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A Rising 2D Star: Novel MBenes with Excellent 
Performance in Energy Conversion and Storage
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HIGHLIGHTS

• Two-dimensional transition metal borides have high mechanical stability, high charge carrier mobility and great electrochemical performance.

• The potential applications of two-dimensional transition metal borides in the direction of energy conversion and storage have not been 
systematically reviewed.

• We summarize the research on the role of two-dimensional transition metal borides in catalysis and ion batteries, and put forward the 
new opportunities in preparation and biotechnology.

ABSTRACT As a flourishing member of the two-dimen-
sional (2D) nanomaterial family, MXenes have shown 
great potential in various research areas. In recent years, 
the continued growth of interest in MXene derivatives, 2D 
transition metal borides (MBenes), has contributed to the 
emergence of this 2D material as a latecomer. Due to the 
excellent electrical conductivity, mechanical properties and 
electrical properties, thus MBenes attract more researchers’ 
interest. Extensive experimental and theoretical studies have 
shown that they have exciting energy conversion and elec-
trochemical storage potential. However, a comprehensive 
and systematic review of MBenes applications has not been 
available so far. For this reason, we present a comprehen-
sive summary of recent advances in MBenes research. We 
started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for 
energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
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1 Introduction

The irresistible evolution of human society towards infor-
mationalization and intelligence puts forward higher require-
ments for energy storage and transformation. The intermit-
tence and randomness of renewable energy such as solar 
energy, wind energy, tidal energy and geothermal energy 
promote the development of energy storage system [1–3]. 
Electrochemical energy storage is considered as an ideal 
energy storage method because of its high energy density, 
high cycle efficiency and flexible application. In many appli-
cations involving electronic devices and electric machine [4, 
5], the most efficient and practical technology is recharge-
able batteries owing to excellent energy efficiency and long 
cycle life [6–8]. As a major energy storage technology, 
batteries currently offer high energy density, but their low 
power density hinders their application in areas where high 
power is required [9]. The performance of rechargeable bat-
teries depends to a large extent on the composition, struc-
ture and properties of their battery materials, especially the 
anode materials. Therefore, finding high-performance anode 
materials has become one of the main elements in develop-
ing rechargeable batteries.

Among the many electrode materials, two-dimensional 
(2D) materials are of interest because of their atomic-level 
thickness, excellent specific surface area, high charge car-
rier mobility, intriguing chemical activity, and superior 

mechanical strength [10–12]. To date, 2D materials have 
grown rapidly (Fig. 1). Since the discovery of graphene in 
2004, graphene has attracted wide attention in the field of 
energy storage because of its high specific surface area and 
excellent electrical conductivity, and has shown a wide range 
of application prospects [13]. However, the zero-band gap 
of graphene hinders the application of graphene in elec-
tronic components. Fortunately, many monoelemental 2D 
nanosheets have been discovered, such as silicene [14, 15], 
phosphorene [16, 17], and borophene [18–20]. Especially, 
the discovery of borophene enriches the physical and chemi-
cal properties of boron. As an element adjacent to carbon in 
the periodic table, boron has strong bonding ability, which 
is equivalent to carbon. New properties of boron-olefins, 
such as mechanical flexibility, optical transparency, aniso-
tropic plasma, ultra-high thermal conductivity, 1D near-
free electron state, the existence of metal Dirac fermions 
and superconductivity, have aroused strong theoretical and 
experimental interest [21–23]. In addition, there are some 
common 2D materials such as transition metal dichalcoge-
nides (TMDCs) [24, 25], metal oxides [26, 27], nitrides [28], 
phosphides [29], and 2D gold [30], which has attracted a lot 
of attention from researchers due to their unique properties. 
Table 1 shows the class of 2D materials including Xenes 
(graphene, borophene, phosphorene, silicene, germanene, 
stanene, etc.), TMCs, 2D TM Oxides, 2D TM Nitrides, 
2D TM Phosphides, halides, etc. Recently, transition metal 

Fig. 1  The rapid development of two-dimensional materials. Reproduced with permission from Ref.  [64–69]
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Table 1  Classification of 2D materials

2D materials Typical representative Structure Applications Refs.

Xenes Graphene

 

Lithium storage [53]

Borophene

 

HER [54, 55]

Phosphorene

 

Semiconductors [16, 17]

Silicene

 

Semiconductors [14, 15]

Germanene

 

Phototransistors [56, 57]

Stanene

 

Spintronics [58]

TMDs MoS2

 

Semiconductors [59]

TM Oxides V2O5

 

Lithium storage [60]

TM Nitrides Ti3C2

 

Supercapacitor [41–45]
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carbides, nitrides and carbonitrides (MXenes) [31] were 
first reported as a member in rich family of 2D materials. 
In general, MXenes are obtained by selectively etching the 
A atomic layer in MAX phase with hydrofluoric acid, or an 
acidic solution of fluoride salts [31, 32]. MAX phases can 
be described with a M

n+1AXn
 formula, where n = 1, 2, 3 , M 

stands for early transition metal, A is an element mostly 
from groups 13 or 14, X represents carbon and/or nitrogen 
[33–35]. MXenes have the advantages of large specific sur-
face area, good hydrophilicity, good electrical conductiv-
ity and high mechanical strength, and play an important 
role in energy applications such as supercapacitors (SCs), 
LIBs and other catalytic processes [36–40]. For example, 
2D  Ti3C2Tx  (Tx stands for the surface terminations such as 
hydroxyl, oxygen, or fluorine) and other MXenes are promis-
ing electrode materials for SCs [41–45], LIBs [46, 47] and 
lithium–sulfur batteries (LSBs) [48, 49] and beyond LIBs 
[50–52].

With the growing interest in these emerging MXenes 
materials and the diversity of their parent MAX phase 
compositions, a variety of MXenes have been produced by 
different approaches. In addition, there are a series of lay-
ered orthogonal transition metal borides with the molecular 
formula (MB)2Aly(MB2)x [70] (denoted as MAB phase, M 
can be Cr, Mo, W, Fe, Mn). Similar to MAX phases, the 
2D transition metal borides are called MBenes when the 
“A” elements are wiped out in the MAB phases. The first 
article on MBenes dated back to 2015 by Ade and Hillebre-
cht [70], which identified them as derivatives of MXenes. 
Many researchers have since conducted theoretical studies 

and experimental explorations on the synthesis and appli-
cation of MBene (Fig. 2a-c, f–h). At the same time, alloy-
ing has been shown to be an achievable way to expand the 
chemical composition in materials with MAX phase. The 
recently discovered in-plane chemically ordered MAX 
phase alloy called i-MAX phase is an example [71–73]. A 
remarkable feature of i-MAX phase is that the two-dimen-
sional MXene obtained by different etching methods can 
be chemically ordered in plane or vacancy ordered, which 
has great application prospects for catalysis and energy stor-
age [74–81]. Encouraged by the i-MAX phase discovered 
earlier, Martin et al.[82] theoretically identified 15 novel 
MAB phases with in-plane chemical order, called i-MAB 
phases (Fig. 2d), which shows that alloying is an effec-
tive method to expand MAB phase. Zhou et al. [83] report 
 Mo4/3B2-xTz MBene, produced by selective etching from 3D 
i-MAB phases in aqueous hydrofluoric (HF) acid (Fig. 2e). 
Wei et al. [84] studied the possibility of 2D hexagonal  V2B2 
MBene (Fig. 2i) as a promising anode material for sodium 
ion batteries. Very recently, Xiong and his group [85] pre-
pared two-dimensional MoB with MoAlB as raw material by 
fluorine-free hydrothermal assisted alkane solution etching 
(Fig. 2j), and further evaluated the electrochemical perfor-
mance as anode materials for LIBs.

2D MBenes, although relatively new and being explored, 
are a very promising family of nanomaterials. Parallel with 
MXenes, in accordance with calculations, MBenes are appli-
cated in energy storage and catalytic reactions. Nevertheless, 
there is no complete and systematic overview of MBenes’ 
papers on energy storage and conversion. Guo et al. [86] 

Table 1  (continued)

2D materials Typical representative Structure Applications Refs.

TM Phosphides Ni2P

 

HER [61, 62]

Halides CH3NH3PbX3

 

Semiconductors [63]
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firstly studied new MBenes for LIBs via theoretical calcula-
tions, such as  Fe2B2 and  Mo2B2. Since then MBenes have 
also attracted great attention. Therefore, it is now urgent to 
understand the current progress of MBenes for energy stor-
age and conversion, as well as the further prospects.

In the following, we will present the latest developments 
in various MBenes materials for applications. The synthesis 
strategies of MBenes are briefly summarized. In addition, 
the catalytic properties of MBenes are also mentioned. Then 
the focus is placed on the applications of 2D MBenes for 
diverse energy storage devices including lithium-ion bat-
teries (LIBs), sodium-ion batteries (SIBs), potassium-ion 
batteries (PIBs), magnesium-ion batteries (MIBs) and lith-
ium–sulfur batteries (LSBs) (Fig. 3). Finally, a conclusion 

and perspectives on MBenes are provided, and this review is 
expected to provide some guidance for the design and other 
related applications of MBenes.

2  Synthesis of MBenes

MBenes seem to be very comparable to MXenes, except 
that the carbon and/or nitrogen positions have been replaced 
with boron. However, the MAB-MBenes cannot be directly 
linked to the corresponding MAX-MXenes combination 
alone due to the differences in the resulting stoichiometry, 
the pattern of 2D layer intercalation and structural transitions 
[96]. Layered MBenes can be obtained from their parental 
MAB phases using a chemical etching. The MAB phase has 

Fig. 2  The representative historical timeline of MBene. a Magnification image of the cavity containing the MoB sheets with idealized structure 
of the delaminated region of the MBene sheets. Reproduced with permission from Ref. [87]. b Microstructure of 2D CrB nanosheets prepared 
by etching for 8 h in dilute HCl solution. Reproduced with permission from Ref. [88]. c Crystal structure of RT-LiNiB. Reproduced with per-
mission from Ref. [89]. d Chemical ordering upon metal alloying of  M2AlB2 (M from groups 3 to 9) in orthorhombic and hexagonal symmetry 
with first principles study. Fifteen stable novel phases with in-plane chemical ordering are identified, coined i-MAB. Reproduced with permis-
sion from Ref. [82]. e The single-layer 2D molybdenum boride sheets with ordered metal vacancies,  Mo4/3B2-xTz (where  Tz is fluorine, oxygen, 
or hydroxide surface terminations). Reproduced with permission from Ref. [83]. f The first calculated charge density differences of  Mo2B2 with 
one Li atom adsorbed. Reproduced with permission from Ref. [86]. g Crystal structure of stable boron-containing ternary phase  Ti2InB2. Repro-
duced with permission from Ref. [90]. h The synthesis of  Mo2AlB2 from MAB phase MoAlB by treatment with LiF/HCl. Reproduced with 
permission from Ref. [91]. i Top view of the Na diffusion path for  V2B2 indicated by the black dotted arrows. Reproduced with permission from 
Ref. [84]. j 2D MoB MBene from the reaction between MoAlB and NaOH with a fluorine-free hydrothermal-assisted alkane solution etching 
method. Reproduced with permission from Ref. [85]
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different chemical formulas with the related compositions 
MAB,  M2AB2,  M3AB4 and  M4AB6 [70]. The M-A bond is 
metallic, while the M-B bond has mixed covalent/metal/ionic 
properties and is very similar to M-X in the MAX phase [97]. 
Thus, by exploiting the difference in bond strength between 
M–A and M–B bonds, the MAB phase can be exfoliated into 
2D MBenes by selective chemical etching of the Al layer, as 
in the case of isolated MXenes. Based on the above analysis, a 
possible etching process from the MAB phase to MBene was 
constructed by Guo et al. [86] (Fig. 4a). It was also shown in 
terms of lattice dynamics and thermodynamics that the sepa-
ration of MBene is largely due to the etching of the Al layer.

In etching with fluoride salts with HCl, MXenes are gen-
erally synthesized using concentrated HF or their in situ gen-
eration. While M-X bonds are covalent-metal-ionic in nature 

and have relatively high binding strengths, metallic M-A 
bonds are relatively weak [32]. In order to find a milder and 
more durable method for MXenes etching, a more practical 
method using LiF and HCl solutions was finally proposed 
[98]. The recent researches on 2D MBenes follow an out-
standing exploration to obtain layered, atomically thin 2D 
MBene flakes. Two different methods for the preparation 
of 2D MBenes. The first approach used the MAB phase as 
the starting material, which was treated with acid or basic 
treatment. The second approach involved the use of bulk 
powders and their solvothermal fragmentation into specific 
nanostructures.

