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Human Machine Interface with Wearable 
Electronics Using Biodegradable Triboelectric Films 
for Calligraphy Practice and Correction

Shen Shen1,2,3,4, Jia Yi3, Zhongda Sun2, Zihao Guo2,3, Tianyiyi He2, Liyun Ma3, 
Huimin Li1,4, Jiajia Fu1,4 *, Chengkuo Lee2 *, Zhong Lin Wang3,5 *

HIGHLIGHTS

• A wearable triboelectric nanogenerator (denoted as CSF-TENG) is designed using biodegradable and carboxymethyl chitosan-silk 
fibroin (CSF) film.

• In vitro biodegradation of CSF film is performed through trypsin and lysozyme. 63.1% of CSF film is removed by trypsin and lysozyme 
after degrading for 11 days.

• An intuitive writing system is designed by CSF-TENGs-based human-machine interface to promptly track writing steps, highlight 
the stroke in advance, and access the accuracy of letters.

ABSTRACT Letter handwriting, especially stroke correction, is 
of great importance for recording languages and expressing and 
exchanging ideas for individual behavior and the public. In this study, 
a biodegradable and conductive carboxymethyl chitosan-silk fibroin 
(CSF) film is prepared to design wearable triboelectric nanogenera-
tor (denoted as CSF-TENG), which outputs of Voc ≈ 165 V, Isc ≈ 1.4 
μA, and Qsc ≈ 72 mW  cm−2. Further, in vitro biodegradation of CSF 
film is performed through trypsin and lysozyme. The results show that 
trypsin and lysozyme have stable and favorable biodegradation proper-
ties, removing 63.1% of CSF film after degrading for 11 days. Further, 
the CSF-TENG-based human–machine interface (HMI) is designed to 
promptly track writing steps and access the accuracy of letters, result-
ing in a straightforward communication media of human and machine. 
The CSF-TENG-based HMI can automatically recognize and correct 
three representative letters (F, H, and K), which is benefited by HMI system for data processing and analysis. The CSF-TENG-based HMI 
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can make decisions for the next stroke, highlighting the stroke in advance by replacing it with red, which can be a candidate for calligraphy 
practice and correction. Finally, various demonstrations are done in real-time to achieve virtual and real-world controls including writing, 
vehicle movements, and healthcare.

KEYWORDS Letter handwriting; Triboelectric nanogenerator; Biodegradable; Human–machine interface; Calligraphy practice

1 Introduction

Wearable electronics have experienced development and 
progress in the past decades because of their significant 
contributions to various fields [1–6]. Wearable electron-
ics components can be coated on the human body or skin 
to monitor human healthcare such as respiration monitor 
[7], body temperature [8], and safety protection [9, 10]. 
Furthermore, it has emerged recently toward flexible and 
portable devices for motion monitoring, healthcare, and 
human–machine interfaces (HMIs) [11–15]. Thus, the recent 
advancement of wearable electronics based on HMIs has 
sparked the digitalization of human activity through analyz-
ing data generated by tiny movements and endowing it with 
wide application such as accurate recognition, gestures [16], 
and communication [17, 18].

Internet of things (IoT) consists of a series of devices that 
are interconnected over the internet or other communica-
tion networks. It has shown significant potential in activity 
recognition, intelligent monitoring, and real-time response 
systems [19–22]. Ultrafast expansion and deployment of 
semiconductor technology enable cost-effective means for 
wireless network interconnectivity between countless sen-
sors and processors, stimulating visible development in the 
HMIs [23–25]. Accordingly, the burgeoning HMI fosters 
an imperative demand for intelligent sensors that provide a 
key connection between humans and machines, allowing for 
more effective but simpler routes to realized more required 
works [26–29]. Under this circumstance, huge and widely 
dispersed electronic devices such as wearable electronics/
photonics devices are expected to be interconnected wire-
lessly with IoT, providing comprehensive real-time surveil-
lance on our destinations and actions [30–33]. Hence, wear-
able electronics are undergoing an explosive development 
for human–machine interaction in IoT applications [34–36].

