rate dissipative Kerr soliton source. The frequency components of the single SMC source are regarded as the multi-wavelength coher-
ent lasers, which are used for realizing high-dimensional ONN via frequency multiplexing and demultiplexing. Each frequency component could 
be used for different recognition tasks or thread operations. MRR: Micro-ring resonator, ECDL: External cavity diode laser, WDM: Wavelength 
Division Multiplexing, PD: Photoelectric detector, ONN: Optical neural network
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output and output prediction to adjust the matrix value. Such 
process is optimized via the back-propagating (BP) algo-
rithm as shown in Fig. 3(b). The algorithm keeps adjust-
ing the gradient of the matrix of W

1
andW

2
 to minimize the 

objection function between experimental vectors and the 
target reference vectors value.

Figure 4(a) shows the basic architecture of dual-layer 
ONN, which is composed of the MZI network as the lin-
ear matrix multiplication operation, and the photoelectric 
conversion module as the nonlinear layer. In the dual-layer 
ONN, light signals are encoded by the amplitude modulator. 
The linear layer is composed of the specific arranged MZIs 
fabricated in the platform of high-index doped silica glass. 
Each linear layer is composed of 29 programmable MZIs 
and each MZI corresponds to the neuron of ANN. The MZI 
network chip is packaged by the polarization-maintaining 
fiber array and thermally controlled via an external TEC 
controller as shown in Fig. 4(d). The coupling loss between 
the MZI network and polarization-maintaining fiber array is 

about 1 dB. The ultra-low coupling loss greatly contributes 
to the multi-layer ONN achievement. The transmission loss 
of the waveguide around 1560 nm is about 0.05 dB  cm−1. 
Each MZI consists of phase shifter (�) between two 50% 
directional couplers and an extra thermo-optic phase shifter 
(∅) as shown in Fig. 4(c). MZI implements the SU(2) trans-
formation unitary matrix,

 
Matrices of the linear layer can be decomposed into sets 

of SU(2) transformation unitary matrix multiplication via 
the cascaded MZI. Via controlling external voltage to change 
the phase of the phase shifter (�) , the transmission matrix 
of the single MZI could be adjusted. Figure 4(e) shows the 
transmission trace via tuning the voltage on phase shifter 
(�) . According to the test results, 27 dB extinction ratio can 
be achieved, which means the directional coupler of beam 

U
MZI

=
1

2

(

ei�
(

ei� − 1
)

iei�
(

ei� + 1
)

i
(

ei� + 1
)

1 − ei�

)

Fig. 2  a The optical spectrum of the single SMC at the strong anomalous dispersion region. b The repetition rate of the single SMC source

Fig. 3  a Structure of the dual-layer ANN. b BP algorithm for optimizing the linear matrix. After completing the whole training process, the 
ANN could complete the specific task recognition. ANN: Artificial neural network
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splitter is fixed at 50:50. The high extinction ratio ensures 
arbitrary high-resolution matrix formation. Besides, the 
nonlinear activation function plays a critical role in ANNs 
by enabling them to learn complex mappings via minimiz-
ing the target vectors and reference vectors. Limited by the 
transformation efficiency, nonlinear motivation threshold 
power and flexible programming, the cascaded all-optical 
activation function is challengeable with the increasing lay-
ers of ONN. To overcome the challenge, we adopt an electro-
optical architecture activation function to achieve the nonlin-
ear layer computing. Figure 4(b) shows the basic structure 
of the nonlinear activation function. The light signal goes 
through the 50:50 directional coupler and is divided into two 
portions, one is transformed into the electrical signal via 
commercial PD, and another portion and be modulated by 
an amplitude modulator. The depth of ONN is determined 
by the efficiency of PD and loss of waveguide. The FPGA 

system or commercial computer could calculate the nonlin-
ear function value via detected signal power and adjust the 
output of the amplitude modulator via an external controlled 
voltage source. And then the output optical signal would be 
modulated and then enter into the next linear matrix layer. 
By means of external FPGA and voltage source, the arbi-
trary nonlinear activation functions could be formed and 
XOR logic gate could be recognized by introducing the 
non-monotone nonlinear function in the single-layer ONN. 
The accuracy of nonlinear activation is determined by the 
extinction ratio of the amplitude modulator, which is about 
23 dB in our experiment. In the dual-layer ONN, the sec-
ond nonlinear layer and output layer are performed via the 
commercial PD and FPGA. Figure 4(f) shows the transmis-
sion power curve via sweeping the laser wavelength when 
the input light experiences the four MZIs. The transmission 
power curve is approximately identical, which proves that 

Fig. 4  a Structure of dual-layer ONN. The dual-layer ONN is composed of electro-optic modulator as the input layer, MZI network as the linear 
layer, photoelectric conversion module as the nonlinear layer, and the PD as the output layer. b Schematic of the proposed nonlinear activation 
function which achieves a nonlinear response by converting a small portion of the optical input into an electrical signal, and then intensity modu-
lating the remaining portion of the original optical signal as it passes through an interferometer. c A false-color micrograph of the MZI network 
with integrated heaters. The right picture is the local structure of MZI network. d Packaged chip. e Extinction of single MZI. f Transmission 
power trace when the input light experiences the four MZIs via sweeping the laser wavelength. EOM: electro-optic modulator, PD: photoelectric 
detector, DA: Digital to analog
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the matrix of MZI network has a relatively large bandwidth 
toward wavelength. The bandwidth of MZI is over 30 nm, 
which means that it can maintain similar matrix values and 
eigenvectors at different driving voltages at a large wave-
length range. The large bandwidth of MZI network supports 
the implementation of synchronous processing of abundant 
datasets via multiwavelength encoding.