In the first approach, the use of MoAlB and  Cr2AlB2 led 
to partial and complete etching, resulting in 2D MoB [87, 
99] and CrB [88, 100], respectively. In case of MoAlB, the 

Fig. 3  Schematic diagram illustrating the structure of MBene along with energy storage applications. Reproduced with permission from Refs. 
[83, 91–95]
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Fig. 4  a Schematic describing the synthesis, delamination and dispersion of  Mo2B2 based on theory. Reproduced with permission from Ref. 
[86]. b Synthesis routes for the preparation of MoB. ADF-STEM image of two isolated, delaminated MoB (MBene) sheets inside an etched cav-
ity MoAlB at various stages of etching with 10% NaOH at room temperature. Reproduced with permission from Ref. [87]. c Synthesis routes 
for the preparation of CrB.  (i) A simple 2D model of  CrB2Cr built by removing the Al sheets from  Cr2AlB2 and separating the adjacent  CrB2Cr 
units from a vacuum region of about 10 Å. Microstructure of  Cr2AlB2 powders before (ii) and after (iii) treatment in diluted HCl solution. (iv) 
2D CrB nanosheets prepared by etching for 8 h in dilute HCl (1.25 mol  L-1) solution. Reproduced with permission from Ref. [88]
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Al layer in the MoAlB single crystal was partially etched 
with NaOH to obtain separated nanothick MoAlB flakes, 
and these flakes were released to isolate the separate MoAlB 
sheets (Fig. 4b). However, no typical MoB peaks were found 
in X-ray diffraction patterns, which indicated that the mac-
roscopic preparation of 2D MoB MBene was a failure. In 
their study, Lucas et al. [87] investigated a microscopic study 
of the surface chemical etching of Al from MoAlB single 
crystals after treatment with NaOH solutions. They found 
that the exfoliation of Al from MoAlB is accompanied by 
the formation of high-density (0k0) layer dislocations, which 
points to alternative ways to prepare MBenes. They observed 
the appearance of the sub-stable phase  Mo2AlB2 [86] (space 
group Cmmm) during the stripping of Al from MoAlB, and 
 Mo2AlB2 may be a starting material for the synthesis of 2D 
MBenes. It was shown that STEM image of two isolated, 
delaminated MoB (MBene) sheets were accessible. The two 
MoB monolayers split apart as the stacking faults holding 
them together were etched, which was feasible to form a 
stable 2D MoB using this experiment.

While for  Cr2AlB2, 2D CrB nanosheets were success-
fully synthesized by chemical etching of the Al layer in 
dilute HCl solution at room temperature [88]. Compared to 
the MAX phase, etching the MAB phase completely into 
MBenes is not an easy task. Al layer is completely removed 
after 24 h treatment in MAX phase, and MXene multilay-
ers are formed directly [31]. Zhang et al. [88] reported the 
synthesis of 2D CrB nanosheets by selective etching Al 
with  Cr2AlB2 in hydrochloric acid at room temperature 
(Fig. 4c-i). In Fig. 4c-ii, the layered structure character-
istics of  Cr2AlB2 microcrystals can be seen, and obvious 
peeling can be seen after etching in diluted HCl solution for 
6 h (Fig. 4c-iii). The researchers also found that when the 
soaking time was extended to 8 h, most  Cr2AlB2 particles 
could be transformed into 2D CrB, and the thickness of the 
flake became thinner and had a curly shape (Fig. 4c-iv).

Based on recent studies, it is shown that a large number 
of stable or sub-stable 2D structures can be formed using 
Ti and B [101–104]. Different from MAB structures with 
orthorhombic symmetry,  Ti2InB2 displays hexagonal P 6 m2 
symmetry. Wang et al. [90] successfully synthesized  Ti2InB2 
by solid-phase reaction based on the theoretical prediction, 
and then the layered TiB compound was obtained by high-
temperature de-alloying and de-indium. In general, the syn-
thesis process consists of placing the  Ti2InB2 sample into a 
quartz tube under dynamic vacuum. The optimized condition 

for the dealloying reaction was determined to be 1050 °C 
for 6 days, which is too complicated and time consuming. 
In this process, diluted HCl (2 mol  L−1) was applied for 
10 h to remove any impurities (e.g.,  Ti3In,  Ti3In4,  Ti2.2In1.8). 
According to the XRD diagram of the product, the hexago-
nal TiB phase (P6m2) could not be obtained due to the harsh 
reaction conditions. On the contrary, another stable layered 
TiB phase (CMCM) with orthogonal groups was formed. At 
the same time, a tiny TiB phase containing another orthogo-
nal group (Pnma) was formed (Fig. 5a). The SEM image on 
the left side of Fig. 5b showed the prepared  Ti2InB2, and 
the layered structure can be clearly seen. The middle picture 
showed that the main removal product is TiB compound 
(CMCM) with orthogonal structure, which acted as impurity 
phase together with  TiB2 in the prepared  Ti2InB2. The SEM 
image on the right shows that TiB has smaller particle size 
than parent phase, but still has layered structure, which indi-
cates that the original layered structure has changed during 
high temperature dealloying.

Recently, a new group of MAX phases was discovered 
with ordered quaternary [105–111], which expands MAX 
phases and opens a new window for tuning the nature of 
MAX phases and developing new MXenes. For example, 
Caspi et al. [106] showed by high-resolution neutron dif-
fraction analysis that the  (Cr0.5V0.5)n+1AlCn system showed 
a strong tendency for V and Cr atoms to be ordered, with 
V occupying only the intermediate layer. So far, only eight 
stable MAB phases have been synthesized experimentally: 
 (CrB2)nCrAl (n = 1, 2, 3) [70],  Cr4AlB4 [112],  Fe2AlB2, 
 Mn2AlB2 [113–116], MoAlB, and WAlB [112, 116–118]. 
In consideration of the above, Dai et al. [119] chose  Cr4AlB4 
to study possible ordered quaternary phases and predicted 
nine new stable ordered quaternary MAB phases  (M2M’AlB4 
phases, M = Mn, Fe, Co and  M’ = Cr, Mo, W). Based on the 
prediction of the stability of the ordered  M2M’AlB4 phase, 
researchers hope to synthesize new ordered quaternary MAB 
phases, which will greatly enrich the MAB phase family and 
expand its potential application prospects. Inspired by the 
finding of  Ti2InB2 and the previous discovery of the i-MAX 
phase, Martin et al. [82] identified 15 new MAB phases with 
planar chemical ordering, called i-MAB phases, which is 
considered to be thermodynamically stable at a tempera-
ture of at least 2000 K. The researchers also synthesized 
 Mo4/3Y2/3AlB2 and  Mo4/3Sc2/3AlB2, confirming a structure 
displaying the characteristic in-plane chemical ordering of 
Mo and Y or Sc.
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Attempts to fabricate 2D MBenes have been challenging 
due to the reactivity of the boride phases and the tendency 
of the parent material to dissolve rather than selectively 
etch. A similar method was used by Zhou et al. to produce 
single-layer 2D MBenes with ordered metal vacancies, 
 Mo4/3B2−xTz [83]. A  Mo4/3B2−xTz film was obtained by HF 
etching of  (Mo2/3Y1/3)2AlB2 or  (Mo2/3Sc1/3)2AlB2, followed 

by TBAOH intercalation and delamination (Fig. 6a). The 
precursors were prepared by solid-state reaction sintering 
of Mo/Y/Al/B powder mixtures in a tube furnace, show-
ing rietveld refinement of the sample with composition of 
 (Mo2/3Y1/3)2AlB2 (Fig. 6b). The precursor phases are the 
in-plane ordered i-MAB structure. The XRD results of 
the powders before and after etching showed that the peak 

Fig. 5  a Proposed the generated crystal structures from the parent  Ti2InB2 phase by dealloying. b Left: SEM image of a particle showing a 
laminated structure. Middle: XRD patterns for samples prepared by exposure of as-obtained  Ti2InB2 powder to a vacuum (about  10−4 Pa) as a 
function of the temperature after 6 days. Right: Typical SEM image of the TiB phase; inset shows the atomic ratio for this sample. Reproduced 
with permission from Ref. [90]
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strength of  (Mo2/3Y1/3)2AlB2 decreased obviously after 
etching, and the strength of some impurities such as  Y2O3, 
 Al2O3 and  AlF3 decreased obviously after TBAOH treatment 
(Fig. 6c). The average flake size of MBene was relatively 
small (50 nm), but the layered structure and stacked flake 
morphology can be observed from the SEM image of the 
cross section of the filter membrane (Fig. 6d, e). This MBene 
may be slightly deficient in B compared to the parent phase, 
and x can be as high as ~ 0.5. The surface termination  Tz was 
determined to be a mixture of O, OH, and F with z in the 
range of 2 to 3. 2D  Mo4/3B2−xTz sheets can be prepared by 
a top-down approach and achieved in highly concentrated 
suspensions. Their results proved the feasibility of the top-
down method of chemically peeling layered compounds and 

provided a principle for the further preparation of abundant 
MBenes. A large number of 2D MBenes with similar struc-
tures are also expected to be prepared by this method.

The preparation methods of MBenes described above all 
have some disadvantages (such as complex preparation pro-
cess and high pressure), and there is no practical application 
in these works. In addition, due to the serious corrosiveness 
and toxicity of hydrofluoric acid, it is not recommended to 
use the same hydrofluoric acid etching strategy typically 
commonly used to manufacture MXene, so the prepara-
tion by Zhou et al. [83] has not been applied to large-scale 
experiments. Xiong et al. [85] recently reported a green 
and safe method to fabricate MBene from precursor, so as 
to promote the application research of MAB. They used a 

Fig. 6  a Schematic of the synthesis of 3D  (Mo2/3Y1/3)2AlB2 and transformation process from i-MAB to 2D boridene with the schematic atomic 
structure. b Rietveld refinement of the sample with nominal composition of  (Mo2/3Y1/3)2AlB2. c XRD pattern of  (Mo2/3Y1/3)2AlB2 before (black) 
and after (red) HF and after TBAOH intercalation (blue) and delamination (green). d SEM image showing the cross section of a  Mo4/3B2-xTz 
film. e STEM image of single-layer  Mo4/3B2-xTz sheet. Reproduced with permission from Ref. [83]. (Color figure online)
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hydrothermal-assisted alkane solution etching method to 
prepare MoB from MoAlB (Fig. 7a) and verified the excel-
lent performance of MBenes as anode material for LIBs for 
the first time.

From X-ray diffraction peaks (Fig. 7b), we can also 
know that MoB has been successfully prepared, but some 
Al still exists. After characterization and analysis of the 
samples, the researchers found that the MoB particles 
were obtained after etching showed a clear accordion-like 
layered structure similar to MXene materials, as shown 
in Fig. 7c, d. In addition, the researchers found that when 

the reaction temperature was raised to 160 °C, the prod-
uct was particles instead of the previous layered struc-
ture, and only a small amount of  MoAl1-xB was observed, 
which indicated that a certain amount of Al atoms had 
a stable effect on maintaining the accordion-like layered 
structure. The microstructures of MoAlB and MBene were 
observed by annular dark field scanning electron micro-
scope (Fig. 7e-g). When aluminum atoms are removed, 2D 
MoB can be observed from the etched region, but some 
regions are still not etched, and the end region of the wafer 
presents an etched style. Xiong et al. [85] successfully 

Fig. 7  a Schematic of the synthesis of 2D MoB MBene from MoAlB phases. b XRD patterns of 2D MoB MBene. c Optical images of 2D MoB 
MBene powders. d SEM images of 2D MoB MBene. Atomic scale resolution ADF-STEM image of e MoAlB, f, g 2D MoB MBene
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prepared two-dimensional MoB wafers by hydrothermal 
assisted alkane solution etching, which opened the door 
for the future study of MBenes. Moreover, the samples 
obtained by using fluorine-free etchants have high safety, 
which is beneficial to the application in experiments. It is 
expected that more two-dimensional MBenes can be suc-
cessfully prepared and put into experimental application 
by this method.

In the other case, researchers utilize bulk powders and 
their solvent thermal fragmentation into specific nano-
structures, such as  MgB2 [120], MnB [121],  ZrB2 [93], 
and  GdB6 [122]. For example of MnB, Jin et al. [121] 
obtained MnB nanosheets (MBN) being a mixture of 
 MnB2 and MnB phases. This method was based on oxida-
tive acidic etching of manganese boride under microwave 
assistance, improving previous MAB etching difficulties 
[31]. This process requires the use of two etching agents 
 CH3COOH and 30%  H2O2. The mixture was heated to 
160 °C for 2 h in a microwave reactor, washed, surface 
modified with hyaluronic acid (HA), and sonicated for 1 h. 
The addition of  Bi3+ to the reaction system during etching 
is probably to result in the formation of bonds between 
boron and bismuth, forming double-anchored  MnB2/MnB 
nanosheets (MBBN).

Table 2 summarizes the recent findings regarding the 
experimental synthesis of 2D MBenes. MoB can be success-
fully prepared using a fluorine-free hydrothermal assisted 
alkane solution etching strategy, providing a green strategy 
for exploring a new family of MBene materials for different 
applications. However, compared to MXenes preparation 
methods, MBenes is only in its infancy and more prepara-
tion methods need to be investigated to obtain high quality 
2D MBenes.