However, the remarkable advancement of wearable elec-
tronics necessitates the widespread use of mobile power 
sources, which in many situations are still traditional devices 
with limited lifetimes [37–40]. Thus, significant effort has 
been devoted to the exploration of wearable devices that 

can convert wasted mechanical energy to electrical signals 
[41–44]. Triboelectric nanogenerator (TENG) was estab-
lished in response to this requirement. TENG acts as an 
innovation of energy collection technology that noticeably 
stands out from its virtues and unique traits because of enor-
mous breakthroughs in energy-harvesting nanotechnology 
[45–48]. TENG-based HMIs are experiencing extensive 
and flourishing development, and they are used in almost all 
aspects of our lives for wearable sensor, medical monitoring, 
and energy conversion [49–52]. Thus, TENG-based HMIs 
exhibit many of the numerous merits (for example, low-cost, 
self-powered, and easy electric circuits etc.) and have contin-
ued to emerge in various fields, such as tracking identifica-
tion, error information amendment, and human–computer 
interaction [43, 53–56]. For instance, it is reported a wear-
able triboelectric sensor for gait analysis and motion harvest 
to improve the intelligence of the robot-aided lower-limb 
and waist rehabilitation [57]. M. Zhu et al. intergated tribo-
electric sensors with an exoskeleton system to capture and 
project various motions of human and robotic arm [58]. C. 
Li et al. described a badge-reel-like stretch sensor based on 
TENG to monitor the change of spinal shape, illustrating 
application in daily spinal monitoring and physical rehabili-
tation training [59].

In past few years, TENG-based HMIs have been 
developed to track a trajectory pattern or identify letters 
leading to a real-time response and sustainable monitor-
ing [60–63]. For example, W. Zhang et al. displayed a 
triboelectric sensor for handwriting signature identifi-
cation [64]. X. Ji et al. constructed a triboelectric elec-
tronics based HMI for analyzing writing signal pattern 
and letters fingerprint. Further, by combining machine 
learning, the recognition accuracy of letters fingerprint 
is calculated [61]. Although the interactive communica-
tion between human and machines is achieved through the 
fundamental letter identification in the above-mentioned 
works, complex writing process hasn’t been realized by 
only depending on output signal or pattern identifica-
tion. Particularly, calligraphy is of great importance in 
personal development because it is intimately associated 
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with personal behavioral features, and is an essential part 
of civilian applications. Besides, traditional calligraphy 
boards, which are used to writing letter daily only provide 
writing rather than detailed monitoring, and do not meet 
the requirements of letters practice and correction. Thus, 
the real-time and sustainable monitoring of writing steps 
is crucial feature for practicing or correcting the aesthetic 
of letters and even its accuracy. Additionally, traditional 
wearable electronics posses low biodegradability and 
impermeability, even harmful materials to environment. 
Hence these factors restrict their applications. Notably, 
wearable TENG with biodegradability for letter handwrit-
ing has not yet been reported.

Here, HMI-enabled wearable electronics based on a 
triboelectric mechanism are constructed to achieve an 
intelligent, highly accurate, and real-time response writ-
ing system and carboxymethyl chitosan-silk fibroin-TENG 
(CSF-TENG) with a contact-separation mode fabricat-
ing the portable electronics, which uses carboxymethyl 
chitosan-silk fibroin (CSF) film as friction electrification 
material. CSF film is prepared by crosslinking carboxy-
methyl chitosan and silk, resulting in biodegradability, 
flexibility, and softness. Weight loss and UV–visible 
absorption change are used to investigate the biodegrada-
tion behavior of CFS film by trypsin and lysozyme. The 
impact of silk content on the electrical properties of CSF-
TENG and the high electrical output performance of the 
optimal device is evaluated. Most importantly, the CSF-
TENG-based HMI is successfully demonstrated in prac-
ticing letters and correcting the writing steps. Finally, 3D 
virtual reality (VR) applications including letters writing 
and healthcare based on the CSF-TENG-based HMI are 
achieved.