2.4  Parallel Digit Classification via High‑Dimensional 
ONN

We evaluated the practicality of the high-dimensional dual-
layer ONN by selecting two wavelengths (1562.6 nm and 
1562.2 nm) of single SMC. The selected frequency com-
ponents are amplified to 15 mW as the input signal and 
then sent to the same dual-layer ONN. The dense WDM is 
connected with the output ports of the second linear layer 
and the different wavelengths from the output signal are 
separated. By detecting the statistical power distribution of 
output ports from different wavelengths, the objected tasks 
could be recognized. In practice, we first choose the digit 
datasets from MNIST to train the dual-layer ONN. The 
digit of ‘0’,‘2’, and ‘7’ are selected to train in the dual-layer 
ONN system. Meanwhile, we choose the sigmoid function 
as the nonlinear activation function. Limited by the number 
of optical neurons, the original image couldn’t be directly 

loaded to ANN or ONN to accomplish the training process 
or power distribution statistics. The original image is divided 
into a series of pixel vectors, we sum up the total logarithm 
power of each port and statistic exponential power distribu-
tion after completing the training process. In the training 
process, the matrix parameters of dual-layer ONN can be 
obtained by using the standard back-propagation algorithm 
and the stochastic gradient descent method. The reference 
vectors of ‘0’,‘2’ and ‘7’ are, respectively, corresponding 
to (1 0 0), (0 1 0), and (0 0 1) for the output ports. The 
target recognition can be obtained by comparing the power 
distributions and object power vector values. Figure 5 illus-
trates the experimental recognition results based on the dual-
layer ONN architecture. When the loaded digit datasets are 
imposed from ‘0’ to ‘7’, the output port of maximum power 
is changed from the first output port to the third output port 
via continuously loading the test digit datasets, which is con-
sistent with the pre-established objection vector. Besides, 
the recognition accuracies for different wavelengths are 
approximately identical and the accuracies are about 85%. 
It should be mentioned that the programmable flexibility 
from MZI network and nonlinear control unit supports the 
multi objections recognition via learning from the different 
datasets. The large bandwidth of the MZI network and high-
repetition-rate single SMC support the high-dimensional 
ONN to accomplish high-capacity computing.

Fig. 5  Experimental results of power distributions and recognition accuracies. The blue spots, red spots, and orange spots are the power ratios 
of output port1, output port2, and output port3, respectively. The accuracies from the two selected frequency components have been demon-
strated, respectively
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3  Discussion

The chip-based high-dimensional ONN combined with 
SMC source and WDM technique is preferred and superior 
in future-oriented big dataset recognition and parallel multi-
thread signal processing. In this work, on-chip microcomb 
technology provides a pivotal multi-wavelength light source, 
which can carry different information via utilizing several 
frequency components to realize high-speed and high-
capacity signal processing systems. The microcomb also 
has the native advantage to realize the high repetition rate 
or large frequency spacing by the careful geometric design, 
so that it could efficiently avoid signal crosstalk in parallel 
multi-thread processing. Moreover, the large bandwidth of 
the MZI network provides an opportunity to allow several 
wavelengths to maintain similar matrix values via a thermal-
controlled MZI network and supports the different wave-
lengths with the same datasets to transmit in the same MZI 
network. The combination of a stable single SMC source, 
MZI networks, and WMD technique is an efficient approach 
to developing high-dimensional optical neural networks for 
high-cavity parallel recognition systems and signal process-
ing. It is worth mentioning that our functional chips of SMC 
and MZI networks are based on the same material platform 
and compatible with CMOS technology. What is more, we 
achieve an efficient device package and ultra-low coupling 
loss. The details and methods of the device packaging are 
presented in the supplementary information. The challenge 
to the recognition accuracy is the cross-talk between differ-
ent MZIs during the thermal tuning process. The possible 
solution is applying a faster adjuster, electro-optic modu-
lation, or thermal deposition to reduce the thermal cross-
talk. The integrated turn-key single SMC source [36–38], 
on-chip modulator [39, 40], amplifier [41], detector [42], 
WDM, low-loss waveguide [43, 44], optical storage [45], 
and excellent coupling will promote the implementation of 
the future-oriented monolithic multi-layer ONN processor 
and their applications.

4  Conclusion

In summary, we propose a novel and powerful architecture 
of chip-based high-dimensional ONN based on dual-layer 
ONN, optical dissipative Kerr soliton microcomb source 
and WDM technique. We build the dual-layer ONN toward 

high-dimensional computing, which is composed of large 
bandwidth MZI networks and electro-optic modules. Based 
on the system, we successfully reach the goal of high-
dimensional digit recognition by simultaneously loading the 
signals onto two different frequency components from the 
single SMC source. By demultiplexing the output signal and 
testing power distribution from the output ports of dual-layer 
ONN, the digit recognition accuracies of the two frequency 
components are about 85%. Besides, we achieve an efficient 
device package and ultra-low coupling loss between func-
tional chips and fiber array, which is around 1 dB per facet. 
This work provides significant potential in high-capacity 
multi-dimensional datasets processing.
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