3  Unique Properties of MBenes

Boron shows great diversity in chemical properties. Boron 
atom is located in the left adjacent position of carbon atom, 
and has sp2 orbital hybridization very similar to carbon ele-
ment. Compared with carbon, boron lacks only one electron, 
which has attracted wide attention because of its lack of 
electrons. The complexity of boron stems from its electronic 
structure: boron has three valence electrons, which is easy 
to show the trend of building with other boron atoms, thus 
forming complex clusters and cage structures. Recently, 
by introducing B as X element, we are familiar with some 
ternary borides similar to MAX phase, called MAB phase. 
The MAB phase has various chemical formulas (i.e., MAlB, 
 M2AlB2,  M3AlB4 and  M4AlB6) and various structures of 
atomic network structures with orthogonal crystals. In MAB 
phases MAlB,  M2AlB2 and  M3Al2B2, boron atoms form 
one-dimensional isolated serrated chains perpendicular to 
A layer, while in  M3AlB4 and  M4AlB6, double and triple 
chains of boron atoms are connected together to form flat 
bands with hexagonal ring network.

Inspired by the significant success in energy storage and 
ion transport of MXenes etched from MAX phases, great 
efforts have been poured into the theoretical calculations of 
2D MBenes within years. The MBenes studied by research-
ers now include orthorhombic system and hexagonal system. 
According to the calculation of total energy and fretting elas-
ticity, the researchers predicted that MBenes with orthogo-
nal group might transform into hexagonal structure after 
stripping. Generally speaking, the MBenes we study now 
can be divided into two types of chemical formulas. One is 
MB or  M2B2 phase, and the other is  M2B phase. Usually, 
MB phase is studied more than  M2B phase. For a class of 

Table 2  Summary of the most recent findings regarding the experimental synthesis of 2D boride phases

MBenes Precursors Etching methods Etching conditions Surface groups Refs.

MoB MoAlB 10% NaOH RT, 24 h – [87]
CrB Cr2AlB2 1.25 M HCl RT, 6 h –OH [100]
Mo4/3B2-x (Mo2/3Y1/3)2AlB2 or 

 (Mo2/3Sc1/3)2AlB2

40%wt HF RT, 210 min –O, –OH, –F [83]

MoB MoAlB 25% NaOH 150 °C, 24 h – [85]
TiB Ti2InB2 Dealloying 1050 °C, 6 d – [90]
ZrB ZrB2 H2O2 and acetic acid – – [93]
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MB MBenes, which are predicted by theory, they have good 
structural stability and excellent mechanical properties. In 
order to understand the mechanical properties of MBenes, 
the researchers calculated the elastic constants, Poisson’s 
ratio, shear modulus of elasticity and Young’s modulus of 
MBenes. MBenes have higher elastic modulus values than 
other 2D materials. And there are calculations that prove that 
the presence of surface end groups enhances the mechani-
cal properties they produce. As with MBenes, surface ter-
mination is predicted to make MXenes mechanically stiffer 
than the associated pristine MXenes. The shear modulus 
value is the response of the material to shear stress, with 
larger (smaller) shear modulus values indicating the stiff-
ness (softness) of the system to cutting [103]. Calculations 
of the shear modulus generally indicate that larger forces are 
required to deform in MBenes that are terminated by oxygen 
or fluorine, while the pristine MBenes will be deformed by 
smaller forces. In other terms, pristine MBenes are typi-
cally more ductile than functionalized MBenes. Therefore, 
like MXenes, it is predicted that surface terminations make 
MBenes stiffer.

Besides, phonon spectroscopy is widely used to verify 
the lattice dynamics stability of crystal structures. If no 
imaginary frequency is observed in the Brillouin zone, this 
indicates that 2D MBenes are dynamically stable. Jia et al. 

[92] computed the vibrational spectra of 2D MBene struc-
tures based on density generalized theory to evaluate the 
thermodynamic stability of monolayers  V2B2,  Cr2B2 and 
 Mn2B2. During the AIMD simulations, the free energy of 
the monolayer MBenes showed slight oscillations, confirm-
ing the thermodynamic stability at 350 K. The mechanical 
properties of MBenes monolayers were described by calcu-
lating Young’s modulus and Poisson’s ratio, and the results 
showed that 2D  V2B2,  Cr2B2 and  Mn2B2 have isotropic 
and ultra-high Young’s modulus. Table 3 gives the stabil-
ity of some MBenes. This result confirms that MBenes has 
good mechanical stability and processability. In summary, 
MBenes have great potential to exhibit beneficial mechani-
cal properties that are comparable to or better than other 2D 
nanomaterials.

Khaledialidusti et al. [103] have systematically investi-
gated the electronic structures of the hexagonal monolayer of 
pristine and functionalized MB MBenes (M = Sc, Ti, Zr, Hf, 
V, Nb, Ta, Mo, and W) with F, O, or OH groups. The pristine 
2D MB MBenes can be simply regarded as a 2D honey-
comb boron layer doped with transition metals. In order to 
better understand the electronic structure of primitive and 
functionalized 2D MBenes, the researchers also considered 
their projected band structures. All the pristine MBenes are 
metallic, and the metal conductivity is determined by the 

Table 3  Stabilities of MBenes

MBenes Stabilities of MBenes

a (Å) b (Å) ΔEhull (eV/atom) E/atom (eV) C2D (N  m−1) h/l  (10–4)

CrB 2.86952 2.93991 1.09 − 7.95679 251.23 1.24
MnB 2.86378 2.90075 0.87 − 7.79661 215.30 1.34
FeB 2.81997 2.78483 0.79 − 7.38663 198.60 1.41
ZrB 3.06595 3.25166 0.68 − 8.11756 191.26 1.52
MoB 3.02255 3.03284 1.18 − 8.66739 233.68 1.48
HfB 3.05277 3.20715 0.77 − 8.68925 237.84 1.74
WB 3.02418 3.02115 1.30 − 9.398 239.41 1.80
FeB2 3.14451 2.99459 0.83 − 6.99438 143.76 1.56
RuB2 3.46777 3.04861 0.76 − 7.43697 181.82 1.61
OsB2 3.50288 3.0146 0.80 − 7.9858 218.63 1.81
Mo2B 2.84587 2.84587 1.29 − 9.15321 216.94 1.63
Au2B 3.00307 2.99245 0.93 − 3.94874 85.52 2.70
Nb5B2 5.91928 5.91926 0.88 − 9.25488 208.04 1.63
V3B4 2.92227 2.99264 0.72 − 8.26231 395.05 1.23
Nb3B4 3.03301 3.18588 0.70 − 8.80826 314.89 1.51
Ta3B4 3.01463 3.18065 0.77 − 9.36285 341.17 1.80
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delocalized metal d state. In addition, since the degree of 
hybridization between atomic orbitals in B-B bond is rela-
tively greater than that in M–B bond, it can be expected that 
B–B bond is stronger than M–B bond. It can be seen from 
the projected band structure that there are few transitions in 
the metal band below Fermi level compared with the boron-
related band. Therefore, in 2D MB MBenes, it is generally 
expected that the M-M bond will be weaker than the B-B 
bond and the M-B bond. By comparing the projected band 
structure of MBF, MBOH and MBO with the pristine MB, 
it can be recognized that F, OH or O have higher electron-
egativity than the transition metals studied, and these ter-
mination groups affect the electronic structure. Due to the 
saturation of F, one or two bands are effectively free near 
Fermi energy. Since both the F and OH chemical groups 
need an electron to completely fill their valence layers, the 
electronic structures of F and OH terminated MBenes are 
generally similar. In the case of O termination, the M d band 
becomes vacant, which also reduces metallicity.

The following content, we introduce the recent develop-
ment of MBenes with attractive performance for catalyst and 
rechargeable batteries in this review.

4  Excellent Performance of MBenes 
in Energy Conversion

Energy conversion is one of the most vital issues related to 
the sustainable development of society. Therefore, one of the 
partial methods is to electrocatalyze a large number of sub-
stances to produce useful chemicals, such as electrocatalytic 
water splitting (to produce hydrogen) and nitrogen reduc-
tion (to produce ammonia) [123, 124]. The water splitting 
via the hydrogen evolution reaction (HER) in the presence 
of a catalyst is an effective and safe method for hydrogen 
production. Currently, Pt and Pt compounds are the most 
widely used catalysts, while the rarity and high cost of Pt 
limit their application in industrial scale [125–128]. There-
fore, it is necessary to find non-precious and economical 
catalysts. In recent years, various 2D materials have been 
widely used in multiphase catalysis due to their large specific 
surface area and high stability, such as  MoS2 [129–131], 
MXenes [132–135] and heteroatom-doped graphene 
[136–139]. Researchers have also focused their attention on 
the properties of 2D MBenes derived from MAB phases. 
2D MBenes have been explored as rising candidates in the 

area of catalysis including HER, oxygen evolution reactions 
(OER), water splitting, and nitrogen evolution reactions, 
among many others (Fig. 8).

4.1  MBenes‑based Electrocatalysts for HER

Guo’S group [86] calculated the Gibbs free energy of  Mo2B2 
and  Fe2B2, which indicates the potential HER catalytic activ-
ity of  Fe2B2. The electrocatalytic HER activity of a class of 
2D MBenes was investigated using the free energy of hydro-
gen adsorption by Liu et al. [144]. The calculated ∆GH

* 
values for  Fe2B2 monolayers under full H coverage are very 
close to the results reported by Guo et al. [86]. It is notewor-
thy that the  Mn2B2 monolayer also exhibits excellent perfor-
mance with a smaller |∆GH

*| value. The calculated results 
showed that the HER catalytic activity of  Mn2B2 and  Fe2B2 
is comparable to that of Pt. Due to the high HER activity 
of  Ti3C2O2 and  Nb4C3O2 MXenes [145], Zhang et al. [146] 
investigated the importance of multilayer MBenes for elec-
trocatalytic performance (Fig. 9a). They reported a new col-
lection of MBenes:  Crn+1B2n (n = 1–3), with excellent struc-
tural stability, metal conductivity, high Young’s modulus 
and catalytic activity. Considering the similarity between 
MAX phase and MAB phase, Cr-based  Crn+1B2n MBenes 
are expected to be etched from parent phase  Crn + 1AlB2n 
(Fig. 9b). Based on the 2 × 2 supercell, the researchers cal-
culated that at low H coverage (1/4 ML),  Cr2B2,  Cr3B4 and 
 Cr4B6 showed their catalytic activities with ∆GH of − 0.198, 
− 0.178, and − 0.078 Ev (catalytic activity is higher than Pt 
(0.09 eV) [147–151], respectively. When their HER catalytic 
activities at high H coverage (1/2 to 1 ML) were further 
investigated,  Cr2B2 and  Cr3B4 exhibited catalytic inertia. In 
contrast, for  Cr4B6 exhibited near-zero |∆GH| at all consid-
ered H coverages, which is expected to be an excellent HER 
catalyst (Fig. 9d). Furthermore, Li et al. [152] investigated 
newly discovered TiB MBene towards its catalytic activity 
for HER. Notably, TiB sheets display a weak nucleus-free 
two-dimensional electron gas in free space (2DEG-FS), 
which can potentially be used for electronic devices with 
low barrier electron transport channels. They discovered 
oxygen-covered 2D TiB exhibited comparable catalytic per-
formance on HER to the oxidized MXene [145, 147, 153]. 
The main process is shown in Fig. 9c. It was shown that bare 
TiB is not a suitable electrocatalyst for HER. However, this 
situation can be significantly improved by surface oxygen 
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termination (Fig. 9e). O surface is a favorable active center 
for H-binding, with near-zero H adsorption free energy.

It has been proved in theory that MBenes has excellent 
performance as HER catalyst, and the experimental study 
of MBenes further confirms the theory. Alameda et  al. 
[99] studied the HER activity of MoAlB crystal before and 
after etching, and found that the overpotential of etched 
MoAlB single crystal was 301 mV at the current density 
of 10 mA  cm−2, which was significantly reduced by 99 mV 
compared with 400 mV of unetched crystal. The reason is 
that the etching of interlayer Al exposes the base surface and 

all edges, which increases the surface area of the exposed 
catalytically active base surface, so the activity of HER is 
significantly improved. In addition, Helmer’s team [154] 
studied the potential of 2D  Mo4/3B2−xTz as cathode cata-
lyst material to produce electrochemical hydrogen through 
HER in acidic medium. After continuous cycling and 67 h 
constant current experiment, the activity of HER increased 
significantly at − 10 mA  cm−2, and the initial voltage moved 
to − 0.15 V relative to RHE. This is an impressive number 
for non-Pt materials. We also compare the catalytic activity 
of MBenes with that of typical MXenes in Table 4.