2  Materials and Methods

2.1  Materials

Sodium Carbonate, lithium bromide, and phosphate buffer 
(PBS, pH = 7.4) were purchased from Sinopharm Chemi-
cal Reagent Co., Ltd., China; EDC hydrochloride was 
obtained from BOSF Biotechnology Co., Ltd; trypsin 
(EC 3.4.4.4) and lysozyme (EC 3.2.1.17) were supplied 
by Shanghai Macklin Biochemical Co., Ltd; deionized 

water was obtained from a ULUPURE water system; car-
boxymethyl chitosan was purchased from Aladdin Reagent 
Company, and raw silks were obtained from the laboratory.

2.2  Preparation of Silk Fibroin (SF)

Raw silk was boiled in a 0.02 M  Na2CO3 solution at 98 °C 
for 30 min and washed thoroughly with deionized (DI) water 
to remove impurities and wax; the purified products were 
submerged in a 9.3 M LiBr solution with a mass ratio of 1:20 
at 60 °C. Further, the solution was collected and dialyzed 
(Mw = 3500) to eliminate residues, and a silk fibroin solution 
was obtained and denoted as SF.

2.3  Preparation of CSF Film

To achieve a uniform solution, 1 g of carboxymethyl chi-
tosan was dissolved in 25 mL of DI water through stirring. 
After stirring, the obtained SF was added to the as-formed 
solution, and 1 mL of EDC hydrochloride (concentration: 
30% of the amount of carboxymethyl chitosan) was subse-
quently added to the solution dropwise after stirring. Fur-
ther, the mixture was dried in an oven at 60 °C, and the final 
(CSF) film was obtained. Following the same process, CSF 
films prepared with a different mass ratio of SF were abbre-
viated as CSF 0:1, CSF 1:1, and CSF 2:1.

2.4  Fabrication of CSF‑TENG

The as-prepared CSF film with a size of 5 × 5  cm2 was 
selected as one electrode, and the PTFE film of the same 
size was attached to the CSF film. Further, the conductive 
sponge was chosen as another electrode to cover the PTFE 
film; a dielectric layer of PTFE film (5 × 5  cm2) was attached 
to the surface between the CSF film and conductive sponge.

2.5  Construction of CSF‑TENG Writing System

The CSF-TENG writing system was designed as a woven 
structure to sensitively respond to mechanical inputs during 
the handwriting process. The writing system was consist of 
an 8 × 8 pixel overlapping region on the weft and warp side.
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2.6  In Vitro Degradation of CSF Film

CSF film was incubated in a 30 mL solution of trypsin and 
lysozyme in PBS at 38 °C for 11 days. To obtain a uniform 
solution, 15 mg each of trypsin and lysozyme was dissolved 
in 30 mL of PBS, and 100 mg of CSF film was added to 
the resultant solution. The solution was placed on a shak-
ing table, degraded at 38 °C, and shook at 100 r  min−1. At 
fixed intervals, 2 mL of the reaction solution was sampled 
and measured using UV–vis spectrophotometry. The reac-
tion solution was manually changed daily throughout the 
degradation process to enhance the degradation efficiency.

2.7  Characterization

The microstructures and morphologies of the samples were 
obtained using scanning electron microscopy (SEM) and a 
su1510 microscope. Fourier-transform infrared (FTIR) spec-
tra were obtained on a Nicolet iS10 spectrometer (Thermo 
Fisher). The chemical states of the samples were scanned by 
x-ray diffraction (XRD, Bruker AXS) under Cu Kα radia-
tion from 10 to 90 °C. UV–vis spectra of the solution were 
performed by UV-3600 (Agilent, Cary300). An electrometer 
was used to measure the TENG’s output voltage and current 
(Keithley 6514).
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Fig. 1  Schematic illustration for preparation process and potential application scenarios. a Schematic showing fabrication steps of CSF film. b 
Photograph of twist and stretching of CSF film. c–e Schematic diagram of CSF-TENG for HMI, handwriting recognition, and AI manipulation
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3  Structure and Output Performance

3.1  Fabrication and Characterization of CSF Film

Figure 1a illustrates the fabrication process of CSF film 
by crosslinking carboxymethyl chitosan with SF solution. 
Carboxymethyl chitosan is dissolved in DI water under 
moderate conditions to form a solution. After adding SF 
into the resultant solution, EDS hydrochloride is swiftly 
added while stirring. The formed CSF film is replaced 
with absolute ethanol and dried at 60 °C after crosslink-
ing. Complex mechanical deformations are measured to 

intuitively evaluate the physical properties of CSF films. 
The prepared CSF film can tolerate multidimensional 
strains under mechanical deformations such as torsional 
twisting, curl state, and linear stretching, illustrating 
great potential in wearable sensor, body monitoring and 
human–machine interaction (Fig. 1b–e).