Fig. 8  Applications of MBene as catalyst. Reproduced with permission from Refs.  [140–143]
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Fig. 9  a Schematic illustration of the reaction pathways of hydrogen evolution reaction on the  Crn+1B2n catalyst surface. b Crystal structures of 
 Cr2AlB2,  Cr3AlB4 and  Cr4AlB6. Reproduced with permission from Ref. [146]. c Sketch of the HER process catalyzed by TiB; The TiB mon-
olayer cleaved from bulk TiB for the study of electronic properties and reactivity; The TiB layer with surface functionalization for HER. Repro-
duced with permission from Ref. [152]. d HER volcano curve of  Crn+1B2n (stars) compared with some previously reported MXenes and MBenes 
at H coverage of 1/4 ML. Reproduced with permission from Ref. [146]. e The calculated exchange current (log i0) plotted as a function of  H* 
adsorption free energy on different MXenes/MBenes. Reproduced with permission from Ref. [152]
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4.2  MBenes‑based Electrocatalysts for NRR

Ammonia  (NH3) is one of the important raw materials for 
the synthesis of chemicals and fertilizers and plays a vital 
role in our life [157]. Metal catalysts (e.g., Fe and Ru) have 

been widely used in industrial nitrogen reduction reactions 
(NRR), but their efficiency is severely limited by the highly 
competitive nature of the side reactions [158, 159]. Electro-
catalytic nitrogen reduction reaction (eNRR) with simple 
and controllable operating conditions and low energy con-
sumption is an ideal alternative to the Haber–Bosch process 
[160]. However, because of the slow activation of chemically 
inert N≡N triple bonds, this electrochemical process is cur-
rently limited by poor reaction kinetics and high overpo-
tential [161–165]. It is well known that the HER process is 
a competitive process with NRR in electrocatalytic deni-
trification [166–168]. Therefore, it is crucial to inhibit the 
HER reaction on the catalyst surface when selecting a cata-
lyst [169]. So far, the search for a desirable electrocatalytic 
eNRR process with high Faraday efficiency (FE) and low 
overpotential is still a challenging task [170].

Table 4  Summary of MBenes and MXenes HER electrocatalysts 
from recent reports

Catalyst Electrolyte Overpotential 
at 10 mA  cm−2 
(mV)

Tafel slope 
(mV  dec−1)

Refs.

MoAlB not 
etched

0.5 M  H2SO4 400 85 [99]

MoAlB etched 0.5 M  H2SO4 301 68 [99]
Mo4/3B2-xTz 0.5 M  H2SO4 – 241 [154]
Ti3C2Tx flakes 0.5 M  H2SO4 385 188 [155]
Mo2CTx 1 M  H2SO4 230 – [156]

Fig. 10  a Schematic illustration of the reaction pathways of nitrogen reduction reaction on the catalyst surface. b The free energy differences of 
 H* and  N2H* (∆GH*-∆GN2H*) on the 14 MBenes. The corresponding value on Ru (0001) surface is given for comparison. Reproduced with per-
mission from Ref. [171]. c Reaction mechanism. Schematic diagram of the mechanism of urea production through the electrochemical coupling 
of  N2 and  CO2. The gray, red, pink, and blue balls represent C, O, N, and H atoms, respectively. d Selectivity of  CO2 electroreduction. Schematic 
diagram of the ER and LH mechanisms of  CO2 electroreduction to *COOH or *OCHO. Reproduced with permission from Ref. [172]. (Color 
figure online)
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In order to find qualified catalysts with both high spe-
cific activity and large active surface area, Guo et al. [171] 
predicted that a set of stable 2D MBenes can be consid-
ered as a defect-free, dopant-free nitrogen immobilized 
electrocatalyst by comprehensive density functional theory 
(DFT) calculations. Schematic diagram of the reaction path-
way of NRR on the catalyst surface is shown in Fig. 10a. 
MBenes with their different chemical compositions and 
well-defined surface structures, both in exposed boron and 
exposed metal locations, are ideal models for studying this 
mechanism. Their study determined that seven MBenes 
(CrB, MoB, WB,  Mo2B,  V3B4,  CrMnB2 and  CrFeB2) not 
only have intrinsic basal plane activity for NRR with limit-
ing potentials between − 0.22 and − 0.82 V, but also have 
a strong ability to inhibit competitive HER. In addition, the 
researchers also used the free energy difference of  H* and 
 N2H* to evaluate the catalytic selectivity of MBenes, and the 
changes of values on 14 MBenes were compared with those 
of Ru (Fig. 10b). Especially, unlike MXenes surface oxi-
dation to close the active center [173–178], MBenes, once 
oxidized, can catalyze NRR through a self-activation process 
to reduce  O*/OH* to  H2O* under the reaction conditions, 
which facilitates the electroreduction of  N2. Particularly, 
 CrMnB2 reached a record level of theoretical activity with a 
limiting potential of − 0.22 V. Qi et al. [179] demonstrated 
the feasibility of a class of MBenes as NRR electrocatalysts. 
All MBenes are metallic and exhibit electronene-like fea-
tures, which can facilitate the activation of  N2 gas. TiBene, 
YBene, ZrBene and WBene have low NRR overpotential 
(< 0.7 V) and follow a direct dissociation mechanism. They 
also proposed that the MBenes work function can be used 
as a descriptor of NRR catalytic activity, providing a feasi-
ble strategy for the design of efficient NRR electrocatalysts. 
The catalytic performance of 2D MBenes (including  FeB2, 
 RuB2,  OsB2,  V3B4,  Nb3B4,  Ta3B4, CrB, MnB, ZrB and HfB) 
for NRR was recently explored by ab initio calculations by 
Yang et al. [142]. Calculations showed that MBenes have 
high stability in aqueous environment and good selectiv-
ity for NRR without HER. Both surface boron atoms and 
metal atoms of MBenes can be used as active centers. Inter-
estingly, MBenes with surface B atoms as active centers 
 (FeB2,  RuB2 and  OsB2) exhibit higher NRR reactivity than 
MBenes with metal active centers higher NRR reactivity. 
Li et al. [180] calculated the electrocatalytic activity of six 
MB (M = Sc, Ti, V, Cr, Mo and W) monolayers for NRR 
using the first principle calculation. Calculations showed 

that  N2 molecules can be stably adsorbed on the surface 
of MB monolayers, except for VB monolayers in the end-
face configuration, which can trigger the NRR process. The 
results showed that the monolayers of VB, CrB and MoB 
have good catalytic activity for NRR and are expected to be 
NRR electrocatalysts.

A similar method was taken by Wang et al. [181] to study 
 Mo2B2 as a catalyst for the NRR reaction by DFT calcula-
tion. In their work, the possible active centers of nitrogen 
adsorption were explored in the constructed two-dimen-
sional  Mo2B2 model. For the adsorption of  N2 molecules 
on 2D  Mo2B2 with three different stable structures (verti-
cal, inclined, and horizontal adsorption), the electronic 
and bonding properties of these different structures were 
investigated to explore their catalytic activity and NRR path-
ways. Finally, HER on 2D  Mo2B2 was investigated with a 
limiting potential of 0.57 V. This suggests that  Mo2B2 can 
effectively promote the NRR reaction while inhibiting the 
HER reaction. Similarly, Lin and co-workers [182] searched 
the catalytic properties of  Cr2B2 for NRR. In this work, four 
favorable structures were selected, including  N2 adsorbed 
on B-B bonds, Cr-B bonds, and the top site of B and Cr 
atoms. The results showed that  N2 adsorption on Cr-B bond 
with lateral structure has a maximum adsorption energy 
of − 1.235 eV and good catalytic activity with a limiting 
potential of 0.29 V. Xiao et al. [183] performed a theoreti-
cal screening of the catalytic activity in the electrochemical 
NRR of MBenes using a density flooding theory approach. 
By considering stability, activity and selectivity,  Ta3B4, 
 Nb3B4,  CrMnB2,  Mo2B2,  Ti2B2 and  W2B2 exhibit the lowest 
limiting potential and can activate  N2 molecular protonation, 
which suggests that these MBenes can be used as candidate 
catalysts for NRR. Excitingly, the coplanar oxidation, which 
has a great impact on the catalytic properties of NRR cata-
lysts, can be solved by the potential difference between the 
redox potential (UR) and the limiting potential (UL) in this 
work. Among them,  W2B2,  Mo2B2 and  Ta3B4 are promising 
negative resistance catalysts with the ultimate potentials of 
− 0.24, − 0.43, and − 0.39 V, respectively.

Urea is the first organic compound to be produced from 
inorganic raw materials and is the most commonly used 
nitrogen fertilizer in the world [184, 185]. In addition, urea 
has important uses in everyday production, such as reduc-
ing the purity of  NOx in exhaust gases, and synthesizing 
barbiturates [186–189]. Currently, industrial urea produc-
tion is mainly accomplished by reacting  NH3 and  CO2 at 
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high temperatures and pressures. However, this approach is 
not only relatively energy intensive, but also relies on some 
multi-cycle processes to improve the conversion efficiency 
[190]. While  NH3 mainly comes from the artificial nitrogen 
reduction reaction, we have also briefly described above the 
defects in NRR. Due to the adjustable lamellar structure and 
good electrical conductivity of MBenes, Zhu et al. [172] 
linked the possibility of direct coupling of  N2 and  CO2 for 
urea production on some specific MBenes. The electrochem-
ical coupling of  N2 and  CO2 to urea can be classified as 
four stages: adsorption of  N2 and  CO2, reduction of *CO2 to 
*CO, coupling of *N2 and *CO to *NCON, hydrogenation of 
*NCON to urea (Fig. 10c). They also systematically inves-
tigated the potential of three MBenes as electrocatalysts for 
urea synthesis,  Mo2B2,  Ti2B2 and  Cr2B2. All three molecular 
sieves are able to adsorb  N2 and  CO2 on their substrates and 
the adsorbed  CO2 is readily reduced to *CO. It is noted that 
compared with 2D  Mo2B2 and  Cr2B2,  Ti2B2 transforms to 
Ti(OH)3 in the high pH region when the applied potential 
is − 0.65 V, indicating that  Ti2B2 is susceptible to corrosion 
under the operating conditions of urea synthesis. Therefore, 
2D  Ti2B2 has low electrochemical stability and is not a sat-
isfactory catalyst for the synthesis of urea. The selectivity 

of  CO2 reduction is basically controlled by kinetics, and the 
formation of *COOH and *OCHO can be realized by accept-
ing H atoms in water through Eley–Rideal (ER) mechanism 
or by accepting H atoms bound to the surface through the 
Langmuir–Hinshelwood (LH) mechanism (Fig. 10d). For 
this reason, the researchers also calculated that the forma-
tion of *COOH species requires a large energy barrier, so 
 CO2 will be mainly reduced to *CO instead of format. This 
article provides a bright pathway for the design of catalysts 
for the simultaneous immobilization of  N2 and  CO2 for urea 
synthesis, providing additional experimental and theoretical 
support for the development of 2D electrocatalysts for this 
challenging reaction.

Recently, machine learning (ML) combined with DFT 
calculations has become a powerful tool for the design 
and screening of novel catalysts [191–194] (Fig. 11). The 
development of ML has accelerated with the collection 
of massive datasets, making ML a popular tool for mate-
rial discovery [195, 196]. The key issue in the accuracy of 
ML models is the way in which the input data is encoded. 
Therefore, the accurate representation (descriptor) of input 
data is very important in ML. A good descriptor usually 
includes a wide range of geometry, structure and chemical 

Fig. 11  Machine learning has become a powerful tool for the design and screening of novel catalysts for HER and NRR
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composition, while maintaining the translation, rotation 
and arrangement symmetry of data sets. This method can 
accurately and rapidly predict the Gibbs free energy, the 
main indicator for characterizing catalyst activity. It can be 
well applied to various reactions, such as HER,  CO2 electro-
reduction, and oxygen evolution reactions (OER) [197–202]. 
Sun et al. [140] then used machine learning to screen effi-
cient HER catalysts from MXenes and MBenes with or with-
out single-atom doped. A database of 110 bare MBenes and 
70 randomly selected single atom doped MBenes was first 
calculated by DFT calculations. They used four algorithms 
to predict ∆GH

*, including the least absolute shrinkage and 
selection operator (LASSO), random forest (RFR), kernel 
ridge (KRR) and support vector (SVR) regression. Among 
them, SVR is the best model because it has efficient and 
stable prediction performance. Finally, by DFT calculations 
combined with the SVR model, the researchers found that 
the stable  Co2B2 and Mn/Co2B2 are excellent HER cata-
lysts due to |∆GH

*|< 0.15 eV with a wide H coverage. Zafari 
et al. [203] also investigated MBenes, defect-engineered 2D 
materials and 2D π-conjugated polymer (2DCP)-supported 
single-atom catalysts to promote the reduction of  N2 to  NH3 
while inhibiting the HER using a machine learning system. 
DFT calculations showed that  N2 molecules can be trapped 
on the vacancies of MBenes with a significant increase 
in adsorption strength and N≡N bond length. Among all 

catalysts, MnB and MoB have the highest activity with a 
limiting potential of about 0.33 V, and TaB has the highest 
selectivity. In addition, the defective 2D materials formed 
by Te, Se and S vacancies expose the  N2 molecules to a 
specific environment adjacent to the three transition metals, 
significantly increasing the N≡N bond length (up to 1.38 Å) 
which greatly improves the catalytic activity and selectivity. 
With the assistance of ML, catalyst methods for screening 
HER and NRR show higher efficiency than traditional com-
putational and experimental trial-and-error methods.