The SEM images in Fig. 2a–c shows the morphological 
features of SF, carboxymethyl chitosan, and CSF marfilm. 
Pure SF only has a smooth and dense membrane structure 
on its surface, and microporous cannot be captured (Fig. 2a). 
For carboxymethyl chitosan film, the porous structure with 
open macropores formed by stacking and irregular terraced 
layered is visible (Fig. 2b). Additionally, the surface of 
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carboxymethyl chitosan displays hills and valleys because 
of the irregular arrangement of the inner structure. The CSF 
surface has numerous lacunae within the network and the 
pore size increases, indicating that the crosslinking SF with 
carboxymethyl chitosan affects the morphology structure 
(Fig. 2c).

The crystal phases of all samples were measured using 
XRD. The XRD pattern of carboxymethyl chitosan shows 
a broad peak at 20.5° (Fig. 2d), which is consistent with 
the previous study [65]. A diffraction peak located at 20° is 
attributed to the amorphous structure of SF [66]. The XRD 
curve of CSF film retains the diffraction peak of SF and 
carboxymethyl chitosan after crosslinking but is noticeably 
different from the two. However, the peak of CSF film weak-
ens and broadens dramatically. This abnormal phenomenon 
is because of the presence of a high amount of amorphous 
SF in the CSF film and crosslinking interactions between SF 
and carboxymethyl chitosan.

FTIR measurements were also performed to adequately 
account for the interaction structure of SF and carboxym-
ethyl chitosan. Figure 2e shows that the strong peaks located 
at 1616, 1518, and 1234  cm−1 are attributed to the C = O 
(amide I), N–H (amide II), and C–N&N–H (amide III), 
respectively. The character peak at 3279  cm−1 is assigned 
to the hydrogen-bonded N–H and O–H stretching vibration. 
The spectrum of carboxymethyl chitosan shows absorption 
peaks at 1050 and 1130  cm−1, which are typical peaks of 
the saccharide structure. The amide I and amide II absorp-
tion peaks at 1652 and 1573  cm−1, respectively, indicate that 
chitosan has a significant deacetylation degree. Further, the 
CSF 1:1 film exhibits all the characteristic peaks mentioned 
earlier, indicating that the SF and carboxymethyl chitosan 
are effectively crosslinked.

Chemical reagents (NaOH, acid, and  H2O2, etc.) can cause 
diverse diseases in living things and pose severe threats to 
ecosystems. Biodegradation is an effective degrading pro-
cess in which microorganisms or their active by-products 
(bacteria, fungi, yeast, and polysaccharide) decompose waste 
in the natural environment [67, 68]. Further, the microor-
ganisms involved in the biodegradation processes generate 
various enzymes such as protease, hydrolases, and lipases, 
which directly enhances biodegradation via catalysis. Thus, 
the biodegradability of CSF was carried out in the mixture 
of trypsin and lysozyme, which can effectively degrade 
protein and polysaccharides. The weight loss was measured 
to determine the periodic decomposition rate of CSF by 

replacing the enzyme fluid daily. A UV–vis spectrophotom-
eter was used to determine the optical absorption behaviors 
of silk, carboxymethyl chitosan, trypsin-lysozyme, and CSF 
degraded for 18 h (CSF-18 h). Figure 2f illustrates that all 
samples exhibit fundamental absorption in the UV region. 
The UV spectra of trypsin-lysozyme and carboxymethyl 
chitosan show a characteristic peak from 250 to 325 nm, 
corresponding to the formation of π conjugated structure. 
In comparison with trypsin-lysozyme and carboxymethyl 
chitosan, CSF’ peak at 250–325 nm disappears after 18 h of 
degradation, suggesting a catalytic reaction between trypsin-
lysozyme solution and CSF. Further, the UV region shows a 
slight decrease in the CSF absorption intensity, which can be 
attributed to the hydrolysis of CSF film. However, the inset 
picture of residual CSF solution confirms that the mixture is 
increasingly becoming nontransparent because of degrada-
tion. Figure 2g shows the degradation rate of DI water and 
trypsin-lysozyme solution for CSF film. When incubated at 
38 °C with constant shaking for 11 days, DI water shows no 
CSF degradation capacity, whereas, the trypsin-lysozyme 
solution shows a higher CSF biodegradation ability. The bio-
degradation rate of CSF film treated by trypsin-lysozyme 
solution is about 36.53% after 24 h. The degradation rates 
increase from 36.53% to 63.07% as the reaction time 
increases, indicating that trypsin-lysozyme plays a positive 
role in CSF film biodegradation. Figure 2h(i–iv) shows the 
weight loss of CSF film degraded by the trypsin-lysozyme 
solution to further validate the biodegradability and envi-
ronmental friendliness of CSF film; the weight of CSF film 
noticeably decreases from 100 to 37.37 mg (Fig. 2h(iii–iv)). 
The result proves that CSF film possesses great biodegrada-
bility, and can be ultimately hydrolyzed to tiny molecules.

3.2  Structure and Output Performance of CSF‑TENG

However, the CSF film is also a high-performance con-
ductive material. A flexible contact-separation mode CSF-
TENG is designed after the CSF film is used as an upper 
electrode (Fig. 3a). Figure 3b shows the electricity-genera-
tion principle of CSF-TENG, which uses a typical contact-
separation mode. PTFE is selected as a reference material 
throughout the experiments to determine the electric output 
performance of CSF film since it is one of the most available 
negatively charged materials. A piece of conductive sponge 
attached to PTFE and CSF film is used as back electrodes, 
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which are connected to the external circuit for evaluating 
the electric output. When the PTFE is touched the CSF film 
in the original mode, charges are generated from the tribo-
electrification between the PTFE and CSF film with equally 
opposite polarities distributed on their surface (Fig. 3b(i)). A 
potential difference between the conductive sponge and CSF 
film is formed after the CSF and the PTFE film are sepa-
rated. Electrons travel from the top of the CSF film to the 
bottom of the conductive sponge through the external cir-
cuit, resulting in an instantaneous current flow (Fig. 3b(ii)). 
When the PTFE and CSF films are completely separated, 
an electrostatic equilibrium is achieved between them and 
the electrons stop transferring (Fig. 3b(iii)). When the CSF 

film begins making contact again, electrons flow back from 
the bottom conductive sponge to the CSF film to balance the 
electrical potential differences (Fig. 3b(iv)). There are no 
remaining electrons on the electrode when the two charged 
surfaces fully overlap again, and the CSF-TENG reverts to 
the original state (Fig. 3b(i)). The electrostatic potential dif-
ference of CSF-TENG in the contacting and separating states 
is further illustrated by numerical calculations (Fig. S1).

A series of CSF films with different amounts of SF (2, 
1, and 0.5 g) were fabricated to obtain a high triboelectric 
patch. The effect of the amount of SF on the electrical out-
put performance of CSF-TNEG was evaluated under mass 
ratio (CC: SF) ranging from 0:1, 1:1, 1:2, and 1:0 (Fig. 3c). 
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The results show that the CSF 1:1 has the highest electrical 
output performance (140 V, 1.32 μA, and 64 nC), whereas 
the output performance of CSF 1:2 and CSF 0:1 gradually 
deteriorates. Further, the electrical output of the optimized 
CSF-TENG was accessed by pressing and releasing cycles 
under various frequencies (0.5–2 Hz), resulting in a maxi-
mum Voc, Qsc, and Isc, for 165 V, 77 nC, and 2 μA, respec-
tively (Fig. 3d–f). Further, we will like to investigate how 
different pressures affect electrical output performance. The 
Voc, Isc, and Qsc of CSF-TENG are measured under various 
pressures (0.65–12.67 N) for verification. Figure S2 shows 
that the entire electrical outputs are increased linearly as the 
pressure increases from 0.65 to 12.67 N. This phenomenon 
is attributed to the increased pressure, which can enlarge the 
contact-separation area, resulting in higher electrical out-
puts. The peak voltage was measured as different external 
resistances to obtain additional details on the behavior of 
the electrical energy output under external load (Fig. 3g). 
At a resistance of 1 GΩ, the voltage was at about 165 V, 
whereas the output power density peaks was at 72 mW  cm−2. 
However, the CSF-TENG was successfully used to charge 
different capacitors at a frequency of 1 Hz. The charging rate 
increases with decreasing capacitances (Fig. 3h). By manu-
ally patting the CSF-TENG, 100 commercial LEDs can be 
easily illuminated (Fig. S3). For a systematic investigation, 
an additional test was performed to evaluate the stability of 
CSF-TENG. Figure 3i shows that the Qsc does not deterio-
rate after 30 min, demonstrating the strong stability of CSF-
TENG. However, pressure is a crucial role in measuring the 
accuracy of the CSF-TENG in the sensor system.