4.3  MBenes‑based Electrocatalysts for Other Reactions

Although NRR has been widely concerned as a more eco-
nomical and environmentally friendly method, there are still 
some problems in the process of electrocatalytic ammonia 
synthesis, such as low yield and poor catalytic selectivity, 
because the strongly inert nonpolar N–N bond is difficult 
to be destroyed at room temperature. NO is another nitro-
gen-containing gas molecule. It is a free radical and has an 
unpaired electron in the 2p* anti-bond orbital, so the N–O 
bond is easily activated [204]. Generally speaking, under 
the catalysis of NO, the process of ammonia synthesis fol-
lows two mechanisms, namely, association and dissocia-
tion. Recently, researchers have worked on the synthesis of 
ammonia by electrocatalytic nitrous oxide electroreduction 

Fig. 12  Illustration of the proposed electrochemical ammonia synthesis route from NO from Ref. [205]
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reaction (NOER) using NO as a nitrogen source. For exam-
ple, Long’s team [205] proposed a new strategy to synthe-
size ammonia by electrocatalytic reduction of nitric oxide 
emitted from industrial waste gas and automobile exhaust, 
providing a new idea for denitrification and electrocatalytic 
synthesis of  NH3 (Fig. 12). Density functional theory cal-
culations showed that electrochemical NOER is more active 
than  N2 reduction, and the most active copper (overpotential 
is 0.9 V vs. RHE) among the transition metal catalysts with 
moderate reactivity was screened. However, noble metals as 
a NOER catalyst have the disadvantages of high cost and low 
utilization rate, and there is a need to find a more efficient 
and practical catalyst.

Recently, Xiao et al. [206] investigated the catalytic per-
formance of a series of MBenes  (M2B2) for the NOER and 
found that  Fe2B2,  Mn2B2 and  Rh2B2 are highly active and 
selective, and are promising electrocatalysts for the conver-
sion of NO to  NH3 (Fig. 13a). The investigators identified 

the most favorable pathway and rate determining steps by 
assuming the route reaction network, taking into account 
the detailed binding properties of the intermediates and the 
limiting potentials of the corresponding reaction steps. Com-
peting HER was also considered and compared on MBene 
catalysts, and most of these MBene candidates were found to 
be highly selective for NOER, with the exception of  Ti2B2, 
 V2B2, and  Zr2B2. In order to identify the most favorable 
NORR reaction pathway, the researchers determined the 
lowest Gibbs free energy diagram of NORR. The bifurcated 
reaction steps in the hydrogenation of NO to  NH3 in  V2B2 
MBenes are shown in Fig. 13b, c. The researchers also used 
Boltzmann distribution to calculate the selectivity of NORR. 
Depending on the Gibbs free energy difference between 
the two competing reaction steps, the potential difference 
between the redox potential (UR) anode and the limiting 
potential (UL) cathode can be used as a descriptor to esti-
mate the oxidation trend on these 12 MBenes (Fig. 13d). The 

Fig. 13  a Top views of the  M2B2 MBene monolayers. The metal and boron atoms are marked by cyan and orange spheres, respectively. 
Researchers screened  M2B2 monolayers, including 3d, 4d, and 5d transition-metal boride compounds. Green and light blue represent stable and 
unstable  M2B2, respectively, which were verified from phonon spectrum calculations. b, c Schematic illustration of bifurcation reaction steps 
during the hydrogenation of NO to  NH3 on  V2B2 MBenes. d A schematic diagram of the desired electrochemical cell for the NORR (cathode: 
MBene) and OER (anode:  RuO2, for reference electrode). Reproduced with permission from Ref.  [206]. (Color figure online)
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larger the positive value of UR–UL, the stronger the ability to 
promote surface reduction. The calculated UR–UL values are 
positive for all MBene monolayers, indicating that MBenes 
can inhibit surface oxidation. Volcano diagrams provide an 
efficient method for exploring promising candidate cata-
lysts and reaction mechanisms. Calculations showed that 
 Nb2B2 and  Zr2B2 are located near the volcanic region and 
have intermediate binding energies of − 3.20 and − 4.31 eV, 
respectively. The limiting potentials for the formation of 
 NH3,  N2, and  N2O on  Nb2B2 are 0.25, 5.16, and 2.53 V, 
respectively. He et al. [143] also studied the possibility of 
electrocatalytic NO synthesis of ammonia from 2D MBenes. 
They studied the orthorhombic group structure with CMCM 
(CrB, MnB, MoB, HfB and WB), which is composed of 
two layers of alternating transition metal atoms and boron 
atoms. The investigators calculated the overpotential for the 
electrocatalytic synthesis of ammonia from NO on the sur-
faces of five molecular sieves. The results showed that all 
MBenes catalysts except CrB (1.05 eV) require lower over-
potential than copper in the NOER reaction, which implies 
that MBenes is a more suitable catalyst for the NOER. In the 
association pathway, NO can be completely spontaneously 
hydrogenated on the surface of MnB for ammonia synthe-
sis. For the dissociation pathway, the overpotential on CrB, 
HfB and WB surfaces is less than 0.7 eV, which is viable in 
practical production. These findings provide new theoretical 
and experimental directions for the development of electro-
catalytic ammonia synthesis.

Many transition metals have been applied for catalytic 
 CO2 reduction [208–212], for example, copper and copper-
based alloys show high selectivity for the generation of 
hydrocarbons [213, 214]. However, the required overpoten-
tial is still too high for practical application. Considering 
that copper is already at the top of an active "volcano" in 
the reaction pathway with *CO and *CHO intermediates, 
catalysts with different reaction mechanisms should be used 
to reduce the overpotential required for the electroreduction 
of  CO2 to  CH4 [215, 216]. Based on this, Yuan et al. [217] 
screened 13 stable transition metal diboride  (MB2) monolay-
ers, which all showed good selectivity for  CH4 production. 
Since the adsorption of *H is much weaker than that of *CO2, 
it well suppresses the HER reaction. Researchers found that 
 OsB2 is the most promising catalyst for the conversion of 
 CO2 to  CH4, with a limiting potential of only − 0.4 V. Liu 
et al. [207] computationally investigated 2D MBenes  (Cr2B2, 
 Mn2B2,  Fe2B2,  Mo2B2) (Fig. 14a) as potential  CO2 reduction 

reaction  (CO2RR) catalysts (Fig. 14b). Electrochemical 
reduction of  CO2 to produce other products (hydrocarbons 
and alcohols) is a promising strategy to mitigate the green-
house effect and energy shortage. To achieve high  CO2RR 
efficiency, HER must be suppressed. The free energy of 
adsorbing H on Cu (111) surface is − 0.15 eV, and the HER 
of  Cr2B2 and  Mo2B2 is relatively low with free energies of 
− 0.34 and − 0.76 eV. However, the free energy of  Fe2B2 
and  Mn2B2 is close to zero, which leads to poor selectivity 
of  CO2RR (Fig. 14c). In their study, it was found that  Mo2B2 
not only achieves a balance between the limiting potential 
of  CO2RR and its performance, but also has a strong  CO2 
capture capacity, making it an ideal  CO2RR catalyst. Xiao 
et al. [94] also investigated 11 new MBenes (Fig. 14d) as 
new high-efficiency catalysts for the  CO2RR within ab initio 
calculations. The researchers have fully considered the reac-
tion mechanism and catalytic activity of  CO2RR on different 
types of MBene surfaces (Fig. 14e), as well as the selectivity 
related to the competitive reaction with HER. These novel 
2D composites with large specific surface area and good 
electrical conductivity have unique electrocatalytic advan-
tages. 2D  Au2B and  V3B4 MBenes are more suitable as a 
platform for the electrocatalytic reduction of  CO2 to  CH4. 
The evolution of the rate determination step is determined by 
∆G*OH. When ∆G*OH reaches − 3.47 eV, the rate determina-
tion step changes from *HCHO +  H+  +  e− → *O +  CH4 to 
*CH3O +  H+  +  e− → *O +  CH4, and the catalytic activity for 
 CO2RR reaches the best (Fig. 14f). The limit potentials of 
 Au2B and  Mo2B are − 0.11 and 0.60 eV, which is favorable 
for  CO2RR. Furthermore,  Au2B,  Os2B4 and  Ru2B4 are more 
suitable than other MBenes for the production of methanol 
with overpotentials of 0.31, 0.48, and 0.35 V. These findings 
provide theoretical guidance for the diffusion and applica-
tion of 2D MBene systems in  CO2 electroreduction catalysts.

4.4  SAC‑Type Doping of MBenes for HER/OER 
and NRR

Researchers have been working on the design of efficient 
two-dimensional catalysts for practical applications in pro-
duction. Among various catalyst designs, single-atom cata-
lysts have attracted much attention owing to their unique 
electronic structures. SACs fully expose and disperse the 
active center, which allows SACs to exhibit remarkable 
catalytic performance in various reactions. Recently, some 
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Fig. 14  a Optimized structures of  Cr2B2,  Mo2B2,  Fe2B2,  Mn2B2, and the Cu(111) surface. b Schematic diagram of the reaction for the elec-
troreduction of  CO2RR on 2D  M2B2 MBenes. c Relative free energy diagrams of HER on MBenes and Cu(111). Reproduced with permission 
from Ref. [207]. d Top views (upper) and side views (lower) of different types of MBene structures, the red circles represent the active sites for 
 CO2 adsorption and intermediate production. e Schematic diagram of the reaction for the electroreduction of  CO2RR on 2D MBenes. f Limiting 
potentials for each elementary reaction step as a function depending on the formation energy of ΔG*CO. Reproduced with permission from Ref. 
[94]
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researchers have focused on embedding transition metal 
atoms in MBenes to improve the catalytic performance. 
The schematic formation mechanism of the Cu@MBene 
NSs is shown in Fig. 15a. Zhang et al. [218] investigated 
catalytic activity of  Mo2B2 MBene-supported SACs 
by embedding a series of transition metal atoms in Mo 
vacancy (TM@Mo2B2, TM = Ti, V, Cr, Mn, Fe, Co, Ni and 
Cu) as bifunctional electrocatalysts for oxygen evolution 
reaction, oxygen reduction reaction and HER (Fig. 15b). 

The structural stability was first investigated, and the cal-
culations showed that the binding energies of TM@Mo2B2 
were all negative and the studied materials all had good 
structural stability. Then the researchers found that Ni@
Mo2B2 is a promising HER/OER bifunctional electrocata-
lyst with low |∆GH| (− 0.09 eV) at 1/4H coverage and OER 
overpotential (0.52 V). In addition, Cu@  Mo2B2 has the 
potential to be an OER/ORR bifunctional electrocatalyst 
with low OER (0.31 V) and ORR (0.34 V) overpotentials. 

Fig. 15  a A schematic formation mechanism of the Cu@MBene NSs. b Schematic illustration of the process of water splitting. Reproduced 
with permission from Ref. [218]. c The calculated potential vs SHE for HER (U*H) and NRR (U*NNH) for selectivity screening. d Schematic of 
the possible five routes (the distal, alternating, hybrid 1, hybrid 2 and hybrid 3) for eNRR over  Mo2B2O2-SA systems. Reproduced with permis-
sion from Ref. [219]
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In addition to the applications in HER, there are also appli-
cations in NRR where transition metal atoms are embed-
ded to improve the performance of MBenes catalysts. Yao 
et al. [219] investigated a series of transition metal atoms 
embedded in Mo vacancies from group IVB to VIII in 
 Mo2B2O2 for NRR and performed a systematic screening 
of their activities and selectivity in potential-determining 
steps (PDSs) and their competitive selectivity with HER. 
The introduction of SACs inhibited HER, which was mani-
fested by the shortening of the distance from the dashed 
line. Among them,  Mo2B2O2 with embedded Re and Os has 
the best suppression effect on HER, breaking the boundary 
between HER and NRR equilibrium and making the NRR 
process more favorable (Fig. 15c). The results showed that 
Re and Os-Mo2B2O2 have significant catalytic activity 
with low determining PDS of 0.29 and 0.32 eV, respec-
tively. Considering the end-on adsorption mode of  N2 in 
the  Mo2B2O2-SA system, the electrocatalytic NRR process 
is based on two basic mechanisms involving different inter-
mediates (Fig. 15d). In order to predict the optimal eNRR 

performance, they also studied all the intermediate steps 
related to remote and alternate paths for selected Re and Os 
systems. Therefore, better catalytic performance of eNRR 
can be predicted, giving directions for future experimental 
directions of eNRR.