4  CSF‑TENG‑Based HMI for Letters Practice 
and Correction

The CSF-TENG-based HMI, which has real-time response 
capability can be used as an intelligent writing pad to prac-
tice and correct letters. It must include a single isolated 
friction electrode uniformly distributed onto the PTFE 
to sensitively respond to mechanical inputs during the 
handwriting process. Thus, CSF mesh fabricated by CSF 
strips (width: 2 mm) acts as the upper triboelectric layer 
because of its woven structure. Each point’s output signal 
is recorded with 2 channels, and varying contact points are 
connected to 16 channels (Figure S4, supporting informa-
tion). Figure 4a(i–iii) shows the real-time output signals 

of the letter writing for different strokes (“–,” “/,” and “|”) 
obtained by the acquisition card. For the stroke “–,” the user 
briefly touches the first point of the stroke array, and pro-
ceeds from electrode 2 to 6, where an output voltage pulse 
with the regular magnitude is first produced on electrode 
2, and then the output voltage of various magnitudes are 
rapidly generated on electrodes 3, 4, 5, and 6 until the user 
completes the strokes array without discovering an output 
voltage (Fig. S5). Because of the real-time response-ability, 
it is obvious that no matter what kind of strokes the user 
writes, the handwriting signals and tracks exhibit instant 
response in the time domain. We selected three letters that 
are composed of strokes “–,” “/,” and “|” in all letters as 
an exhibition (“F,” “H,” and “K”). Leveraging the various 
output information from CSF-TENG, labview is utilized to 
analyze the signals to identify and correct letters. Figure 4b 
is the identification and correction images of letter F. The 
accurate writing standard is given before writing in the case 
of letter F (Fig. 4c), and it is divided into “|,” “–,” and “–.” 
The correlation judgment of the letter F is performed based 
on the standard. A real-time trend can be observed in the 
voltage on F writing from the output signals (Fig. 4d–h). 
During the whole process, visible signals are generated 
as the pressure is applied, and steps corresponding to the 
motions are performed promptly (Fig. 4d, f and Movie S1), 
followed by identifying the completed step and making the 
precise judgment based on the information of letters col-
lected from the CSF-TENG. However, the writing results 
can be sent back to the user in real-time, allowing them to 
rewrite the selected letter in the CSF-TENG for validation 
and amendment. Thus, the corresponding results above the 
related strokes can be instantly recognized by labview for 
revision purposes. Although the user’s stroke sequence dif-
fers from the given standard, the alert system shows an error 
warning (Fig. 4b(i)). However, the finished stroke trend is 
unsatisfactory, deviating significantly from the standard ver-
sion. For example, when the first writing stroke is “|,” the 
system switches on the green light (Fig. 4b(ii)), whereas an 
error alert is displayed when the stroke “–” is written first. 
However, when the next red stroke appears, the user should 
follow the hint to describe it, which will be replaced by a 
white stroke that is synchronized with the screen’s actual 
movement. Figure 4c illustrates that the letter F is correctly 
revised and identified.