Currently, there is a paucity of studies on the application 
of h-MBenes (MBenes are derived from the precursor hex-
agonal MAB phase), which provides a wide scope for explo-
ration. Li et al. [141] systematically explored SA-Mo2B2O2 
and SA-W2B2O2 as efficient catalysts for HER through first 
principles calculations. Since the F-functional group is con-
verted to O-functional group on the surface of MBene under 
certain conditions during the actual preparation process. 
Therefore, they constructed a specific adsorption geometry 
configuration of MBene structure with O atom as the outer-
most surface functional group. After the introduction of the 
single atom, the researchers’ calculations showed that SA-
Mo2B2O2 and SA-W2B2O2 (SA = Ti, V and Zn) exhibit bet-
ter stability properties based on negative binding energies. 
The investigators found that embedding a single transition 

Fig. 16  Schematic illustration of the process of preparing h-MBenes by exfoliating A layer and transition metal (TM) modification approaches 
by atomic deposition and atomic implanting. Reproduced with permission from Ref.  [220]
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metal atom on MBenes, the H–O bond distance increases, 
indicating that the H–O bond is weakened by the embed-
ded atom. This is more favorable for the  H2 adsorption and 
desorption processes, which significantly accelerates the 
HER process. Recently, Feng et al. [220] chose 2D  Hf2B 
as the object of study for its application in electrocatalytic 
HER. In this study, two TM modifications were proposed 
to significantly improve the catalytic activity of  Hf2BO2: 
atom deposition of TM@Hf2BO2 and atom implanting of 
TM-Hf2BO2. The results of ΔGH* showed that the system 
can hardly satisfy both stability and catalytic activity after 
deposition of TM atoms (Fig. 16). Notably, only atomic 
implanting can significantly activate the TM-Hf2BO2 sur-
face. They also investigated the factors affecting the cata-
lytic activity and performed detailed electronic structure 
calculations for TM-doped  Hf2BO2. Since the antibonding 
position of H–O rises slightly after Mo atom doping, the 
increase in the bonding energy of H–O leads to a decrease 
of ΔGH* from 0.9 to 0.04 eV. The above work shows that 
h-MBenes can open a new field for 2D materials due to 
their good electrocatalytic properties and will stimulate 
researchers to explore the synthesis of h-MAB phase and 
the exfoliation of h-MBenes.

5  Potential Impact of MBenes in Energy 
Storage

2D materials are anode materials for rechargeable batter-
ies due to their high specific surface area, excellent elec-
tron mobility and superior mechanical properties. In recent 
years, numerous 2D materials have been investigated as 
anode materials with great success, such as graphene [221], 
 MoS2 [222],  Mo2C [223],  Ti3C2 [224]. Likewise, MBene has 
great potential as a 2D layered material for energy storage. 
Theoretical calculations are playing an increasingly critical 
function in revealing the mechanism of action of MBene in 
the battery.

In the last three years, a large number of MBenes as 
anode materials for rechargeable battery have been pre-
dicted by theoretical work. Researchers usually evaluate 
the performance of MBene as a metal ion battery electrode 
material by calculating the structure, electronic properties, 
adsorption and diffusion properties of metal atoms on the 
MBene surface, open circuit voltage and specific capacity 
(Fig. 17).

5.1  Problems Solved in Metal‑Ion Batteries

The reversible energy storage of rechargeable batteries 
depends mainly on the insertion/extraction of metal ions 
 (Li+,  Na+,  K+,  Mg2+). MBenes have a layered structure, 
high specific surface area and abundant active centers, which 
facilitates the insertion and storage of metal ions. Although 
MBene as an electrode material has a similar working mech-
anism for different metal ions, the battery performance var-
ies greatly due to the inherent properties of the metal ions 
(e.g., ionic radius and valence electrons). More specifically, 
the ionic radius and valence electrons of metal ions affect 
the interaction between metal ions and MBene, thus affect-
ing its adsorption, storage and diffusion properties. The 
great success of MBenes as anode materials for LIBs and 
SIBs has been proved theoretically. As a negative electrode, 
MBenes have greater application potential, for example, the 
most remarkable theoretical capacity is higher than other 
2D materials. In addition, the negative adsorption energy of 
lithium–sodium atoms on the surface of various MBenes is 
large, which indicates that the interaction between MBenes 
and lithium–sodium atoms is strong. The diffusion barrier of 

Fig. 17  Properties of a high-performing battery anode materials
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lithium sodium atom is also lower than that of other mate-
rials, which can greatly improve the charge and discharge 
rate. At the same time, the open circuit voltage of Li/Na 
ions on the monolayer is in the range of 0–1 V, which may 
effectively inhibit the formation of Li/Na dendrites on the 
anode during charge and discharge. Based on MBenes as 
the negative electrode of ion battery, the performance of ion 
battery is greatly improved.

In this section, we summarize the main contributions of 
MBenes as anode materials for ion batteries. Table 5 sum-
marizes the performance of MBenes in rechargeable batter-
ies. It can be clearly seen the theoretical specific capacity is 
superior to that of some other 2D materials such as graphite 
and  Ti3C2. Due to the structural difference between MBenes 
and MXenes, MBenes exhibit more excellent potential in 
LIBs, SIBs and MIBs.

Since the commercialization of rechargeable lithium-ion 
batteries, they have been favored by researchers because of 
their advantages of large capacity, high power density, long 
cycle life and high energy efficiency. The performance of 
lithium-ion battery depends on the performance of elec-
trode materials to a great extent. The structure and working 
mechanisms for LIBs have been demonstrated in Fig. 18a 
and b. At present, graphite has been commercially used as 
anode material for lithium-ion batteries because of its high 
coulomb efficiency, relatively good cycle stability and low 
cost. However, its relatively low theoretical specific capac-
ity (372 mAh  g−1) and poor rate capability are still far from 
the demand of modern electronic market. Therefore, it is 
urgent to find new anode materials to further improve the 
performance of LIBs.

2D MBenes have similar structure to MXenes, and 
many studies have proved that MBenes plays a great role 
in improving the performance of ion batteries. Consider-
ing that the molar mass of boron is less than that of carbon 
and nitrogen, it is possible to achieve higher theoretical 
specific capacity by using MBenes as electrode material. 
For example, Guo et al. [86] reported for the first time 
the performance of two-dimensional  Mo2B2 and  Fe2B2 
as anode materials for lithium ion batteries. They calcu-
lated the adsorption energy of isolated lithium atoms, and 
the negative value of adsorption energy of lithium atoms 
is relatively large, which indicates that there is a strong 
interaction between Li atoms and MBene, which is benefi-
cial to prevent the formation of metal Li and improve the 
safety and reversibility of LIBs. The theoretical specific 

Table 5  Summary of main performances of MBenes as anode mate-
rials for rechargeable batteries

Materials Type Specific 
capacity 
(mAh  g−1)

Diffusion 
energy 
(meV)

OCV (V) Refs.

Graphite LIBs 372 400 – [225]
Ti3C2 LIBs 320 280 0.62 [226]
Mo2B2 LIBs 444 270 0.41 [86]

MIBs 502.1 840 0.84 [227]
Tetr-  Mo2B2 LIBs 251 29 0.835 [228]

SIBs 251 10 0.515 [228]
Tri-  Mo2B2 LIBs 251 23 0.407 [228]

SIBs 188 13 0.383 [228]
Fe2B2 LIBs 665 240 0.33 [86]
T-Mo2B LIBs 264 37 0.628 [229]
H-Mo2B LIBs 74.18 50 0.386 [229]
Zr2B2 LIBs 526 17 0.236 [230]
TiB LIBs 480 20 0.33 [90]

SIBs 480 20 0.17 [90]
TiB3 LIBs 1335.04 38 0.156 [231]

SIBs 667.52 157 0.195 [231]
Ti2B2 LIBs 456 17 0.526 [232]

SIBs 342 8 0.502 [232]
V2B2 LIBs 969 220 - [92]

SIBs 614 130 – [92]
V2B2O2 LIBs 812 390 0.57 [92]

SIBs 547 420 0.41 [92]
Cr2B2 LIBs 696 280 – [92]

SIBs 492 170 – [92]
MIBs 853.4 380 0.53 [227]

Mn2B2 LIBs 679 290 – [92]
SIBs 483 170 – [92]

Sc2B MIBs 3192.81 40 0.023 [233]
LIBs 532.14 60 0.182 [233]
SIBs 532.14 20 0.327 [233]

Ti2B MIBs 3018.41 80 0.101 [233]
LIBs 503.07 90 0.532 [233]
SIBs 503.07 110 0.432 [233]

V2B MIBs 2853.95 40 0.142 [233]
LIBs 475.66 150 0.748 [233]
SIBs 503.07 10 0.558 [233]

Y2B2 LIBs 806.31 13 0.33 [234]
SIBs 403.16 8 0.30 [234]

ScB LIBs 427.373 108 0.409 [235]
SIBs 340.287 72 0.446 [235]

TiB LIBs 408.421 105 0.683 [235]
SIBs 328.162 63 0.528 [235]

VB LIBs 390.168 264 0.797 [235]
SIBs 316.273 85 0.553 [235]

V2B2 SIBs 814 11 0.65 [84]
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capacities of 2D  Mo2B2 and  Fe2B2 as LIB electrodes 
are ~ 444 and 665 mAh  g−1, respectively, which are bet-
ter than some other 2D materials. In addition, the energy 
barriers of the two diffusion paths are similar, which will 
increase the charge and discharge rate of LIBs. Generally 
speaking, MBenes should be a good candidate anode mate-
rial in LIBs due to the small diffusion energy barrier of 
 Mo2B2 and  Fe2B2 MBenes, high storage capacity for Li 
atoms and strong applicability.

In addition, Bo and co-workers [232] firstly investigated 
a set of hexagonal MBenes including  Sc2B2,  Ti2B2,  V2B2, 
 Cr2B2,  Y2B2,  Zr2B2, and  Mo2B2. They chose  Ti2B2 mon-
olayer as anode material for LIBs and SIBs based on DFT 

calculations. Similarly, the working mechanisms of MBene 
for LIBs and SIBs have been demonstrated in Fig. 18c. 
Through electronic structure calculation, researchers found 
that the whole lithium ionization process has good electronic 
conductivity. The volume change of  Ti2B2 monolayer is very 
small after adsorbing the first, second and third layers of Li 
and Na ions, which indicates that  Ti2B2 monolayer is robust. 
Moreover,  Ti2B2 possessed high theoretical specific capaci-
ties of 456 and 342 mAh  g−1 and ultralow energy barrier of 
0.017/0.008 eV for Li and Na, respectively. The results show 
that  Ti2B2 monolayer and other hexagonal 2D MBenes with 
high specific capacity and rapid diffusion are expected to be 
used as anode materials for LIBs and SIBs.

Fig. 18  a Schematic illustration of MXene-based anode batteries. Reproduced with permission from Ref. [47]. b Schematic structure of the 
metal-ion batteries showing the working mechanisms of the charge and discharge process. Reproduced with permission from Ref. [236]. c Sche-
matic illustration of MBene-based anode batteries. Reproduced with permission from Ref. [92]
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However, the Li diffusion barrier of  Mo2B2 is very high, 
while the theoretical specific capacity of  Ti2B2 relative to Li 
ion is insufficient. Therefore, it is necessary to find an anode 
material with ultra-low diffusion barrier and large theoretical 
specific capacity. Zha et al. [229] predicted H- and T-type 
 Mo2B as anode materials for LIB based on first-principles 
calculations. Compared with  Mo2C [237], the electrical 
conductivity of both H- and T-type  Mo2B is comparable, 
while the thermal conductivity is much higher. T-type  Mo2B 
exhibits good performance in LIBs. The theoretical volume 
capacity is up to 2424 mAh  cm−3 and the migration barrier 
is as low as 0.0372 eV. H-type  Mo2B is a stable structure 
that can be transformed into a T-type by applying strains.

With the ubiquitous use of lithium-ion batteries and the 
continuous depletion of lithium resources, there is an urgent 
need to develop some new resource-rich batteries. Research-
ers have systematically investigated the intercalation behav-
ior of sodium, potassium, and magnesium ions using a first-
principles simulation approach to provide insight into the 
storage mechanism of metal ions on MBenes. Due to the 
abundant resources and environmentally friendly nature of 
non-lithium alkali metals, rechargeable sodium, potassium, 
and magnesium ion batteries have received significant atten-
tion as emerging technologies for low-cost renewable energy 
storage.

Na and K ion batteries are of interest because of their 
abundant natural reserves and low cost [238, 239]. In addi-
tion, the operating mechanism of Na and K ion batteries is 
similar to that of LIBs, with metal ions shuttling back and 
forth between the cathode and anode during the discharge 
and charging cycles. In addition, most 2D materials have low 
affinity for Na and K ions and their adsorption energies are 
usually less than 1.5 eV, which leads to lower open-circuit 
voltages [240]. Therefore, the development of an effective 
method to modulate the affinity of 2D electrodes for Na and 
K ions to increase the open-circuit voltage when used as a 
cathode and decrease the open-circuit voltage when used as 
an anode is an urgent need to increase the energy density. Liu 
et al. [241] investigated the effects of surface modification of 
oxygen group elements on the structure, stability and electro-
chemical properties of MoBX (X = O, S, Se, Te) as an anode 
material for SIBs and PIBs (Fig. 19a). The four feasible 
configurations for MoBX are shown in Fig. 19b. The MoB 
electrodes showed extremely high affinity for X atoms, and 
the calculated binding energy between X atoms decreases 

in the order of MoBO > MoBS > MoBSe > MoBTe. MoBO 
is suitable for use as 2D cathode material with high OCVs 
of 3.2 ~ 2.2 V for Na ions (K ions from 3.47 to 1.85 V). 
As a cathode material, the capacities in  Na0.5MoBO and 
 K0.5MoBO are ~ 110 and 110 mAh  g−1, respectively. Metal 
ions show good mobility on MoBX with an electronic poten-
tial barrier of 0.38–0.59 eV.

Wang et al. [90] investigated the adsorption of Li and 
Na atoms on the surface of TiB monolayers by DFT cal-
culations and confirmed the potential of layered TiB as 
anode materials for LIBs and SIBs. Calculations showed 
that the theoretical specific capacity of TiB for Li or Na 
ions is 480 mAh  g−1, which is significantly higher than that 
of  Ti3C2 [226]. The researchers also calculated the diffu-
sion energy barriers of Li and Na between the most stable 
nearest-neighbor adsorption sites on the 3 × 3 TiB super-
cell along three different paths (Fig. 19c), showing that Li 
ions/sodium ions moving along paths 1 and 2 have lower 
energy barriers of 0.11/0.08 and 0.16/0.11 eV, respectively 
(Fig. 19d). However, path 3 has the highest energy barrier 
of 0.22/0.17 eV. Due to its high specific capacity, low OCV 
and energy barrier for  Li+ and  Na+ ions, 2D TiB is expected 
to be an alternative material to commercial graphite anode 
for LIBs and SIBs.

Gao and his group [92] reported six new  M2B2 MBenes 
(M = Ti, V, Cr, Mn, Zr, Nb) and predicted to obtain by exfo-
liation of layered MAB phases (Fig. 20a). The adsorption 
energy of Na is much smaller than that of Li for the same 
adsorption positions, indicating that the adsorption of Na on 
MBene monolayer is more stable than that of Li on MBene. 
There are three possible diffusion paths between the sta-
ble adsorption sites of Li/Na ions adjacent to monolayer 
MBenes (Fig. 20b). MBenes have low diffusion energy 
barriers (0.22/0.13, 0.28/0.17, and 0.29/0.17 eV for  V2B2 
(Fig. 20c, d),  Cr2B2 and  Mn2B2, respectively) and high 
Li/Na atomic storage capacities (969/614, 696/492, and 
679/483 mAh  g−1). In addition, the Li/Na adsorption prop-
erties of the functionalized  V2B2O2 were also investigated by 
the researchers (Fig. 20e). Compared with  V2B2, the specific 
capacities (812.2 and 547 mAh  g−1) and OCVs (0.57 and 
0.41 eV) of  V2B2O2 increased and decreased, respectively, 
which is not favorable for the application of functionalized 
 V2B2 as LIB/SIB anode material. Bo et al. [228] predicted 
two new 2D tetragonal and triangular  Mo2B2 structures (tetr- 
and tri-Mo2B2), both of which are lower in energy than the 
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Fig. 19  a Schematic of a hybrid  Na+/K+ battery using MoBX (X=O, S, Se and Te) compounds as the electrode materials. Left: Average OCVs 
of  Na0.5MoBO and  K0.5MoBO for cathode application and of  Na2MoBS,  Na2MoBSe, and  Na2MoBTe for anode application. Calculated evolu-
tion of OCV values with different metal ion concentrations in  NaxMoBO (middle) and  KxMoBO (right). b Top and side views of adsorption sites 
for MoBX (X = O, S, Se, and Te). The unit cell is emphasized by a red dashed rectangle. The blue, pink, and ocean-blue balls represent X, B, 
and Mo atoms, respectively. Reproduced with permission from Ref. [241]. c Considered diffusion paths for Li and Na on the TiB monolayer. d 
Calculated diffusion energy barriers along the paths in c. The purple and yellow spheres represent Li and Na atoms, respectively. Reproduced 
with permission from Ref. [90]. (Color figure online)
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orthorhombic and hexagonal structures. Interestingly, both 
tetr- and tri-Mo2B2 exhibit high Li/Na diffusion rates. The 
diffusion energy barriers of Li/Na on tetr- (0.029/0.010 eV) 
and tri-Mo2B2 (0.023/0.013 eV) are small, indicating that 
both monolayers have good charge/discharge performance 
for Li/Na.

Through DFT and ab initio molecular dynamics (AIMD) 
calculations, Yuan et al. [230] explored the potential of 
 Zr2B2 MBene as anode materials for LIBs (Fig. 21a). The 
researchers calculated the diffusion barrier of Li ions on sin-
gle layer  Zr2B2 (Fig. 21b). According to its electronic struc-
ture, it was found that it contains metals during the whole 

Fig. 20  a Schematic diagram of removing Al to form MBenes by mechanical exfoliation in the MAB phase. b Schematic diagram of the metal 
cation diffusion migration paths considered on monolayer MBenes: left: S1 → S2 → S1, middle: S1 → S4 → S1 and right: S1 → S3 → S1. c Diffu-
sion energy curves of Li ions on  V2B2. d Diffusion energy curves of Na atoms on  V2B2. e Diffusion energy curves of Li ions on  V2B2O2. Repro-
duced with permission from Ref. [92]
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lithium process, which demonstrated  Zr2B2 is a promising 
anode material for LIBs. Gao and co-workers [234] dem-
onstrated that 2D  Y2B2 is kinetically and thermally stable 
and that electrons conduct well during charging, calculating 
the potential application of 2D  Y2B2 in rechargeable LIBs 
and SIBs (Fig. 21c). Calculations showed that the low dif-
fusion energy barriers of Li and Na on  Y2B2 are 0.013 and 
0.008 eV, respectively (Fig. 21d). The theoretical specific 
capacitance of Li/Na on  Y2B2 is 806.31 and 403.16 mAh 
 g−1, and the OCV of Li/Na varies from 0.43 to 0.24/0.45 
to 0.15 V at different Li/Na concentrations. These excellent 
physical properties indicated that 2D  Y2B2 has good appli-
cation prospects in battery. Li et al. [231] identified a novel 
 TiB3 MBene with unique boron chains on the surface by 
crystal structure prediction by changing the wrapping ratio 
of the nonmetallic element boron to metal atoms to weaken 
the near-neighbor electrostatic repulsion (Fig. 21e). They 
used a simple analysis based on electrostatic potential to 
quickly screen the adsorption sites of Li/Na atoms. Similarly, 
the diffusion energy barrier between the two most favora-
ble adsorption centers on  TiB3 monolayer was calculated. 

For P1 (A → A), Li/Na ions move directly from A site to 
another nearest A site, and the energy barrier is small (Li 
ion is 0.038 eV, Na ion is 0.157 eV). The diffusion along 
P2 (A → B → A) has a large potential barrier (0.068 eV 
for Li ion and 0.402 eV for Na ion), and the constructed 
A → C → A path will automatically change into A → B → A 
after optimization (Fig. 21f). It is worth pointing out that 
 TiB3 has a high capacity of 1335.04 and 667.52 mAh  g−1 in 
LIBs/SIBs, respectively, which is the highest record for other 
MBene and many MXene.

Li et al. [235] calculated the performance of ScB, TiB, 
and ScB as LIBs and SIBs anodes by first principles. The 
two monolayers are thermodynamically stable at room 
temperature and show obvious metal characteristics, which 
provides unique advantages for monolayers as anode mate-
rials. They studied the diffusion kinetics of Li/Na atoms 
at the most favorable adsorption sites, and found that the 
adsorption strength of Na ions (− 0.442, − 0.686, and 
− 0.510 eV) on each monolayer was much stronger than 
that of Li ions (− 0.062, − 0.361, and − 0. 352 eV). How-
ever, the adsorption energy of Li/Na is obviously weaker 

Fig. 21  a Top view of the stable structure of the monolayer  Zr2B2. The brown and green balls represent the Zr and B atoms, respectively. b 
The energy during the diffusion process on the monolayer  Zr2B2. Reproduced with permission from Ref. [230]. c Top view of 2D  Y2B2 crystal 
structures. The Y and B atoms are denoted by brown and green spheres. d The diffusion energy barrier curves of M on  Y2B2. Reproduced with 
permission from Ref. [234]. e The adsorption site of Li/Na on  TiB3 monolayer. f Diffusion barrier of Li and Na on  TiB3 monolayer along P1 and 
P2, respectively. Reproduced with permission from Ref. [231]
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than that of MXenes with similar  Sc2C (− 0.31/− 0.61 eV), 
 Ti2C (− 0.721/− 0.79 eV), and  V2C (− 0.96/− 1.16 eV). 
With the increase of the concentration of Li/Na ions on 
the three monolayers, all OCVs fall in the range of 0–1 V, 
which can effectively inhibit the dendrite formation of Li/
Na metal. In addition, the average adsorption energies of 
several Li/Na ions on ScB, TiB, and VB monolayers were 
calculated. It can be seen that the adsorption strength of 
Li ions on TiB and VB monolayers is much stronger than 
that of Na ions. Researchers have shown that ScB and TiB 
monolayers, as anode materials of LIBs and SIBs, have bet-
ter electrochemical performance than other MBenes. Wei 
et al. [84] recently calculated the possibility of  V2B2 as 
anode material for sodium ion battery separately.  V2B2 has 
excellent  Na+ adsorption characteristics, and can absorb 
three layers of  Na+ nearby, with a maximum capacity of 
814 mAh  g−1. It is found that  V2B2 has an ultra-low dif-
fusion barrier (0.011 eV), which represents the ultra-high 
ion diffusion rate of Na ions on  V2B2 surface. The average 
OCV is 0.65 V, and the good metallicity is maintained dur-
ing the whole adsorption process of sodium ions. These 
performances are superior to some MBenes that have been 
studied.

The above is just a theoretical calculation to predict the 
excellent performance of different MBenes in the field of ion 
batteries. More recently, Xiong’s team [85] prepare MoB by 
fluorine-free hydrothermal method, and test the electrochem-
ical performance of MoB as a lithium ion battery in CR-2032 
coin half battery. Figure 22a shows the cyclic voltammetry 
(CV) curve of MoB in the voltage window of 0.01–3 V and 
Li/Li +. The redox peak at 1.20/1.49 V still appears dur-
ing the second and third cycles, which is attributed to the 
intercalation/deintercalation of lithium ions, indicating that 
this is a reversible process. Figure 22b shows the cycle sta-
bility and coulomb efficiency of MoAlB and MBene. At 
the current density of 50 mAh  g−1, the original MoAlB has 
almost no capacity, but the specific capacity of the negative 
electrode of MBene reaches 671.6 mAh  g−1 after 50 cycles, 
which indicates that the removal of aluminum atoms from 
MAB phase is beneficial to improve the electrochemical 
performance. Figure 22c shows the charge–discharge curve 
of MBene with current density of 50 mAh  g−1 in the volt-
age range of 0.01–3 V. The initial charge–discharge specific 
capacities are 659.3 and 701.7 mAh  g−1, respectively. The 
corresponding small irreversible capacity in the first cycle is 
attributed to the formation of SEI layer, which is consistent 

Fig. 22  Electrochemical performance of the 2D MoB MBene anodes in LIBs. a CV curves at a scan rate of 0.1   mVs−1. b The cycle perfor-
mance of MoAlB and 2D MoB MBene at 50 mA  g−1. c Charge–discharge curves at 50 mA  g−1. d The corresponding voltage curves of 2D MoB 
MBene and e long cycle performance at 2 mA  g−1. f SEM images of the surface morphology of 2D MoB MBene anode after electrochemical 
cycle. Reproduced with permission from Ref. [85]
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with the results of cyclic voltammetry. With a capacity of 
0.05 A  g−1 as a reference, the capacity retention rates are 
93.8%, 88.6%, 79.1%, 73.1%, 62.1%, and 33.1% at a current 
density of 0.1 A  g−1 (Fig. 22d), respectively. At the current 
density of 2 A  g−1, the reversible specific capacity after 1000 
cycles is 144.2 mAh  g−1 (Fig. 22e), which is higher than that 
of many reported MXenes anodes [242–244]. The surface 
morphology of two-dimensional MoB MBene electrode after 
electrochemical cycle is shown in Fig. 22f. After long-term 

electrochemical cycle, the morphology of 2D MoB remains 
unchanged, indicating that the structure of 2D MoB is stable 
during charge and discharge. The above results show that 
MoB has excellent performance as anode material of LIBs, 
and MBene material will attract great research attention and 
become the next generation star material.