Apart from letter F, letters H and K are also explored as 
representative letters by CSF-TENG-based HMI to make our 
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Fig. 4  The illustration of details recorded by using CSF-TENG. a (i) Electrical signals of stroke “ − ” inset: the detailed steps and the output of 
stroke “ − ” on writing pad. (ii) Electrical signals of stroke “|” inset: the detailed steps and the output of stroke “|” on writing pad. (a-iii) Electri-
cal signals of stroke “/” inset: the detailed steps and the output of stroke “/” on writing pad. “1,2,3,4,5,6” represent electrodes. b The illustration 
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and identification process by CSF-TENG-based HMI. d–f Signals for writing the letter “F”. g Structure and fabrication of the CSF-TENG. h–i 
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based HMI



 Nano-Micro Lett.          (2022) 14:225   225  Page 10 of 15

https://doi.org/10.1007/s40820-022-00965-8© The authors

(a)

(b)

(c)

(d)

(e) (f)

(g)

(i) (ii)

MCU

V5
H2
H3
H4
H5
H6
H7

H4
V5
V4
V3

H5
H6
H7
H8

MCU

Wireless

Computer

Communication

V6

V5V3

H7 H1

H4
V7
V6
V5

H5
H6
H7
H8

H7

H2

V6

V5

V3

V5
H2
H3
H4
H5
H6
H7

MCUWireless Transmitter Wireless Receiver

150
125
100

75
50
25

Vo
lta

ge
 (V

)

75

60

45

30

15

75

60

45

30

15

Vo
lta

ge
 (V

)

Vo
lta

ge
 (V

)

(iii) (iv)75

60

45

30

15

75

60

45

30

15

25

20

15

10

5

Vo
lta

ge
 (V

)

Vo
lta

ge
 (V

)

Vo
lta

ge
 (V

)

125

100

75

50

25

0

Vo
lta

ge
 (V

)

125

100

75

50

25

0

Vo
lta

ge
 (V

)

0 2 4 6 8 10 12 14
Time (s)

0 2 4 6 8 10 12 14
Time (s)

0 2 4 6 8 10 12
Time (s)

0 1 2
Time (s)

3 4

0 1 2
Time (s)

3 4 0 1 2
Time (s)

3 4 5

0 1 2
Time (s)

3 4 5 6 7

0 1 2
Time (s)

3 4

Fig. 5  Different applications of CSF-TENG-based HMI. a The corresponding screenshot of using steps to achieve VR control in Unity 3D, and 
the photographs of writing steps of 3 letters (inset). b The signal patterns of CSF-TENG corresponding to the three letters. Schematic illustration 
and real-time signals to control the vehicle by CSF-TENG. c Schematic illustration of CSF-TENG-based HMI for vehicle control. d The signal 
patterns of CSF-TENG corresponding to the four directions (i–iv). The corresponding movements of vehicle including forward/backward con-
trol, and leftward/rightward control (inset). Wearable wireless communication board. e Circuit connection of the wireless communication board 
system. f The corresponding icons displayed on the screen and g real-time signals when the icons were pressed. (V and H represent vertical and 
horizontal channel, for example, vertical channel 5 and horizontal channel 5 are abbreviated as V 5 and H 7, respectively)



Nano-Micro Lett.          (2022) 14:225  Page 11 of 15   225 

1 3

writing applicable to the normal letters. Figure 4h(i) and 
Movies S2 and S3 show the images and signals of the last 
two letters. Figure S5 shows the writing steps of letters H 
and K that serve as the standards of the two letters. Similarly, 
when a user writes on the first step of the pad, the stroke 
gradually generates a distinguishable electrical signal. The 
images show a distinct sharpness and pattern. As we can 
see, it is not easy to write letter K smoothly because of the 
stroke “ < ”. However, the results verify that no matter how 
difficult the stroke “ < ” it is, CSF-TENG-based HMI can 
write perfectly and respond immediately. For the two letters, 
the same conclusion can be drawn: CSF-TENG-based HMI 
exhibites high rearrangement and correction accuracies. The 
compelling results also suggest that CSF-TENG-based HMI 
illustrates perspectives about the future development trends 
of the portable electronics and workbook practice board, 
such as letter identification, intelligent revision, and magic 
calligraphy practice board in the AI/IoT era.