Rechargeable magnesium battery is becoming one of the 
most promising alternatives because of their mild nature, 
high natural abundance, good atmospheric stability, low 

Fig. 23  a Schematic illustration of rechargeable magnesium battery. Reproduced with permission from Ref. [245]. b Schematic illustration of 
main prerequisites for MIBs electrolytes. Reproduced with permission from Ref. [246]. c The average adsorption energies for cations (cation = 
Li, Na and Mg) on  M2B at first layer, second layer and third layer. d Theoretical specific capacity of cations (cation = Li, Na and Mg) in  M2B (M 
= Sc, Ti and V) monolayer. Reproduced with permission from Ref. [233]
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cost, and environmental friendliness. Magnesium ion bat-
tery basically consists of four parts: positive electrode, nega-
tive electrode, electrolyte and separator. Energy storage in 
MIBs is achieved through electrochemical reactions asso-
ciated with electron and ion transport (Fig. 23a). During 
the discharge process, electrons generated by redox reac-
tion drive the external load. On the contrary, during charg-
ing, electrons are stored in the electrode through reversible 
electrochemical reaction. Therefore, the reversible capacity 
provided by magnesium ion batteries is mainly limited to 
the exchanged electrons, the structural stability of materials 
during intercalation/delamination, and the diffusion rate con-
trolled by electrolyte. At this point, the performance of elec-
trode materials and electrolyte determines the performance 
of the battery, which is the key factor of high performance. 
The electrolyte should have the following characteristics: (1) 
reversible deposition and dissolution of Mg; (2) high ionic 
conductivity; (3) wide electrochemical window (Fig. 23b). 
In recent years, the exploration of suitable two-dimensional 
electrode materials has aroused researchers’ interest.

Li et al. [227] firstly evaluated MBenes as potential anode 
materials for MIBs based on DFT calculations. The simula-
tion results showed that  Cr2B2 is a competitive anode mate-
rial with a maximum theoretical capacity of 853.4 mAh  g−1 
and an average open-circuit potential of 0.53 eV. Compared 
with  Cr2B2,  Mo2B2 has a weaker Mg storage capacity with 
maximum storage capacity of 502.1 mAh  g−1. The energy 
barriers of magnesium in  Cr2B2 and  Mo2B2 are 0.38 and 
0.84 eV, respectively. These excellent physical properties 
mean that 2D MBenes have good prospects for application in 
MIBs as anode materials. Recently, Ma et al. [233] explored 
three new 2D MBenes phases,  Sc2B,  Ti2B, and  V2B, as elec-
trode for MIBs. The adsorption energy of Li, Na and Mg on 
the  M2B are appeared in Fig. 23c. When the third layer of 
Mg ions is adsorbed on the surface of  M2B, the adsorption 
energies are − 0.026, − 0.049, and − 0.041 eV for  Sc2B, 
 Ti2B, and  V2B, respectively, which indicates that the inter-
action between adsorbed atoms and the substrate is weak. 
However, the adsorption energies of Li and Na atoms in the 
second layer are positive, not to mention the third layer. The 
theoretical capacities of  Sc2B,  Ti2B, and  V2B as electrodes 
of MIBs are 3192.813, 3018.414, and 2853.953 mAh  g−1, 
respectively (Fig. 23d). In addition, the open circuit voltage 
of  M2B is in the range of 0.023–0.748 V, which improves 
the safety performance of the battery. As an anode mate-
rial for MIBs,  M2B (M = Sc, Ti, V) have high theoretical 

specific capacity, low open-circuit voltage and diffusion 
energy barrier.

5.2  Problems Solved in Lithium–Sulfur Batteries

Lithium-sulfur battery is considered as one of the next gen-
eration high energy density energy storage devices with the 
greatest development potential. Compared with traditional 
lithium-ion batteries, lithium-sulfur batteries (LSBs) have 
important advantages: lower material price and lighter 
weight. Increasing energy density is very important in trans-
portation and energy manufacturing to reduce energy storage 
costs and greenhouse gas emissions. However, there are sev-
eral challenges that hinders the development of LSBs, such 
as the poor conductivity of sulfur cathodes, the shuttling 
effect and the sluggish decomposition of  Li2S clusters [247, 
248]. The shuttle effect of soluble lithium polysulfide (LiPS) 
will cause some negative effects on the corresponding com-
ponents in the path (Fig. 24a). When searching for suitable 
electrode materials for metal ion batteries, the structural sta-
bility, electronic conductivity, adsorption and storage prop-
erties, ion transport, open circuit voltage and capacity of the 
battery are usually considered. In addition, the anchoring 
effect of the material may need to be considered when select-
ing a suitable material for LSBs. Xiao et al. [249] believed 
that  Mo2B2 surface functionalization can obtain appropri-
ate anchoring energy to inhibit the shuttle effect in LSBs, 
and can be further modified by adjusting surface groups. At 
the same time, further electronic structure results showed 
that the functionalized MBenes still show good electronic 
conductivity after LiPSs adsorption, which provides an elec-
tronic pathway to stimulate the redox electrochemistry of 
LiPSs. The specific analysis process is as follows.

To investigate the anchoring behavior, the structure of bare 
 Mo2B2 MBenes was first optimized and found to be composed 
of Mo-B-B-Mo atoms stacked. The anchoring material needs 
to have excellent anchoring properties for LiPS in order to 
suppress the shuttle effect. Therefore, a preliminary simulation 
of the adsorption behavior of LiPS on bare  Mo2B2 MBenes 
was performed, and it was found that most of the sulfur atoms 
were unloaded on the surface of  Mo2B2 MBenes, leading to 
the structural collapse of LiPSs. This meant that the direct use 
of bare  Mo2B2 MBenes as the anchoring material for LiPSs 
will seriously hinder the charge/discharge cycle performance 
of the battery. In order to obtain reversible charge/discharge 
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Fig. 24  a Schematic illustrations of the strategies and operation mechanisms of the modified sulfur host, electrolyte systems, functional separa-
tors, and anode surface engineering for the inhibition of LiPSs shuttle. Reproduced with permission from Ref. [250]. b Left: Optimized struc-
tures of  Mo2B2O2 and  Mo2B2F2. Right: The most energetic favorable adsorption configuration of  Li2Sn (n = 1, 2, 4, 6 and 8) and  S8 on the 
surface of  Mo2B2O2 MBene and  Mo2B2F2 MBene. The purple, green, sky blue, red, yellow, and moss green spheres represent Mo, B, F, O, S, 
and Li atoms, respectively. The calculated energy curves of  Li2S c diffusion and d decomposition on the surfaces of  Mo2B2F2 (black line) and 
 Mo2B2O2 (red line). Reproduced with permission from Ref. [249]. (Color figure online)
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cycle performance, researchers suggested the modification of 
bare  Mo2B2 by surface functionalization (F/O atoms), and 
initial adsorption forms of LiPSs on functionalized MBenes 
were extensively investigated. The most favorable adsorp-
tion conformations of  S8 and LiPSs on MBenes are shown 
in Fig. 24b. The result showed that  Mo2B2O2 and  Mo2B2F2 
are significantly weaker in anchoring strength with LiPS and 
 S8 compared to bare  Mo2B2 MBene, and the structure is well 
maintained. Finally, the researchers studied that  Mo2B2O2 
exhibits a lower diffusion barrier (0.191 eV) and decomposi-
tion barrier of  Li2S clusters (0.441 eV), which is beneficial for 
achieving coulombic efficiency of LSBs (Fig. 24c, d).

6  Summary and Perspectives

Since derived by extracting Al from MAB phases, MBenes 
have received more focus owing to their various chemical 
and structural types and potential applications. At present, 
researchers have obtained 2D MBenes through two dif-
ferent methods in experiments. Alameda et al. [87] found 
that  Mo2Al2B2 can react with NaOH at room tempera-
ture to cause Al deintercalation. In addition, the results of 
theoretical calculations further confirm the excellent con-
ductivity and high mechanical strength of MBenes. Very 
recently, Xiong’s team [85] prepare MoB by fluorine-free 

Fig. 25  Main applications of MBenes in energy storage and conversion with theoretical calculation
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hydrothermal method, and study electrochemical perfor-
mance of MoB in LIBs.

The main focus is on the energy conversion and energy 
storage applications in the rechargeable batteries (Fig. 25). 
As a new class of 2D nanomaterials, MBenes have a broad 
application prospect as an electrocatalyst for HER and 
NRR. In addition, it is also an attractive way to modify the 
structure of MBenes to improve its activity. The review also 
emphasizes MBenes composites embedded by single metal, 
which shows fascinating properties due to the electrochemi-
cal properties and high activity of MBenes and monatomic 
respectively. Besides electrocatalytic HER and NRR, MBene 
catalysts are also new catalysts for carbon dioxide reduction 
and nitric oxide reduction. Obviously, more efforts need to 
be made in this field in the future. We also focus on the 
research progress of MBenes for energy storage applica-
tions. It is observed that MBenes show great potential as 
anode materials in the next generation of batteries. Recently, 
researchers also found MBenes with the highest biotechno-
logical potential and the lowest cyto- and ecotoxicological 
threats possess prospective application in biotechnological 
field [95] (Fig. 26).

Although the enormous potential of MBenes in the appli-
cation of energy storage (Fig. 27a) and conversion (Fig. 27b) 
has been theoretically verified so far, there are still some 
challenges and opportunities for the further development of 
MBenes, some of which are highlighted as follows. Gener-
ally speaking, the synthesis, properties and application of 
MBenes are still in its infancy. More efforts are needed in 
the future to conduct a comprehensive and thorough inves-
tigation of MBenes.

 i. It is theoretically predicted that many MBenes have 
good stability, but the corresponding precursors have 
not been found or produced. It is worth noting that all 
the existing stable MBenes are early transition metal 
boron, while MBenes composed of intermediate or 
late transition metals are expected to be synthesized 
and explored. In addition, compared with the synthetic 
route of MXenes, the synthesis of MBenes have great 
room for improvement and development. In the prepa-
ration of MBene nanosheets, ensuring the consistency 
of morphology and physicochemical properties of the 
products is the main challenge faced by large-scale 
preparation. In addition, the researchers focused on 

Fig. 26  Envisioned biotechnological potential of 2D MBenes. Reproduced with permission from Ref. [95]
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the electronic structure, elasticity and magnetism of 
 M2AlB2 phase. The other two groups of MAB (includ-
ing MAlB and  M3AlB4 phase) and related MBenes 
have not been investigated. Therefore, it is necessary 
to systematically study the structure and properties of 
MAlB,  M2AlB2,  M3AlB4 and their derived MBenes. 
At the same time, it is also hoped that the assembly of 
polymers similar to MXenes will appear (Fig. 27c).

 ii. In order to understand the mechanism of MBene as a 
catalyst and anode material, and to design new materi-
als and optimize their performance, attention should 
be paid to theoretical calculation and experimental 
verification, such as field instrumental characteriza-
tion, so as to produce practical applications. In addi-
tion, the catalytic mechanism of  CO2RR and NRR is 
still unclear. Because of the complexity of the cata-
lytic reaction process between  CO2RR and NRR, there 
are many products in  CO2RR with different reaction 
pathways, and the reaction pathway of NRR is still 
controversial. So far, it has been challenging to deter-
mine the exact mechanism. First of all, it is necessary 
to understand the actual active sites in 2D MBenes in 
response to electrocatalysis, which is very important 
for the application of effective and practical engineer-

ing technology. Although a great deal of theoretical 
calculation and experimental work has been done, up 
to now, no exact conclusion has been reached on the 
actual active center of catalytic reaction. Therefore, 
systematic research is needed to further clarify the 
specific active sites of different catalytic reactions. 
Theoretical prediction and simultaneous measurement 
of catalytic activity and selectivity under practical 
working conditions seem to be a promising direction 
in this field.

 iii. The potential of MBenes in modern biotechnology 
stems from their unique structure and specific chemi-
cal composition. The experience gained from other 
2D materials, especially MXenes, can give researchers 
a reasonable way to explore the biological and bio-
technological properties of MBenes. It is essential to 
study the morphological, structural and physicochemi-
cal transformations of MBenes in relevant biological 
environments. We envisage that 2D MBenes have 
great biotechnological potential, and its practical bio-
logical applications will develop rapidly (Fig. 27d). In 
the next few years, the interesting biological activity 
and functional characteristics of MBenes are expected 
to develop rapidly.

Fig. 27  Progress and challenges of 2D MBene materials. The main progress of MBenes in a energy storage and b conversion. Prospect of future 
application of MBenes in c synthesis and d biotechnology
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Two-dimensional MBenes have attracted focus due to 
their unique structural types and excellent electrical and 
mechanical properties and have developed into a member 
of the two-dimensional family. It has also been proven to 
have great application potential in the field of energy conver-
sion and storage. It is foreseeable that 2D MBenes have the 
potential to become the brightest material.
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