5  CSF‑TENG‑Based HMI for Different 
Applications

The flourish advancement of VR and AR technologies provide 
a creative way for the potential application in social media 
and personal engagement. Thus, we designed a training pro-
gram in Unity 3D to verify a VR writing control (Movies 
S4-S6). Each sensor channel is connected to Arduino for data 
acquisition. Python processes recieved data in real-time man-
ner and then sends motion command to Unity 3D. Unity 3D 
receives the command of the predicted steps and then convert 
it into the movements of virtual pen, as shown in Fig. 5a. In 
our demonstration, three letters are available for recognition 
to control the virtual pen, including the letter N, U, and S. 
When the user writes letters, the steps will be simultaneously 
synchronized onto the virtual space. Next, the virtual pen in 
Unity 3D responds to the corresponding order in the virtual 
board. The triboelectric outputs and VR demonstrations of 
the three letters are shown in Fig. 5b and Movie S4. Further, 
the CSF-TENG is also implemented to follow a set of move-
ment routes to prove the HMI for vehicle control, where the 
arrows represent forward movement, backward movement, 
leftward-movement and rightward-movement, respectively. 
The schematic illustration for the vehicle manipulation is 
shown in Fig. 5c. Simply, the output signals are captured and 
process by MCU. After, the signals are transffered into digital 

signals and then detected by the second MCU, which transmit 
commands to realize vehicle control. In a typical interactive 
process, the CSF-TENG outputs are employed to control the 
direction of vehicle movement by tracking the sliding trace of 
finger. For example, when the finger slides from the bottom 
to the top, the CSF-TENG from vertical channel 5 to horizon-
tal channel 7 generate electrical signals, thus operating the 
vehicle to move forwards, backwards, and leftwards as well 
as rightwards. Figure 5d(i–iv) summarize the output details 
in responses to the corresponding traces. And the real-time 
control for vehicle movement commanded by CSF-TENG is 
intuitively illustrated in Movie S7. Afterward, to provide a 
simple and intuitive communication command for the special 
population include the patients and the elderly, the five pixels 
labeled as drink, lying down, sitting up, emergency contact, 
and rehabilitation training are presented. Figure 5e illustrates 
the circuit connection for the communication board. Firstly, 
the output signals collected from the CSF-TENG convert into 
digital signals to be transferred out through wireless module. 
Then the acquired signals are processed and sent to computer 
based on the MCU. As illustrated in Fig. 5f, a corresponding 
requirement is displayed on the screen of computer as pressing 
the emergency contact. Similarly, as the finger touches to the 
second pixel, the related icon appears verifying real-time and 
accurate communication (Movie S8). Each simple touching 
can generate a peak voltage (Fig. 5g). These demonstrations 
verify the potential of wearable electronics for the realization 
of the advanced multifunctional HMIs.

6  Conclusion

In conclusion, a wearable electronic for letters exercise 
and automatic correction is developed by CSF-TENG-
based HMI. It is implemented by combining TENG and 
advanced HMI-based real-time data processing. A flexible 
and wearable CSF-TENG with biodegradable CSF triboe-
lectric film is proposed using the simple assembly method. 
Contrasting experiments to optimize the output capacity of 
CSF-TENG are performed, followed by a series of perfor-
mance measurements. A maximum voltage of 165 V and 
output power density of 72 mW  cm−2 at a resistance of 1 
GΩ is produced. Further, by using CSF-TENG-based HMI 
for real-time feature response, the writing process and 
sequence for the three letters can be tracked and reminded 
in a timely manner, demonstrating the identification and 
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revision abilities of the proposed system for letters with 
different shapes. The error warning of the writing result 
can be generated by writing the same letters with differ-
ent strokes. It only needs to be lightly touched once in the 
testing experiment because of its numerous advantages 
like portability, sensitivity, and rapid response properties. 
Finally, 3D VR controls including writing, healthcare and 
vehicle monitoring are successfully displayed using the 
constructed CSF-TENG-based HMI. Looking forward, an 
intelligent lifestyle can be established via wearable elec-
tronics, automatic identification, correction, and VR appli-
cations as a prospect under the HMI and AI infrastructure 
by employing sensory interactive system.
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